proxmark3/client/cmdsmartcard.c
pwpiwi b8ed9975e5 modify USB communications
* use different data types for commands and responses
* use variable length responses
* maintain client/flasher compatibility with old format (e.g. when using old bootloader)
* maintain bootloader compatibility with old format (e.g. when using old or RRG flasher.exe)
* fix length of version string in appmain.c
2020-01-17 09:31:14 +01:00

1021 lines
27 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2018 iceman
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Proxmark3 RDV40 Smartcard module commands
//-----------------------------------------------------------------------------
#include "cmdsmartcard.h"
#include <ctype.h>
#include <string.h>
#include "ui.h"
#include "cmdparser.h"
#include "proxmark3.h"
#include "util.h"
#include "smartcard.h"
#include "comms.h"
#include "protocols.h"
#include "cmdhw.h"
#include "cmdhflist.h"
#include "emv/apduinfo.h" // APDUcode description
#include "emv/emvcore.h" // decodeTVL
#include "crypto/libpcrypto.h" // sha512hash
#include "emv/dump.h" // dump_buffer
#include "pcsc.h"
#define SC_UPGRADE_FILES_DIRECTORY "sc_upgrade_firmware/"
static bool UseAlternativeSmartcardReader = false; // default: use PM3 RDV40 Smartcard Slot (if available)
static int CmdHelp(const char *Cmd);
static int usage_sm_raw(void) {
PrintAndLogEx(NORMAL, "Usage: sc raw [h|r|c] d <0A 0B 0C ... hex>");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " r : do not read response");
PrintAndLogEx(NORMAL, " a : active smartcard without select (reset sc module)");
PrintAndLogEx(NORMAL, " s : active smartcard with select (get ATR)");
PrintAndLogEx(NORMAL, " t : executes TLV decoder if it possible");
PrintAndLogEx(NORMAL, " 0 : use protocol T=0");
PrintAndLogEx(NORMAL, " d <bytes> : bytes to send");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc raw s 0 d 00a404000e315041592e5359532e4444463031 - `1PAY.SYS.DDF01` PSE directory with get ATR");
return 0;
}
static int usage_sm_select(void) {
PrintAndLogEx(NORMAL, "Usage: sc select [h|<reader name>] ");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " <reader name> : a card reader's name, wildcards allowed, leave empty to pick from available readers");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc select : list available card readers and pick");
PrintAndLogEx(NORMAL, " sc select Gemalto* : select a connected Gemalto card reader" );
return 0;
}
static int usage_sm_reader(void) {
PrintAndLogEx(NORMAL, "Usage: sc reader [h|s]");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " s : silent (no messages)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc reader");
return 0;
}
static int usage_sm_info(void) {
PrintAndLogEx(NORMAL, "Usage: s info [h|s]");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " s : silent (no messages)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc info");
return 0;
}
static int usage_sm_upgrade(void) {
PrintAndLogEx(NORMAL, "Upgrade RDV4.0 Smartcard Socket Firmware");
PrintAndLogEx(NORMAL, "Usage: sc upgrade f <file name>");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " f <filename> : firmware file name");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc upgrade f SIM010.BIN");
return 0;
}
static int usage_sm_setclock(void) {
PrintAndLogEx(NORMAL, "Usage: sc setclock [h] c <clockspeed>");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " c <> : clockspeed (0 = 16mhz, 1=8mhz, 2=4mhz) ");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc setclock c 2");
return 0;
}
static int usage_sm_brute(void) {
PrintAndLogEx(NORMAL, "Tries to bruteforce SFI, ");
PrintAndLogEx(NORMAL, "Usage: sc brute [h]");
PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " sc brute");
return 0;
}
uint8_t GetATRTA1(uint8_t *atr, size_t atrlen) {
if (atrlen > 2) {
uint8_t T0 = atr[1];
if (T0 & 0x10)
return atr[2];
}
return 0x11; // default value is 0x11, corresponding to fmax=5 MHz, Fi=372, Di=1.
