proxmark3/client/mifare/mifarehost.c
pwpiwi aa8ff592ae
add a specific check function for static nonces (used in 'hf mf nested') (#911)
* add a specific check function for static nonces in 'hf mf nested'
* uses a fixed nr_enc and does all the crypto operations on client
* for all possible keys calculate par_enc and ar_enc and send them to device
* CHANGELOG update
2020-03-16 13:32:00 +01:00

1250 lines
34 KiB
C

// Merlok, 2011, 2012
// people from mifare@nethemba.com, 2010
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// mifare commands
//-----------------------------------------------------------------------------
#include "mifarehost.h"
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include "crapto1/crapto1.h"
#include "comms.h"
#include "usb_cmd.h"
#include "cmdmain.h"
#include "ui.h"
#include "parity.h"
#include "util.h"
#include "iso14443crc.h"
#include "util_posix.h"
#include "mifare.h"
#include "mifare4.h"
// mifare tracer flags used in mfTraceDecode()
#define TRACE_IDLE 0x00
#define TRACE_AUTH1 0x01
#define TRACE_AUTH2 0x02
#define TRACE_AUTH_OK 0x03
#define TRACE_READ_DATA 0x04
#define TRACE_WRITE_OK 0x05
#define TRACE_WRITE_DATA 0x06
#define TRACE_ERROR 0xFF
static int compare_uint64(const void *a, const void *b) {
// didn't work: (the result is truncated to 32 bits)
//return (*(int64_t*)b - *(int64_t*)a);
// better:
if (*(uint64_t*)b == *(uint64_t*)a) return 0;
else if (*(uint64_t*)b < *(uint64_t*)a) return 1;
else return -1;
}
// create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned.
static uint32_t intersection(uint64_t *list1, uint64_t *list2)
{
if (list1 == NULL || list2 == NULL) {
return 0;
}
uint64_t *p1, *p2, *p3;
p1 = p3 = list1;
p2 = list2;
while ( *p1 != -1 && *p2 != -1 ) {
if (compare_uint64(p1, p2) == 0) {
*p3++ = *p1++;
p2++;
}
else {
while (compare_uint64(p1, p2) < 0) ++p1;
while (compare_uint64(p1, p2) > 0) ++p2;
}
}
*p3 = -1;
return p3 - list1;
}
// Darkside attack (hf mf mifare)
static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t par_info, uint64_t ks_info, uint64_t **keys) {
struct Crypto1State *states;
uint32_t i, pos;
uint8_t bt, ks3x[8], par[8][8];
uint64_t key_recovered;
uint64_t *keylist;
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
for (pos=0; pos<8; pos++) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
bt = (par_info >> (pos*8)) & 0xff;
for (i=0; i<8; i++) {
par[7-pos][i] = (bt >> i) & 0x01;
}
}
states = lfsr_common_prefix(nr, ar, ks3x, par, (par_info == 0));
if (states == NULL) {
*keys = NULL;
return 0;
}
keylist = (uint64_t*)states;
for (i = 0; keylist[i]; i++) {
lfsr_rollback_word(states+i, uid^nt, 0);
crypto1_get_lfsr(states+i, &key_recovered);
keylist[i] = key_recovered;
}
keylist[i] = -1;
*keys = keylist;
return i;
}
int mfDarkside(uint64_t *key) {
uint32_t uid = 0;
uint32_t nt = 0, nr = 0, ar = 0;
uint64_t par_list = 0, ks_list = 0;
uint64_t *keylist = NULL, *last_keylist = NULL;
uint32_t keycount = 0;
int16_t isOK = 0;
UsbCommand c = {CMD_READER_MIFARE, {true, 0, 0}};
// message
printf("-------------------------------------------------------------------------\n");
printf("Executing command. Expected execution time: 25sec on average\n");
printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n");
printf("-------------------------------------------------------------------------\n");
while (true) {
clearCommandBuffer();
SendCommand(&c);
//flush queue
while (ukbhit()) {
int c = getchar(); (void) c;
}
// wait cycle
while (true) {
printf(".");
fflush(stdout);
if (ukbhit()) {
return -5;
break;
}
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
isOK = resp.arg[0];
if (isOK < 0) {
return isOK;
}
uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4);
nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4);
