mirror of
https://github.com/Proxmark/proxmark3.git
synced 2024-11-23 14:00:18 -08:00
3a5ffba7c1
* add support for elliptic curve 'secp128r1' to mbedtls library * change ecdsa_signature_verify() to allow different curves, signature lengths, and skipping hash * add another public key for Mifare Ultralight EV1
344 lines
14 KiB
C
344 lines
14 KiB
C
/**
|
|
* \file ecdsa.h
|
|
*
|
|
* \brief This file contains ECDSA definitions and functions.
|
|
*
|
|
* The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
|
|
* <em>Standards for Efficient Cryptography Group (SECG):
|
|
* SEC1 Elliptic Curve Cryptography</em>.
|
|
* The use of ECDSA for TLS is defined in <em>RFC-4492: Elliptic Curve
|
|
* Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)</em>.
|
|
*
|
|
*/
|
|
/*
|
|
* Copyright (C) 2006-2018, Arm Limited (or its affiliates), All Rights Reserved
|
|
* SPDX-License-Identifier: GPL-2.0
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* This file is part of Mbed TLS (https://tls.mbed.org)
|
|
*/
|
|
|
|
#ifndef MBEDTLS_ECDSA_H
|
|
#define MBEDTLS_ECDSA_H
|
|
|
|
#include "ecp.h"
|
|
#include "md.h"
|
|
|
|
/*
|
|
* RFC-4492 page 20:
|
|
*
|
|
* Ecdsa-Sig-Value ::= SEQUENCE {
|
|
* r INTEGER,
|
|
* s INTEGER
|
|
* }
|
|
*
|
|
* Size is at most
|
|
* 1 (tag) + 1 (len) + 1 (initial 0) + ECP_MAX_BYTES for each of r and s,
|
|
* twice that + 1 (tag) + 2 (len) for the sequence
|
|
* (assuming ECP_MAX_BYTES is less than 126 for r and s,
|
|
* and less than 124 (total len <= 255) for the sequence)
|
|
*/
|
|
#if MBEDTLS_ECP_MAX_BYTES > 124
|
|
#error "MBEDTLS_ECP_MAX_BYTES bigger than expected, please fix MBEDTLS_ECDSA_MAX_LEN"
|
|
#endif
|
|
/** The maximal size of an ECDSA signature in Bytes. */
|
|
#define MBEDTLS_ECDSA_MAX_LEN ( 3 + 2 * ( 3 + MBEDTLS_ECP_MAX_BYTES ) )
|
|
|
|
/**
|
|
* \brief The ECDSA context structure.
|
|
*/
|
|
typedef mbedtls_ecp_keypair mbedtls_ecdsa_context;
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/**
|
|
* \brief This function computes the ECDSA signature of a
|
|
* previously-hashed message.
|
|
*
|
|
* \note The deterministic version is usually preferred.
|
|
*
|
|
* \note If the bitlength of the message hash is larger than the
|
|
* bitlength of the group order, then the hash is truncated
|
|
* as defined in <em>Standards for Efficient Cryptography Group
|
|
* (SECG): SEC1 Elliptic Curve Cryptography</em>, section
|
|
* 4.1.3, step 5.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param grp The ECP group.
|
|
* \param r The first output integer.
|
|
* \param s The second output integer.
|
|
* \param d The private signing key.
|
|
* \param buf The message hash.
|
|
* \param blen The length of \p buf.
|
|
* \param f_rng The RNG function.
|
|
* \param p_rng The RNG context.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX
|
|
* or \c MBEDTLS_MPI_XXX error code on failure.
|
|
*/
|
|
int mbedtls_ecdsa_sign( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
|
|
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
|
|
|
|
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
|
|
/**
|
|
* \brief This function computes the ECDSA signature of a
|
|
* previously-hashed message, deterministic version.
|
|
*
|
|
* For more information, see <em>RFC-6979: Deterministic
|
|
* Usage of the Digital Signature Algorithm (DSA) and Elliptic
|
|
* Curve Digital Signature Algorithm (ECDSA)</em>.
|
|
*
|
|
* \note If the bitlength of the message hash is larger than the
|
|
* bitlength of the group order, then the hash is truncated as
|
|
* defined in <em>Standards for Efficient Cryptography Group
|
|
* (SECG): SEC1 Elliptic Curve Cryptography</em>, section
|
|
* 4.1.3, step 5.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param grp The ECP group.
|
|
* \param r The first output integer.
|
|
* \param s The second output integer.
|
|
* \param d The private signing key.
|
|
* \param buf The message hash.
|
|
* \param blen The length of \p buf.