}
int DiArray[] = {
0, // b0000 RFU
1, // b0001
2,
4,
8,
16,
32, // b0110
64, // b0111. This was RFU in ISO/IEC 7816-3:1997 and former. Some card readers or drivers may erroneously reject cards using this value
12,
20,
0, // b1010 RFU
0,
0, // ...
0,
0,
0 // b1111 RFU
};
int FiArray[] = {
372, // b0000 Historical note: in ISO/IEC 7816-3:1989, this was assigned to cards with internal clock
372, // b0001
558, // b0010
744, // b0011
1116, // b0100
1488, // b0101
1860, // b0110
0, // b0111 RFU
0, // b1000 RFU
512, // b1001
768, // b1010
1024, // b1011
1536, // b1100
2048, // b1101
0, // b1110 RFU
0 // b1111 RFU
};
float FArray[] = {
4, // b0000 Historical note: in ISO/IEC 7816-3:1989, this was assigned to cards with internal clock
5, // b0001
6, // b0010
8, // b0011
12, // b0100
16, // b0101
20, // b0110
0, // b0111 RFU
0, // b1000 RFU
5, // b1001
7.5, // b1010
10, // b1011
15, // b1100
20, // b1101
0, // b1110 RFU
0 // b1111 RFU
};
static int GetATRDi(uint8_t *atr, size_t atrlen) {
uint8_t TA1 = GetATRTA1(atr, atrlen);
return DiArray[TA1 & 0x0f]; // The 4 low-order bits of TA1 (4th MSbit to 1st LSbit) encode Di
}
static int GetATRFi(uint8_t *atr, size_t atrlen) {
uint8_t TA1 = GetATRTA1(atr, atrlen);
return FiArray[TA1 >> 4]; // The 4 high-order bits of TA1 (8th MSbit to 5th LSbit) encode fmax and Fi
}
static float GetATRF(uint8_t *atr, size_t atrlen) {
uint8_t TA1 = GetATRTA1(atr, atrlen);
return FArray[TA1 >> 4]; // The 4 high-order bits of TA1 (8th MSbit to 5th LSbit) encode fmax and Fi
}
static int PrintATR(uint8_t *atr, size_t atrlen) {
uint8_t T0 = atr[1];
uint8_t K = T0 & 0x0F;
uint8_t TD1 = 0, T1len = 0, TD1len = 0, TDilen = 0;
bool protocol_T0_present = true;
bool protocol_T15_present = false;
if (T0 & 0x10) {
PrintAndLog("\t- TA1 (Maximum clock frequency, proposed bit duration) [ 0x%02x ]", atr[2 + T1len]);
T1len++;
}
if (T0 & 0x20) {
PrintAndLog("\t- TB1 (Deprecated: VPP requirements) [ 0x%02x ]", atr[2 + T1len]);
T1len++;
}
if (T0 & 0x40) {
PrintAndLog("\t- TC1 (Extra delay between bytes required by card) [ 0x%02x ]", atr[2 + T1len]);
T1len++;
}
if (T0 & 0x80) {
TD1 = atr[2 + T1len];
PrintAndLog("\t- TD1 (First offered transmission protocol, presence of TA2..TD2) [ 0x%02x ] Protocol T%d", TD1, TD1 & 0x0f);
protocol_T0_present = false;
if ((TD1 & 0x0f) == 0) {
protocol_T0_present = true;
}
if ((TD1 & 0x0f) == 15) {
protocol_T15_present = true;
}
T1len++;
if (TD1 & 0x10) {
PrintAndLog("\t- TA2 (Specific protocol and parameters to be used after the ATR) [ 0x%02x ]", atr[2 + T1len + TD1len]);
TD1len++;
}
if (TD1 & 0x20) {
PrintAndLog("\t- TB2 (Deprecated: VPP precise voltage requirement) [ 0x%02x ]", atr[2 + T1len + TD1len]);
TD1len++;
}
if (TD1 & 0x40) {
PrintAndLog("\t- TC2 (Maximum waiting time for protocol T=0) [ 0x%02x ]", atr[2 + T1len + TD1len]);
TD1len++;
}
if (TD1 & 0x80) {
uint8_t TDi = atr[2 + T1len + TD1len];
PrintAndLog("\t- TD2 (A supported protocol or more global parameters, presence of TA3..TD3) [ 0x%02x ] Protocol T%d", TDi, TDi & 0x0f);
if ((TDi & 0x0f) == 0) {