par_list = bytes_to_num(resp.d.asBytes + 8, 8);
ks_list = bytes_to_num(resp.d.asBytes + 16, 8);
nr = (uint32_t)bytes_to_num(resp.d.asBytes + 24, 4);
ar = (uint32_t)bytes_to_num(resp.d.asBytes + 28, 4);
break;
}
}
if (par_list == 0 && c.arg[0] == true) {
PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication.");
}
c.arg[0] = false;
keycount = nonce2key(uid, nt, nr, ar, par_list, ks_list, &keylist);
if (keycount == 0) {
PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt);
PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce...");
continue;
}
if (par_list == 0) {
qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
keycount = intersection(last_keylist, keylist);
if (keycount == 0) {
free(last_keylist);
last_keylist = keylist;
continue;
}
}
if (keycount > 1) {
PrintAndLog("Found %u possible keys. Trying to authenticate with each of them ...\n", keycount);
} else {
PrintAndLog("Found a possible key. Trying to authenticate...\n");
}
uint8_t *keys_to_chk = malloc(keycount * 6);
for (int i = 0; i < keycount; i++) {
num_to_bytes(keylist[i], 6, keys_to_chk+i);
}
*key = -1;
mfCheckKeys(0, 0, 0, false, keycount, keys_to_chk, key);
free(keys_to_chk);
if (*key != -1) {
free(last_keylist);
free(keylist);
break;
} else {
PrintAndLog("Authentication failed. Trying again...");
free(last_keylist);
last_keylist = keylist;
}
}
return 0;
}
static int mfCheckKeysEx(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key, bool fixed_nonce) {
bool display_progress = false;
uint64_t start_time = msclock();
uint64_t next_print_time = start_time + 5 * 1000;
if (keycnt > 1000) {
PrintAndLog("We have %d keys to check. This can take some time!", keycnt);
PrintAndLog("Press button to abort.");
display_progress = true;
}
uint8_t bytes_per_key = fixed_nonce ? 5 : 6;
uint32_t max_keys = keycnt > USB_CMD_DATA_SIZE/bytes_per_key ? USB_CMD_DATA_SIZE/bytes_per_key : keycnt;
*found_key = -1;
bool multisectorCheck = false;
for (int i = 0, ii = 0; i < keycnt; i += max_keys) {
if ((i + max_keys) >= keycnt) {
max_keys = keycnt - i;
}
bool init = (i == 0);
bool drop_field = (max_keys == keycnt);
uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3 | fixed_nonce << 4;
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}};
memcpy(c.d.asBytes, keys + i * bytes_per_key, max_keys * bytes_per_key);
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000))
return 1;
if ((resp.arg[0] & 0xff) != 0x01) {
if ((int)resp.arg[1] < 0) { // error or user aborted
return (int)resp.arg[1];
} else { // nothing found yet
if (display_progress && msclock() >= next_print_time) {
float brute_force_per_second = (float)(i - ii) / (float)(msclock() - start_time) * 1000.0;
ii = i;
start_time = msclock();
next_print_time = start_time + 10 * 1000;
PrintAndLog(" %8d keys left | %5.1f keys/sec | worst case %6.1f seconds remaining", keycnt - i, brute_force_per_second, (keycnt-i)/brute_force_per_second);
}
}
} else { // success
if (fixed_nonce) {
*found_key = i + resp.arg[1] - 1;
} else {
*found_key = bytes_to_num(resp.d.asBytes, 6);
}
return 0;
}
}
return 2; // nothing found
}
int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) {
return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, found_key, false);
}
static int mfCheckKeysFixedNonce(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint32_t *key_index) {
return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, (uint64_t*)key_index, true);
}
int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t *keyBlock, sector_t *e_sector) {
uint8_t keyPtr = 0;
if (e_sector == NULL)
return -1;
bool multisectorCheck = true;
uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3;
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((sectorCnt & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, keycnt}};