|
|
* \param md_alg The MD algorithm used to hash the message.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX or \c MBEDTLS_MPI_XXX
|
|
* error code on failure.
|
|
*/
|
|
int mbedtls_ecdsa_sign_det( mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
|
|
const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
|
|
mbedtls_md_type_t md_alg );
|
|
#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
|
|
|
|
/**
|
|
* \brief This function verifies the ECDSA signature of a
|
|
* previously-hashed message.
|
|
*
|
|
* \note If the bitlength of the message hash is larger than the
|
|
* bitlength of the group order, then the hash is truncated as
|
|
* defined in <em>Standards for Efficient Cryptography Group
|
|
* (SECG): SEC1 Elliptic Curve Cryptography</em>, section
|
|
* 4.1.4, step 3.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param grp The ECP group.
|
|
* \param buf The message hash.
|
|
* \param blen The length of \p buf.
|
|
* \param Q The public key to use for verification.
|
|
* \param r The first integer of the signature.
|
|
* \param s The second integer of the signature.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if the signature
|
|
* is invalid.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX or \c MBEDTLS_MPI_XXX
|
|
* error code on failure for any other reason.
|
|
*/
|
|
int mbedtls_ecdsa_verify( mbedtls_ecp_group *grp,
|
|
const unsigned char *buf, size_t blen,
|
|
const mbedtls_ecp_point *Q, const mbedtls_mpi *r, const mbedtls_mpi *s);
|
|
|
|
/**
|
|
* \brief This function computes the ECDSA signature and writes it
|
|
* to a buffer, serialized as defined in <em>RFC-4492:
|
|
* Elliptic Curve Cryptography (ECC) Cipher Suites for
|
|
* Transport Layer Security (TLS)</em>.
|
|
*
|
|
* \warning It is not thread-safe to use the same context in
|
|
* multiple threads.
|
|
*
|
|
* \note The deterministic version is used if
|
|
* #MBEDTLS_ECDSA_DETERMINISTIC is defined. For more
|
|
* information, see <em>RFC-6979: Deterministic Usage
|
|
* of the Digital Signature Algorithm (DSA) and Elliptic
|
|
* Curve Digital Signature Algorithm (ECDSA)</em>.
|
|
*
|
|
* \note The \p sig buffer must be at least twice as large as the
|
|
* size of the curve used, plus 9. For example, 73 Bytes if
|
|
* a 256-bit curve is used. A buffer length of
|
|
* #MBEDTLS_ECDSA_MAX_LEN is always safe.
|
|
*
|
|
* \note If the bitlength of the message hash is larger than the
|
|
* bitlength of the group order, then the hash is truncated as
|
|
* defined in <em>Standards for Efficient Cryptography Group
|
|
* (SECG): SEC1 Elliptic Curve Cryptography</em>, section
|
|
* 4.1.3, step 5.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param ctx The ECDSA context.
|
|
* \param md_alg The message digest that was used to hash the message.
|
|
* \param hash The message hash.
|
|
* \param hlen The length of the hash.
|
|
* \param sig The buffer that holds the signature.
|
|
* \param slen The length of the signature written.
|
|
* \param f_rng The RNG function.
|
|
* \param p_rng The RNG context.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX, \c MBEDTLS_ERR_MPI_XXX or
|
|
* \c MBEDTLS_ERR_ASN1_XXX error code on failure.
|
|
*/
|
|
int mbedtls_ecdsa_write_signature( mbedtls_ecdsa_context *ctx, mbedtls_md_type_t md_alg,
|
|
const unsigned char *hash, size_t hlen,
|
|
unsigned char *sig, size_t *slen,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng );
|
|
|
|
#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
|
|
#if ! defined(MBEDTLS_DEPRECATED_REMOVED)
|
|
#if defined(MBEDTLS_DEPRECATED_WARNING)
|
|
#define MBEDTLS_DEPRECATED __attribute__((deprecated))
|
|
#else
|
|
#define MBEDTLS_DEPRECATED
|
|
#endif
|
|
/**
|
|
* \brief This function computes an ECDSA signature and writes
|
|
* it to a buffer, serialized as defined in <em>RFC-4492:
|
|
* Elliptic Curve Cryptography (ECC) Cipher Suites for
|
|
* Transport Layer Security (TLS)</em>.
|
|
*
|
|
* The deterministic version is defined in <em>RFC-6979:
|
|
* Deterministic Usage of the Digital Signature Algorithm (DSA)
|
|
* and Elliptic Curve Digital Signature Algorithm (ECDSA)</em>.