protocol_T0_present = true;
}
if ((TDi & 0x0f) == 15) {
protocol_T15_present = true;
}
TD1len++;
bool nextCycle = true;
uint8_t vi = 3;
while (nextCycle) {
nextCycle = false;
if (TDi & 0x10) {
PrintAndLog("\t- TA%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]);
TDilen++;
}
if (TDi & 0x20) {
PrintAndLog("\t- TB%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]);
TDilen++;
}
if (TDi & 0x40) {
PrintAndLog("\t- TC%d: 0x%02x", vi, atr[2 + T1len + TD1len + TDilen]);
TDilen++;
}
if (TDi & 0x80) {
TDi = atr[2 + T1len + TD1len + TDilen];
PrintAndLog("\t- TD%d [ 0x%02x ] Protocol T%d", vi, TDi, TDi & 0x0f);
TDilen++;
nextCycle = true;
vi++;
}
}
}
}
if (!protocol_T0_present || protocol_T15_present) { // there is CRC Check Byte TCK
uint8_t vxor = 0;
for (int i = 1; i < atrlen; i++)
vxor ^= atr[i];
if (vxor)
PrintAndLogEx(WARNING, "Check sum error. Must be 0 got 0x%02X", vxor);
else
PrintAndLogEx(INFO, "Check sum OK.");
}
if (atr[0] != 0x3b)
PrintAndLogEx(WARNING, "Not a direct convention [ 0x%02x ]", atr[0]);
uint8_t calen = 2 + T1len + TD1len + TDilen + K;
if (atrlen != calen && atrlen != calen + 1) // may be CRC
PrintAndLogEx(ERR, "ATR length error. len: %d, T1len: %d, TD1len: %d, TDilen: %d, K: %d", atrlen, T1len, TD1len, TDilen, K);
if (K > 0)
PrintAndLogEx(INFO, "\nHistorical bytes | len %02d | format %02x", K, atr[2 + T1len + TD1len + TDilen]);
if (K > 1) {
PrintAndLogEx(INFO, "\tHistorical bytes");
dump_buffer(&atr[2 + T1len + TD1len + TDilen], K, NULL, 1);
}
return 0;
}
bool smart_getATR(smart_card_atr_t *card)
{
if (UseAlternativeSmartcardReader) {
return pcscGetATR(card);
} else {
UsbCommand c = {CMD_SMART_ATR, {0, 0, 0}};
SendCommand(&c);
UsbCommand resp;
if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2500) ) {
return false;
}
if (resp.arg[0] & 0xff) {
return resp.arg[0] & 0xFF;
}
memcpy(card, (smart_card_atr_t *)resp.d.asBytes, sizeof(smart_card_atr_t));
return true;
}
}
static bool smart_select(bool silent) {
smart_card_atr_t card;
if (!smart_getATR(&card)) {
if (!silent) PrintAndLogEx(WARNING, "smart card select failed");
return false;
}
if (!silent) {
PrintAndLogEx(INFO, "ISO7816-3 ATR : %s", sprint_hex(card.atr, card.atr_len));
}
return true;
}
static void smart_transmit(uint8_t *data, uint32_t data_len, uint32_t flags, uint8_t *response, int *response_len, uint32_t max_response_len)
{
// PrintAndLogEx(SUCCESS, "C-TPDU>>>> %s", sprint_hex(data, data_len));
if (UseAlternativeSmartcardReader) {
*response_len = max_response_len;
pcscTransmit(data, data_len, flags, response, response_len);
} else {
UsbCommand c = {CMD_SMART_RAW, {flags, data_len, 0}};
memcpy(c.d.asBytes, data, data_len);
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &c, 2500)) {
PrintAndLogEx(WARNING, "smart card response timeout");
*response_len = -1;
return;
}
*response_len = c.arg[0];
if (*response_len > 0) {
memcpy(response, c.d.asBytes, *response_len);
}
}
if (*response_len <= 0) {
PrintAndLogEx(WARNING, "smart card response failed");
*response_len = -2;
return;
}
if (*response_len < 2) {