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeoutW(CMD_ACK, &resp, MAX(3000, 1000 + 13 * sectorCnt * keycnt * (keyType == 2 ? 2 : 1)), false)) return 1; // timeout: 13 ms / fail auth
if ((resp.arg[0] & 0xff) != 0x01) return 2;
bool foundAKey = false;
for(int sec = 0; sec < sectorCnt; sec++){
for(int keyAB = 0; keyAB < 2; keyAB++){
keyPtr = *(resp.d.asBytes + keyAB * 40 + sec);
if (keyPtr){
e_sector[sec].foundKey[keyAB] = true;
e_sector[sec].Key[keyAB] = bytes_to_num(keyBlock + (keyPtr - 1) * 6, 6);
foundAKey = true;
}
}
}
return foundAKey ? 0 : 3;
}
// Compare 16 Bits out of cryptostate
int Compare16Bits(const void * a, const void * b) {
if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
else return -1;
}
typedef
struct {
union {
struct Crypto1State *slhead;
uint64_t *keyhead;
} head;
union {
struct Crypto1State *sltail;
uint64_t *keytail;
} tail;
uint32_t len;
uint32_t uid;
uint32_t blockNo;
uint32_t keyType;
uint32_t nt;
uint32_t ks1;
} StateList_t;
// wrapper function for multi-threaded lfsr_recovery32
void
#ifdef __has_attribute
#if __has_attribute(force_align_arg_pointer)
__attribute__((force_align_arg_pointer))
#endif
#endif
*nested_worker_thread(void *arg) {
struct Crypto1State *p1;
StateList_t *statelist = arg;
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
statelist->len = p1 - statelist->head.slhead;
statelist->tail.sltail = --p1;
qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
return statelist->head.slhead;
}
static int nested_fixed_nonce(StateList_t statelist, uint32_t fixed_nt, uint32_t authentication_timeout, uint8_t *resultKey) {
// We have a tag with a fixed nonce (nt) and therefore only one (usually long) list of possible crypto states.
// Instead of testing all those keys on the device with a complete authentication cycle, we do all of the crypto operations here.
uint8_t nr_enc[4] = NESTED_FIXED_NR_ENC; // we use a fixed {nr}
uint8_t ar[4];
num_to_bytes(prng_successor(fixed_nt, 64), 4, ar); // ... and ar is fixed too
// create an array of possible {ar} and parity bits
uint32_t num_ar_par = statelist.len;
uint8_t *ar_par = calloc(num_ar_par, 5);
if (ar_par == NULL) {
free(statelist.head.slhead);
return -4;
}
for (int i = 0; i < num_ar_par; i++) {
// roll back to initial state using the nt observed with the nested authentication
lfsr_rollback_word(statelist.head.slhead + i, statelist.nt ^ statelist.uid, 0);
// instead feed in the fixed_nt for the first authentication
struct Crypto1State cs = *(statelist.head.slhead + i);
crypto1_word(&cs, fixed_nt ^ statelist.uid, 0);
// determine nr such that the resulting {nr} is constant and feed it into the cypher. Calculate the encrypted parity bits
uint8_t par_enc = 0;
for (int j = 0; j < 4; j++) {
uint8_t nr_byte = crypto1_byte(&cs, nr_enc[j], 1) ^ nr_enc[j];
par_enc |= (((filter(cs.odd) ^ oddparity8(nr_byte)) & 0x01) << (7-j));
}
// calculate the encrypted reader response {ar} and its parity bits
for (int j = 0; j < 4; j++) {
ar_par[5*i + j] = crypto1_byte(&cs, 0, 0) ^ ar[j];
par_enc |= ((filter(cs.odd) ^ oddparity8(ar[j])) & 0x01) << (3-j);
}
ar_par[5*i + 4] = par_enc;
}
// test each {ar} response
uint32_t key_index;
int isOK = mfCheckKeysFixedNonce(statelist.blockNo, statelist.keyType, authentication_timeout, true, num_ar_par, ar_par, &key_index);
if (isOK == 0) { // success, key found
// key_index contains the index into the cypher state list
struct Crypto1State *p1 = statelist.head.slhead + key_index;
uint64_t key64;
crypto1_get_lfsr(p1, &key64);
num_to_bytes(key64, 6, resultKey);
}
if (isOK == 1) { // timeout
isOK = -1;
}
free(statelist.head.slhead);
free(ar_par);
return isOK;
}
static int nested_standard(StateList_t statelists[2], uint32_t authentication_timeout, uint8_t *resultKey) {
// the first 16 Bits of the crypto states already contain part of our key.
