mirror of
https://github.com/Proxmark/proxmark3.git
synced 2024-11-21 04:50:14 -08:00
0ab9002f36
* sim 2: add responses to read(1) (Config) and read(5) (AIA) * sim 2/3: don't restrict CC to 00 bytes only * sim 3: add responding to read block commands * sim 2/3: add responding to READ_CHECK_KC * fix sizes of pre-encoded tag answers * change default card challenge * remove commented code * use #defines instead of numerical constants for simulation modes * some reformatting
294 lines
8.3 KiB
C
294 lines
8.3 KiB
C
/*****************************************************************************
|
||
* WARNING
|
||
*
|
||
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
|
||
*
|
||
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
|
||
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
|
||
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
|
||
*
|
||
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
|
||
*
|
||
*****************************************************************************
|
||
*
|
||
* This file is part of loclass. It is a reconstructon of the cipher engine
|
||
* used in iClass, and RFID techology.
|
||
*
|
||
* The implementation is based on the work performed by
|
||
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
|
||
* Milosch Meriac in the paper "Dismantling IClass".
|
||
*
|
||
* Copyright (C) 2014 Martin Holst Swende
|
||
*
|
||
* This is free software: you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License version 2 as published
|
||
* by the Free Software Foundation, or, at your option, any later version.
|
||
*
|
||
* This file is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
|
||
*
|
||
*
|
||
****************************************************************************/
|
||
|
||
|
||
#include "cipher.h"
|
||
#include "cipherutils.h"
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <stdbool.h>
|
||
#include <stdint.h>
|
||
#ifndef ON_DEVICE
|
||
#include "fileutils.h"
|
||
#endif
|
||
|
||
|
||
/**
|
||
* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
|
||
* consisting of the following four components:
|
||
* 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ;
|
||
* 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ;
|
||
* 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 .
|
||
* 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 .
|
||
**/
|
||
typedef struct {
|
||
uint8_t l;
|
||
uint8_t r;
|
||
uint8_t b;
|
||
uint16_t t;
|
||
} State;
|
||
|
||
/**
|
||
* Definition 2. The feedback function for the top register T : F 16/2 → F 2
|
||
* is defined as
|
||
* T (x 0 x 1 . . . . . . x 15 ) = x 0 ⊕ x 1 ⊕ x 5 ⊕ x 7 ⊕ x 10 ⊕ x 11 ⊕ x 14 ⊕ x 15 .
|
||
**/
|
||
bool T(State state)
|
||
{
|
||
bool x0 = state.t & 0x8000;
|
||
bool x1 = state.t & 0x4000;
|
||
bool x5 = state.t & 0x0400;
|
||
bool x7 = state.t & 0x0100;
|
||
bool x10 = state.t & 0x0020;
|
||
bool x11 = state.t & 0x0010;
|
||
bool x14 = state.t & 0x0002;
|
||
bool x15 = state.t & 0x0001;
|
||
return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15;
|
||
}
|
||
/**
|
||
* Similarly, the feedback function for the bottom register B : F 8/2 → F 2 is defined as
|
||
* B(x 0 x 1 . . . x 7 ) = x 1 ⊕ x 2 ⊕ x 3 ⊕ x 7 .