// PrintAndLogEx(SUCCESS, "R-TPDU %02X | ", response[0]);
return;
}
// PrintAndLogEx(SUCCESS, "R-TPDU<<<< %s", sprint_hex(response, *response_len));
// PrintAndLogEx(SUCCESS, "R-TPDU SW %02X%02X | %s", response[*response_len-2], response[*response_len-1], GetAPDUCodeDescription(response[*response_len-2], response[*response_len-1]));
}
static int CmdSmartSelect(const char *Cmd)
{
const char *readername;
if (tolower(param_getchar(Cmd, 0)) == 'h') {
return usage_sm_select();
}
if (!PM3hasSmartcardSlot() && !pcscCheckForCardReaders()) {
PrintAndLogEx(WARNING, "No Smartcard Readers available");
UseAlternativeSmartcardReader = false;
return 1;
}
int bg, en;
if (param_getptr(Cmd, &bg, &en, 0)) {
UseAlternativeSmartcardReader = pcscSelectAlternativeCardReader(NULL);
} else {
readername = Cmd + bg;
UseAlternativeSmartcardReader = pcscSelectAlternativeCardReader(readername);
}
return 0;
}
static int CmdSmartRaw(const char *Cmd) {
int hexlen = 0;
bool active = false;
bool active_select = false;
bool useT0 = false;
uint8_t cmdp = 0;
bool errors = false, reply = true, decodeTLV = false, breakloop = false;
uint8_t data[ISO7816_MAX_FRAME_SIZE] = {0x00};
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h': return usage_sm_raw();
case 'r':
reply = false;
cmdp++;
break;
case 'a':
active = true;
cmdp++;
break;
case 's':
active_select = true;
cmdp++;
break;
case 't':
decodeTLV = true;
cmdp++;
break;
case '0':
useT0 = true;
cmdp++;
break;
case 'd': {
switch (param_gethex_to_eol(Cmd, cmdp+1, data, sizeof(data), &hexlen)) {
case 1:
PrintAndLogEx(WARNING, "Invalid HEX value.");
return 1;
case 2:
PrintAndLogEx(WARNING, "Too many bytes. Max %d bytes", sizeof(data));
return 1;
case 3:
PrintAndLogEx(WARNING, "Hex must have even number of digits.");
return 1;
}
cmdp++;
breakloop = true;
break;
}
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if ( breakloop )
break;
}
//Validations
if (errors || cmdp == 0 ) return usage_sm_raw();
uint32_t flags = 0;
uint32_t protocol = 0;
if (active || active_select) {
flags |= SC_CONNECT;
if (active_select)
flags |= SC_SELECT;
}
if (hexlen > 0) {
if (useT0)
protocol = SC_RAW_T0;
else
protocol = SC_RAW;
}
int response_len = 0;
uint8_t *response = NULL;
if (reply) {
response = calloc(ISO7816_MAX_FRAME_SIZE, sizeof(uint8_t));
if ( !response )
return 1;
}
smart_transmit(data, hexlen, flags|protocol, response, &response_len, ISO7816_MAX_FRAME_SIZE);
// reading response from smart card
if ( reply ) {
if ( response_len < 0 ) {
free(response);
return 2;
}
if ( response[0] == 0x6C ) {
data[4] = response[1];
smart_transmit(data, hexlen, protocol, response, &response_len, ISO7816_MAX_FRAME_SIZE);
data[4] = 0;
}
if (decodeTLV && response_len > 4)
TLVPrintFromBuffer(response, response_len-2);
free(response);
}
return 0;
}
int ExchangeAPDUSC(uint8_t *APDU, int APDUlen, bool activateCard, bool leaveSignalON, uint8_t *response, int maxresponselen, int *responselen)
{
uint8_t TPDU[ISO7816_MAX_FRAME_SIZE];
*responselen = 0;
if (activateCard)
smart_select(false);
uint32_t flags = SC_RAW_T0;