// Create the intersection of the two lists based on these 16 Bits and
// roll back the crypto state for the remaining states
struct Crypto1State *p1, *p2, *p3, *p4;
p1 = p3 = statelists[0].head.slhead;
p2 = p4 = statelists[1].head.slhead;
while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
if (Compare16Bits(p1, p2) == 0) {
struct Crypto1State savestate, *savep = &savestate;
savestate = *p1;
while (Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
*p3 = *p1;
lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
p3++;
p1++;
}
savestate = *p2;
while (Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
*p4 = *p2;
lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
p4++;
p2++;
}
}
else {
while (Compare16Bits(p1, p2) == -1) p1++;
while (Compare16Bits(p1, p2) == 1) p2++;
}
}
*(uint64_t*)p3 = -1;
*(uint64_t*)p4 = -1;
statelists[0].len = p3 - statelists[0].head.slhead;
statelists[1].len = p4 - statelists[1].head.slhead;
statelists[0].tail.sltail=--p3;
statelists[1].tail.sltail=--p4;
// the statelists now contain possible crypto states initialized with the key. The key we are searching for
// must be in the intersection of both lists. Sort the lists and create the intersection:
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
// create an array of the possible keys
uint32_t num_keys = statelists[0].len;
uint8_t *keys = calloc(num_keys, 6);
if (keys == NULL) {
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
return -4;
}
uint64_t key64 = 0;
for (int i = 0; i < num_keys; i++) {
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
num_to_bytes(key64, 6, keys + i*6);
}
// and test each key with mfCheckKeys
int isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keys, &key64);
if (isOK == 0) { // success, key found
num_to_bytes(key64, 6, resultKey);
}
if (isOK == 1) { // timeout
isOK = -1;
}
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
free(keys);
return isOK;
}
int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) {
// flush queue
clearCommandBuffer();
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
memcpy(c.d.asBytes, key, 6);
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
return -1;
}
if ((int)resp.arg[0]) {
return (int)resp.arg[0]; // error during nested
}
uint32_t uid;
memcpy(&uid, resp.d.asBytes, 4);
PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
StateList_t statelists[2];
for (int i = 0; i < 2; i++) {
statelists[i].blockNo = resp.arg[2] & 0xff;
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
statelists[i].uid = uid;
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
}
uint32_t authentication_timeout;
memcpy(&authentication_timeout, resp.d.asBytes + 20, 4);
PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106);
uint8_t num_unique_nonces;
uint32_t fixed_nt = 0;
if (statelists[0].nt == statelists[1].nt && statelists[0].ks1 == statelists[1].ks1) {
num_unique_nonces = 1;
memcpy(&fixed_nt, resp.d.asBytes + 24, 4);
PrintAndLog("Fixed nt detected: %08" PRIx32 " on first authentication, %08" PRIx32 " on nested authentication", fixed_nt, statelists[0].nt);
} else {
num_unique_nonces = 2;
}
// create and run worker threads to calculate possible crypto states
pthread_t thread_id[2];
for (int i = 0; i < num_unique_nonces; i++) {
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
}
// wait for threads to terminate:
for (int i = 0; i < num_unique_nonces; i++) {
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
}
if (num_unique_nonces == 2) {
return nested_standard(statelists, authentication_timeout, resultKey);
} else {
return nested_fixed_nonce(statelists[0], fixed_nt, authentication_timeout, resultKey);
}
}
// MIFARE
int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) {
UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