|
||
**/
|
||
bool B(State state)
|
||
{
|
||
bool x1 = state.b & 0x40;
|
||
bool x2 = state.b & 0x20;
|
||
bool x3 = state.b & 0x10;
|
||
bool x7 = state.b & 0x01;
|
||
|
||
return x1 ^ x2 ^ x3 ^ x7;
|
||
|
||
}
|
||
|
||
|
||
/**
|
||
* Definition 3 (Selection function). The selection function select : F 2 × F 2 ×
|
||
* F 8/2 → F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where
|
||
* z 0 = (r 0 ∧ r 2 ) ⊕ (r 1 ∧ r 3 ) ⊕ (r 2 ∨ r 4 )
|
||
* z 1 = (r 0 ∨ r 2 ) ⊕ (r 5 ∨ r 7 ) ⊕ r 1 ⊕ r 6 ⊕ x ⊕ y
|
||
* z 2 = (r 3 ∧ r 5 ) ⊕ (r 4 ∧ r 6 ) ⊕ r 7 ⊕ x
|
||
**/
|
||
uint8_t _select(bool x, bool y, uint8_t r)
|
||
{
|
||
bool r0 = r >> 7 & 0x1;
|
||
bool r1 = r >> 6 & 0x1;
|
||
bool r2 = r >> 5 & 0x1;
|
||
bool r3 = r >> 4 & 0x1;
|
||
bool r4 = r >> 3 & 0x1;
|
||
bool r5 = r >> 2 & 0x1;
|
||
bool r6 = r >> 1 & 0x1;
|
||
bool r7 = r & 0x1;
|
||
|
||
bool z0 = (r0 & r2) ^ (r1 & !r3) ^ (r2 | r4);
|
||
bool z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y;
|
||
bool z2 = (r3 & !r5) ^ (r4 & r6 ) ^ r7 ^ x;
|
||
|
||
// The three bitz z0.. z1 are packed into a uint8_t:
|
||
// 00000ZZZ
|
||
//Return value is a uint8_t
|
||
uint8_t retval = 0;
|
||
retval |= (z0 << 2) & 4;
|
||
retval |= (z1 << 1) & 2;
|
||
retval |= z2 & 1;
|
||
|
||
// Return value 0 <= retval <= 7
|
||
return retval;
|
||
}
|
||
|
||
/**
|
||
* Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k ∈ (F 82 ) 8
|
||
* be a key and y ∈ F 2 be the input bit. Then, the successor cipher state s ′ =
|
||
* l ′ , r ′ , t ′ , b ′ is defined as
|
||
* t ′ := (T (t) ⊕ r 0 ⊕ r 4 )t 0 . . . t 14 l ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l ⊞ r
|
||
* b ′ := (B(b) ⊕ r 7 )b 0 . . . b 6 r ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l
|
||
*
|
||
* @param s - state
|
||
* @param k - array containing 8 bytes
|
||
**/
|
||
State successor(uint8_t* k, State s, bool y)
|
||
{
|
||
bool r0 = s.r >> 7 & 0x1;
|
||
bool r4 = s.r >> 3 & 0x1;
|
||
bool r7 = s.r & 0x1;
|
||
|
||
State successor = {0,0,0,0};
|
||
|
||
successor.t = s.t >> 1;
|
||
successor.t |= (T(s) ^ r0 ^ r4) << 15;
|
||
|
||
successor.b = s.b >> 1;
|
||
successor.b |= (B(s) ^ r7) << 7;
|
||
|
||
bool Tt = T(s);
|
||
|
||
successor.l = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l+s.r ) & 0xFF;
|
||
successor.r = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l ) & 0xFF;
|
||
|
||
return successor;
|
||
}
|
||
/**
|
||
* We define the successor function suc which takes a key k ∈ (F 82 ) 8 , a state s and
|
||
* an input y ∈ F 2 and outputs the successor state s ′ . We overload the function suc
|
||
* to multiple bit input x ∈ F n 2 which we define as
|
||
* @param k - array containing 8 bytes
|
||
**/
|
||
State suc(uint8_t* k,State s, BitstreamIn *bitstream)
|
||
{
|
||
if(bitsLeft(bitstream) == 0)
|
||
{
|
||
return s;
|
||
}
|
||
bool lastbit = tailBit(bitstream);
|
||
return successor(k,suc(k,s,bitstream), lastbit);
|
||
}
|
||
|
||
/**
|
||
* Definition 5 (Output). Define the function output which takes an internal
|
||
* state s =< l, r, t, b > and returns the bit r 5 . We also define the function output
|
||
* on multiple bits input which takes a key k, a state s and an input x ∈ F n 2 as
|
||
* output(k, s, ǫ) = ǫ
|
||
* output(k, s, x 0 . . . x n ) = output(s) · output(k, s ′ , x 1 . . . x n )
|
||
* where s ′ = suc(k, s, x 0 ).