if (activateCard) {
flags |= SC_SELECT | SC_CONNECT;
}
if (APDUlen == 4) { // Case 1
memcpy(TPDU, APDU, 4);
TPDU[4] = 0x00;
smart_transmit(TPDU, 5, flags, response, responselen, maxresponselen);
} else if (APDUlen == 5) { // Case 2 Short
smart_transmit(APDU, 5, flags, response, responselen, maxresponselen);
if (response[0] == 0x6C) { // wrong Le
uint16_t Le = APDU[4] ? APDU[4] : 256;
uint8_t La = response[1];
memcpy(TPDU, APDU, 5);
TPDU[4] = La;
smart_transmit(TPDU, 5, SC_RAW_T0, response, responselen, maxresponselen);
if (Le < La && *responselen >= 0) {
response[Le] = response[*responselen-2];
response[Le+1] = response[*responselen-1];
*responselen = Le + 2;
}
}
} else if (APDU[4] != 0 && APDUlen == 5 + APDU[4]) { // Case 3 Short
smart_transmit(APDU, APDUlen, flags, response, responselen, maxresponselen);
} else if (APDU[4] != 0 && APDUlen == 5 + APDU[4] + 1) { // Case 4 Short
smart_transmit(APDU, APDUlen-1, flags, response, responselen, maxresponselen);
if (response[0] == 0x90 && response[1] == 0x00) {
uint8_t Le = APDU[APDUlen-1];
uint8_t get_response[5] = {0x00, ISO7816_GET_RESPONSE, 0x00, 0x00, Le};
return ExchangeAPDUSC(get_response, 5, false, leaveSignalON, response, maxresponselen, responselen);
}
} else { // Long Cases not yet implemented
PrintAndLogEx(ERR, "Long APDUs not yet implemented");
*responselen = -3;
}
if (*responselen < 0 ) {
return 1;
} else {
return 0;
}
}
static int CmdSmartUpgrade(const char *Cmd) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(WARNING, "WARNING - RDV4.0 Smartcard Socket Firmware upgrade.");
PrintAndLogEx(WARNING, "A dangerous command, do wrong and you will brick the smart card socket");
PrintAndLogEx(NORMAL, "");
FILE *f;
char filename[FILE_PATH_SIZE] = {0};
uint8_t cmdp = 0;
bool errors = false;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'f':
//File handling and reading
if ( param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE ) {
PrintAndLogEx(FAILED, "Filename too long");
errors = true;
break;
}
cmdp += 2;
break;
case 'h':
return usage_sm_upgrade();
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0 ) return usage_sm_upgrade();
if (strchr(filename, '\\') || strchr(filename, '/')) {
PrintAndLogEx(FAILED, "Filename must not contain \\ or /. Firmware file will be found in client/sc_upgrade_firmware directory.");
return 1;
}
char sc_upgrade_file_path[strlen(get_my_executable_directory()) + strlen(SC_UPGRADE_FILES_DIRECTORY) + strlen(filename) + 1];
strcpy(sc_upgrade_file_path, get_my_executable_directory());
strcat(sc_upgrade_file_path, SC_UPGRADE_FILES_DIRECTORY);
strcat(sc_upgrade_file_path, filename);
if (strlen(sc_upgrade_file_path) >= FILE_PATH_SIZE ) {
PrintAndLogEx(FAILED, "Filename too long");
return 1;
}
char sha512filename[FILE_PATH_SIZE] = {'\0'};
char *bin_extension = filename;
char *dot_position = NULL;
while ((dot_position = strchr(bin_extension, '.')) != NULL) {
bin_extension = dot_position + 1;
}
if (!strcmp(bin_extension, "BIN")
#ifdef _WIN32
|| !strcmp(bin_extension, "bin")
#endif
) {