if (isOK) {
memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16);
return 0;
} else {
return 1;
}
} else {
PrintAndLogEx(ERR, "Command execute timeout");
return 2;
}
return 0;
}
// EMULATOR
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
memcpy(data, resp.d.asBytes, blocksCount * 16);
return 0;
}
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
memcpy(c.d.asBytes, data, blocksCount * 16);
SendCommand(&c);
return 0;
}
// "MAGIC" CARD
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
memcpy(data, resp.d.asBytes, 16);
if (!isOK) return 2;
} else {
PrintAndLog("Command execute timeout");
return 1;
}
return 0;
}
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
memcpy(c.d.asBytes, data, 16);
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
isOK = resp.arg[0] & 0xff;
if (uid != NULL)
memcpy(uid, resp.d.asBytes, 4);
if (!isOK)
return 2;
} else {
PrintAndLog("Command execute timeout");
return 1;
}
return 0;
}
int mfCWipe(uint32_t numSectors, bool gen1b, bool wantWipe, bool wantFill) {
uint8_t isOK = 0;
uint8_t cmdParams = wantWipe + wantFill * 0x02 + gen1b * 0x04;
UsbCommand c = {CMD_MIFARE_CWIPE, {numSectors, cmdParams, 0}};
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
isOK = resp.arg[0] & 0xff;
return isOK;
}
int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) {
uint8_t oldblock0[16] = {0x00};
uint8_t block0[16] = {0x00};
int gen = 0, res;
gen = mfCIdentify();
/* generation 1a magic card by default */
uint8_t cmdParams = CSETBLOCK_SINGLE_OPER;
if (gen == 2) {
/* generation 1b magic card */
cmdParams = CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B;
}
res = mfCGetBlock(0, oldblock0, cmdParams);
if (res == 0) {
memcpy(block0, oldblock0, 16);
PrintAndLog("old block 0: %s", sprint_hex(block0,16));
} else {
PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
}
// fill in the new values
// UID
memcpy(block0, uid, 4);
// Mifare UID BCC
block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3];
// mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
if (sak != NULL)
block0[5] = sak[0];
if (atqa != NULL) {
block0[6] = atqa[1];
block0[7] = atqa[0];
}
PrintAndLog("new block 0: %s", sprint_hex(block0, 16));
res = mfCSetBlock(0, block0, oldUID, false, cmdParams);
if (res) {
PrintAndLog("Can't set block 0. Error: %d", res);
return res;
}
return 0;
}
int mfCIdentify() {
UsbCommand c = {CMD_MIFARE_CIDENT, {0, 0, 0}};
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
uint8_t isGeneration = resp.arg[0] & 0xff;
switch( isGeneration ){
case 1: PrintAndLog("Chinese magic backdoor commands (GEN 1a) detected"); break;
case 2: PrintAndLog("Chinese magic backdoor command (GEN 1b) detected"); break;
default: PrintAndLog("No chinese magic backdoor command detected"); break;
}
return (int) isGeneration;
}
// SNIFFER
// constants
static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
// variables
char logHexFileName[FILE_PATH_SIZE] = {0x00};
static uint8_t traceCard[4096] = {0x00};
static char traceFileName[FILE_PATH_SIZE] = {0x00};
static int traceState = TRACE_IDLE;
static uint8_t traceCurBlock = 0;
static uint8_t traceCurKey = 0;
struct Crypto1State *traceCrypto1 = NULL;
struct Crypto1State *revstate;
uint64_t lfsr;
uint64_t ui64Key;
uint32_t ks2;
uint32_t ks3;
uint32_t uid; // serial number
uint32_t nt; // tag challenge
uint32_t nt_enc; // encrypted tag challenge
uint8_t nt_enc_par; // encrypted tag challenge parity
uint32_t nr_enc; // encrypted reader challenge
uint32_t ar_enc; // encrypted reader response
uint8_t ar_enc_par; // encrypted reader response parity
uint32_t at_enc; // encrypted tag response
uint8_t at_enc_par; // encrypted tag response parity
int isTraceCardEmpty(void) {
return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