|
||
**/
|
||
void output(uint8_t* k,State s, BitstreamIn* in, BitstreamOut* out)
|
||
{
|
||
if(bitsLeft(in) == 0)
|
||
{
|
||
return;
|
||
}
|
||
pushBit(out,(s.r >> 2) & 1);
|
||
//Remove first bit
|
||
uint8_t x0 = headBit(in);
|
||
State ss = successor(k,s,x0);
|
||
output(k,ss,in, out);
|
||
}
|
||
|
||
/**
|
||
* Definition 6 (Initial state). Define the function init which takes as input a
|
||
* key k ∈ (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b >
|
||
**/
|
||
|
||
State init(uint8_t* k)
|
||
{
|
||
State s = {
|
||
((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
|
||
((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
|
||
0x4c, // b
|
||
0xE012 // t
|
||
};
|
||
return s;
|
||
}
|
||
void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out)
|
||
{
|
||
uint8_t zeroes_32[] = {0,0,0,0};
|
||
BitstreamIn input_32_zeroes = {zeroes_32,sizeof(zeroes_32)*8,0};
|
||
State initState = suc(k,init(k),&input);
|
||
output(k,initState,&input_32_zeroes,&out);
|
||
}
|
||
|
||
void doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4])
|
||
{
|
||
uint8_t cc_nr[13] = { 0 };
|
||
uint8_t div_key[8];
|
||
//cc_nr=(uint8_t*)malloc(length+1);
|
||
|
||
memcpy(cc_nr, cc_nr_p, 12);
|
||
memcpy(div_key, div_key_p, 8);
|
||
|
||
reverse_arraybytes(cc_nr,12);
|
||
BitstreamIn bitstream = {cc_nr, 12 * 8, 0};
|
||
uint8_t dest []= {0,0,0,0,0,0,0,0};
|
||
BitstreamOut out = { dest, sizeof(dest)*8, 0 };
|
||
MAC(div_key,bitstream, out);
|
||
//The output MAC must also be reversed
|
||
reverse_arraybytes(dest, sizeof(dest));
|
||
memcpy(mac, dest, 4);
|
||
//free(cc_nr);
|
||
return;
|
||
}
|
||
|
||
void doMAC_N(uint8_t *address_data_p, uint8_t address_data_size, uint8_t *div_key_p, uint8_t mac[4])
|
||
{
|
||
uint8_t *address_data;
|
||
uint8_t div_key[8];
|
||
address_data = (uint8_t*) malloc(address_data_size);
|
||
|
||
memcpy(address_data, address_data_p, address_data_size);
|
||
memcpy(div_key, div_key_p, 8);
|
||
|
||
reverse_arraybytes(address_data, address_data_size);
|
||
BitstreamIn bitstream = {address_data, address_data_size * 8, 0};
|
||
uint8_t dest []= {0,0,0,0,0,0,0,0};
|
||
BitstreamOut out = { dest, sizeof(dest)*8, 0 };
|
||
MAC(div_key, bitstream, out);
|
||
//The output MAC must also be reversed
|
||
reverse_arraybytes(dest, sizeof(dest));
|
||
memcpy(mac, dest, 4);
|
||
free(address_data);
|
||
return;
|
||
}
|
||
|
||
#ifndef ON_DEVICE
|
||
int testMAC()
|
||
{
|
||
prnlog("[+] Testing MAC calculation...");
|
||
|
||
//From the "dismantling.IClass" paper:
|
||
uint8_t cc_nr[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0};
|
||
//From the paper
|
||
uint8_t div_key[8] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9};
|
||
uint8_t correct_MAC[4] = {0x1d,0x49,0xC9,0xDA};
|
||
|
||
uint8_t calculated_mac[4] = {0};
|
||
doMAC(cc_nr,div_key, calculated_mac);
|
||
|
||
if(memcmp(calculated_mac, correct_MAC,4) == 0)
|
||
{
|
||
prnlog("[+] MAC calculation OK!");
|
||
|
||
}else
|
||
{
|
||
prnlog("[+] FAILED: MAC calculation failed:");
|
||
printarr(" Calculated_MAC", calculated_mac, 4);
|
||
printarr(" Correct_MAC ", correct_MAC, 4);
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
#endif
|