|
|
*
|
|
* \warning It is not thread-safe to use the same context in
|
|
* multiple threads.
|
|
*
|
|
* \note The \p sig buffer must be at least twice as large as the
|
|
* size of the curve used, plus 9. For example, 73 Bytes if a
|
|
* 256-bit curve is used. A buffer length of
|
|
* #MBEDTLS_ECDSA_MAX_LEN is always safe.
|
|
*
|
|
* \note If the bitlength of the message hash is larger than the
|
|
* bitlength of the group order, then the hash is truncated as
|
|
* defined in <em>Standards for Efficient Cryptography Group
|
|
* (SECG): SEC1 Elliptic Curve Cryptography</em>, section
|
|
* 4.1.3, step 5.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \deprecated Superseded by mbedtls_ecdsa_write_signature() in
|
|
* Mbed TLS version 2.0 and later.
|
|
*
|
|
* \param ctx The ECDSA context.
|
|
* \param hash The message hash.
|
|
* \param hlen The length of the hash.
|
|
* \param sig The buffer that holds the signature.
|
|
* \param slen The length of the signature written.
|
|
* \param md_alg The MD algorithm used to hash the message.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX, \c MBEDTLS_ERR_MPI_XXX or
|
|
* \c MBEDTLS_ERR_ASN1_XXX error code on failure.
|
|
*/
|
|
int mbedtls_ecdsa_write_signature_det( mbedtls_ecdsa_context *ctx,
|
|
const unsigned char *hash, size_t hlen,
|
|
unsigned char *sig, size_t *slen,
|
|
mbedtls_md_type_t md_alg ) MBEDTLS_DEPRECATED;
|
|
#undef MBEDTLS_DEPRECATED
|
|
#endif /* MBEDTLS_DEPRECATED_REMOVED */
|
|
#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
|
|
|
|
/**
|
|
* \brief This function reads and verifies an ECDSA signature.
|
|
*
|
|
* \note If the bitlength of the message hash is larger than the
|
|
* bitlength of the group order, then the hash is truncated as
|
|
* defined in <em>Standards for Efficient Cryptography Group
|
|
* (SECG): SEC1 Elliptic Curve Cryptography</em>, section
|
|
* 4.1.4, step 3.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param ctx The ECDSA context.
|
|
* \param hash The message hash.
|
|
* \param hlen The size of the hash.
|
|
* \param sig The signature to read and verify.
|
|
* \param slen The size of \p sig.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if signature is invalid.
|
|
* \return #MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH if there is a valid
|
|
* signature in \p sig, but its length is less than \p siglen.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX or \c MBEDTLS_ERR_MPI_XXX
|
|
* error code on failure for any other reason.
|
|
*/
|
|
int mbedtls_ecdsa_read_signature( mbedtls_ecdsa_context *ctx,
|
|
const unsigned char *hash, size_t hlen,
|
|
const unsigned char *sig, size_t slen );
|
|
|
|
/**
|
|
* \brief This function generates an ECDSA keypair on the given curve.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param ctx The ECDSA context to store the keypair in.
|
|
* \param gid The elliptic curve to use. One of the various
|
|
* \c MBEDTLS_ECP_DP_XXX macros depending on configuration.
|
|
* \param f_rng The RNG function.
|
|
* \param p_rng The RNG context.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX code on failure.
|
|
*/
|
|
int mbedtls_ecdsa_genkey( mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
|
|
|
|
/**
|
|
* \brief This function sets an ECDSA context from an EC key pair.
|
|
*
|
|
* \see ecp.h
|
|
*
|
|
* \param ctx The ECDSA context to set.
|
|
* \param key The EC key to use.
|
|
*
|
|
* \return \c 0 on success.
|
|
* \return An \c MBEDTLS_ERR_ECP_XXX code on failure.
|
|
*/
|
|
int mbedtls_ecdsa_from_keypair( mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key );
|
|
|
|
/**
|
|
* \brief This function initializes an ECDSA context.
|
|
*
|
|
* \param ctx The ECDSA context to initialize.
|
|
*/
|
|
void mbedtls_ecdsa_init( mbedtls_ecdsa_context *ctx );
|
|
|
|
/**
|
|
* \brief This function frees an ECDSA context.
|
|
*
|
|
* \param ctx The ECDSA context to free.
|
|
*/
|
|
void mbedtls_ecdsa_free( mbedtls_ecdsa_context *ctx );
|
|
|
|
int ecdsa_signature_to_asn1( const mbedtls_mpi *r, const mbedtls_mpi *s, unsigned char *sig, size_t *slen );
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* ecdsa.h */
|