}
int isBlockEmpty(int blockN) {
for (int i = 0; i < 16; i++)
if (traceCard[blockN * 16 + i] != 0) return 0;
return 1;
}
int isBlockTrailer(int blockN) {
return ((blockN & 0x03) == 0x03);
}
int saveTraceCard(void) {
FILE * f;
if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
f = fopen(traceFileName, "w+");
if ( !f ) return 1;
for (int i = 0; i < 64; i++) { // blocks
for (int j = 0; j < 16; j++) // bytes
fprintf(f, "%02x", *(traceCard + i * 16 + j));
if (i < 63)
fprintf(f,"\n");
}
fclose(f);
return 0;
}
int loadTraceCard(uint8_t *tuid) {
FILE * f;
char buf[64] = {0x00};
uint8_t buf8[64] = {0x00};
int i, blockNum;
if (!isTraceCardEmpty())
saveTraceCard();
memset(traceCard, 0x00, 4096);
memcpy(traceCard, tuid + 3, 4);
FillFileNameByUID(traceFileName, tuid, ".eml", 7);
f = fopen(traceFileName, "r");
if (!f) return 1;
blockNum = 0;
while(!feof(f)){
memset(buf, 0, sizeof(buf));
if (fgets(buf, sizeof(buf), f) == NULL) {
PrintAndLog("File reading error.");
fclose(f);
return 2;
}
if (strlen(buf) < 32){
if (feof(f)) break;
PrintAndLog("File content error. Block data must include 32 HEX symbols");
fclose(f);
return 2;
}
for (i = 0; i < 32; i += 2)
sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
memcpy(traceCard + blockNum * 16, buf8, 16);
blockNum++;
}
fclose(f);
return 0;
}
int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
if (traceCrypto1)
crypto1_destroy(traceCrypto1);
traceCrypto1 = NULL;
if (wantSaveToEmlFile)
loadTraceCard(tuid);
traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
traceCard[5] = sak;
memcpy(&traceCard[6], atqa, 2);
traceCurBlock = 0;
uid = bytes_to_num(tuid + 3, 4);
traceState = TRACE_IDLE;
return 0;
}
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
uint8_t bt = 0;
int i;
if (len != 1) {
for (i = 0; i < len; i++)
data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
} else {
bt = 0;
for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
data[0] = bt;
}
return;
}
bool NTParityCheck(uint32_t ntx) {
if (
(oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((nt_enc_par >> 5) & 0x01) ^ (nt_enc & 0x01)) ||
(oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((nt_enc_par >> 6) & 0x01) ^ (nt_enc >> 8 & 0x01)) ||
(oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((nt_enc_par >> 7) & 0x01) ^ (nt_enc >> 16 & 0x01))
)
return false;
uint32_t ar = prng_successor(ntx, 64);
if (
(oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ar_enc_par >> 5) & 0x01) ^ (ar_enc & 0x01)) ||
(oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ar_enc_par >> 6) & 0x01) ^ (ar_enc >> 8 & 0x01)) ||
(oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ar_enc_par >> 7) & 0x01) ^ (ar_enc >> 16 & 0x01))
)
return false;
uint32_t at = prng_successor(ntx, 96);
if (
(oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ar_enc_par >> 4) & 0x01) ^ (at_enc >> 24 & 0x01)) ||
(oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((at_enc_par >> 5) & 0x01) ^ (at_enc & 0x01)) ||
(oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((at_enc_par >> 6) & 0x01) ^ (at_enc >> 8 & 0x01)) ||
(oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((at_enc_par >> 7) & 0x01) ^ (at_enc >> 16 & 0x01))
)
return false;
return true;
}
int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEmlFile) {
uint8_t data[64];
if (traceState == TRACE_ERROR) return 1;
if (len > 64) {
traceState = TRACE_ERROR;
return 1;
}
memcpy(data, data_src, len);
if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
mf_crypto1_decrypt(traceCrypto1, data, len, 0);
uint8_t parity[16];
oddparitybuf(data, len, parity);
PrintAndLog("dec> %s [%s]", sprint_hex(data, len), printBitsPar(parity, len));
AddLogHex(logHexFileName, "dec> ", data, len);
}
switch (traceState) {
case TRACE_IDLE:
// check packet crc16!
if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
PrintAndLog("dec> CRC ERROR!!!");
AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
traceState = TRACE_ERROR; // do not decrypt the next commands
return 1;
}
// AUTHENTICATION
if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
traceState = TRACE_AUTH1;
traceCurBlock = data[1];
traceCurKey = data[0] == 60 ? 1:0;
return 0;
}
// READ
if ((len ==4) && ((data[0] == 0x30))) {
traceState = TRACE_READ_DATA;
traceCurBlock = data[1];
return 0;
}
// WRITE
if ((len ==4) && ((data[0] == 0xA0))) {
traceState = TRACE_WRITE_OK;
traceCurBlock = data[1];
return 0;
}
// HALT
if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
traceState = TRACE_ERROR; // do not decrypt the next commands
return 0;
}
return 0;
break;
case TRACE_READ_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
if (isBlockTrailer(traceCurBlock)) {
memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
} else {
memcpy(traceCard + traceCurBlock * 16, data, 16);
}
if (wantSaveToEmlFile) saveTraceCard();
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_WRITE_OK:
if ((len == 1) && (data[0] == 0x0a)) {
traceState = TRACE_WRITE_DATA;
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_WRITE_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
memcpy(traceCard + traceCurBlock * 16, data, 16);
if (wantSaveToEmlFile) saveTraceCard();
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH1:
if (len == 4) {
traceState = TRACE_AUTH2;
if (!traceCrypto1) {
nt = bytes_to_num(data, 4);
} else {
nt_enc = bytes_to_num(data, 4);
nt_enc_par = parity;
}
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH2:
if (len == 8) {
traceState = TRACE_AUTH_OK;
nr_enc = bytes_to_num(data, 4);
ar_enc = bytes_to_num(data + 4, 4);
ar_enc_par = parity << 4;
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH_OK:
if (len ==4) {
traceState = TRACE_IDLE;
at_enc = bytes_to_num(data, 4);
at_enc_par = parity;
if (!traceCrypto1) {
// decode key here)
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &lfsr);
crypto1_destroy(revstate);
ui64Key = lfsr;
printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n",
(unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF),
validate_prng_nonce(nt) ? "WEAK": "HARDEND",
ks2,
ks3);
AddLogUint64(logHexFileName, "key> ", lfsr);
} else {
if (validate_prng_nonce(nt)) {
struct Crypto1State *pcs;
pcs = crypto1_create(ui64Key);
uint32_t nt1 = crypto1_word(pcs, nt_enc ^ uid, 1) ^ nt_enc;
uint32_t ar = prng_successor(nt1, 64);
uint32_t at = prng_successor(nt1, 96);
printf("key> nested auth uid: %08x nt: %08x nt_parity: %s ar: %08x at: %08x\n", uid, nt1, printBitsPar(&nt_enc_par, 4), ar, at);
uint32_t nr1 = crypto1_word(pcs, nr_enc, 1) ^ nr_enc;
uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ar_enc;
uint32_t at1 = crypto1_word(pcs, 0, 0) ^ at_enc;
crypto1_destroy(pcs);
printf("key> the same key test. nr1: %08x ar1: %08x at1: %08x \n", nr1, ar1, at1);
if (NTParityCheck(nt1))
printf("key> the same key test OK. key=%x%x\n", (unsigned int)((ui64Key & 0xFFFFFFFF00000000) >> 32), (unsigned int)(ui64Key & 0xFFFFFFFF));
else
printf("key> the same key test. check nt parity error.\n");
uint32_t ntc = prng_successor(nt, 90);
uint32_t ntx = 0;
int ntcnt = 0;
for (int i = 0; i < 16383; i++) {
ntc = prng_successor(ntc, 1);
if (NTParityCheck(ntc)){
if (!ntcnt)
ntx = ntc;
ntcnt++;
}
}
if (ntcnt)
printf("key> nt candidate=%08x nonce distance=%d candidates count=%d\n", ntx, nonce_distance(nt, ntx), ntcnt);
else
printf("key> don't have any nt candidate( \n");
nt = ntx;
ks2 = ar_enc ^ prng_successor(ntx, 64);
ks3 = at_enc ^ prng_successor(ntx, 96);
// decode key
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &lfsr);
crypto1_destroy(revstate);
ui64Key = lfsr;
printf("key> probable key:%x%x ks2:%08x ks3:%08x\n",
(unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF),
ks2,
ks3);
AddLogUint64(logHexFileName, "key> ", lfsr);
} else {
printf("key> hardnested not implemented!\n");
crypto1_destroy(traceCrypto1);
// not implemented
traceState = TRACE_ERROR;
}
}
int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
if (traceCurKey) {
num_to_bytes(lfsr, 6, traceCard + blockShift + 10);
} else {
num_to_bytes(lfsr, 6, traceCard + blockShift);
}
if (wantSaveToEmlFile) saveTraceCard();
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
}
// set cryptosystem state
traceCrypto1 = lfsr_recovery64(ks2, ks3);
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
default:
traceState = TRACE_ERROR;
return 1;
}
return 0;
}
// DECODING
int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
/*
uint32_t nt; // tag challenge
uint32_t ar_enc; // encrypted reader response
uint32_t at_enc; // encrypted tag response
*/
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
}
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
traceCrypto1 = lfsr_recovery64(ks2, ks3);
mf_crypto1_decrypt(traceCrypto1, data, len, 0);
PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
crypto1_destroy(traceCrypto1);
return 0;
}
/** validate_prng_nonce
* Determine if nonce is deterministic. ie: Suspectable to Darkside attack.
* returns
* true = weak prng
* false = hardend prng
*/
bool validate_prng_nonce(uint32_t nonce) {
uint16_t *dist = 0;
uint16_t x, i;
dist = malloc(2 << 16);
if(!dist)
return -1;
// init prng table:
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
uint32_t res = (65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535;
free(dist);
return (res == 16);
}
/* Detect Tag Prng,
* function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce.
* the tag nonce is check to see if it has a predictable PRNG.
* @returns
* TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack)
* FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key)
*/
int DetectClassicPrng(void){
UsbCommand resp, respA;
uint8_t cmd[] = {0x60, 0x00}; // MIFARE_AUTH_KEYA
uint32_t flags = ISO14A_CONNECT | ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_RATS;
UsbCommand c = {CMD_READER_ISO_14443a, {flags, sizeof(cmd), 0}};
memcpy(c.d.asBytes, cmd, sizeof(cmd));
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_NACK, &resp, 2000)) {
PrintAndLog("PRNG UID: Reply timeout.");
return -1;
}
// if select tag failed.
if (resp.arg[0] == 0) {
PrintAndLog("PRNG error: selecting tag failed, can't detect prng.");
return -1;
}
if (!WaitForResponseTimeout(CMD_ACK, &respA, 5000)) {
PrintAndLog("PRNG data: Reply timeout.");
return -1;
}
// check respA
if (respA.arg[0] != 4) {
PrintAndLog("PRNG data error: Wrong length: %d", respA.arg[0]);
return -1;
}
uint32_t nonce = bytes_to_num(respA.d.asBytes, respA.arg[0]);
return validate_prng_nonce(nonce);
}