memcpy(sha512filename, filename, strlen(filename) - strlen("bin"));
strcat(sha512filename, "sha512.txt");
} else {
PrintAndLogEx(FAILED, "Filename extension of Firmware Upgrade File must be .BIN");
return 1;
}
PrintAndLogEx(INFO, "Checking integrity using SHA512 File %s ...", sha512filename);
char sc_upgrade_sha512file_path[strlen(get_my_executable_directory()) + strlen(SC_UPGRADE_FILES_DIRECTORY) + strlen(sha512filename) + 1];
strcpy(sc_upgrade_sha512file_path, get_my_executable_directory());
strcat(sc_upgrade_sha512file_path, SC_UPGRADE_FILES_DIRECTORY);
strcat(sc_upgrade_sha512file_path, sha512filename);
if (strlen(sc_upgrade_sha512file_path) >= FILE_PATH_SIZE ) {
PrintAndLogEx(FAILED, "Filename too long");
return 1;
}
// load firmware file
f = fopen(sc_upgrade_file_path, "rb");
if ( !f ){
PrintAndLogEx(FAILED, "Firmware file not found or locked.");
return 1;
}
// get filesize in order to malloc memory
fseek(f, 0, SEEK_END);
size_t fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if (fsize < 0) {
PrintAndLogEx(FAILED, "Could not determine size of firmware file");
fclose(f);
return 1;
}
uint8_t *dump = calloc(fsize, sizeof(uint8_t));
if (!dump) {
PrintAndLogEx(FAILED, "Could not allocate memory for firmware");
fclose(f);
return 1;
}
size_t firmware_size = fread(dump, 1, fsize, f);
if (f)
fclose(f);
// load sha512 file
f = fopen(sc_upgrade_sha512file_path, "rb");
if ( !f ){
PrintAndLogEx(FAILED, "SHA-512 file not found or locked.");
return 1;
}
// get filesize in order to malloc memory
fseek(f, 0, SEEK_END);
fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if (fsize < 0) {
PrintAndLogEx(FAILED, "Could not determine size of SHA-512 file");
fclose(f);
return 1;
}
if (fsize < 128) {
PrintAndLogEx(FAILED, "SHA-512 file too short");
fclose(f);
return 1;
}
char hashstring[129];
size_t bytes_read = fread(hashstring, 1, 128, f);
hashstring[128] = '\0';
if (f)
fclose(f);
uint8_t hash1[64];
if (bytes_read != 128 || param_gethex(hashstring, 0, hash1, 128)) {
PrintAndLogEx(FAILED, "Couldn't read SHA-512 file");
return 1;
}
uint8_t hash2[64];
if (sha512hash(dump, firmware_size, hash2)) {
PrintAndLogEx(FAILED, "Couldn't calculate SHA-512 of Firmware");
return 1;
}
if (memcmp(hash1, hash2, 64)) {
PrintAndLogEx(FAILED, "Couldn't verify integrity of Firmware file (wrong SHA-512)");
return 1;
}
PrintAndLogEx(SUCCESS, "RDV4.0 Smartcard Socket Firmware uploading to PM3");
//Send to device
uint32_t index = 0;
uint32_t bytes_sent = 0;
uint32_t bytes_remaining = firmware_size;
while (bytes_remaining > 0){
uint32_t bytes_in_packet = MIN(USB_CMD_DATA_SIZE, bytes_remaining);
UsbCommand c = {CMD_SMART_UPLOAD, {index + bytes_sent, bytes_in_packet, 0}};
// Fill usb bytes with 0xFF
memset(c.d.asBytes, 0xFF, USB_CMD_DATA_SIZE);
memcpy(c.d.asBytes, dump + bytes_sent, bytes_in_packet);
clearCommandBuffer();
SendCommand(&c);
if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2000) ) {
PrintAndLogEx(WARNING, "timeout while waiting for reply.");
free(dump);
return 1;
}
bytes_remaining -= bytes_in_packet;
bytes_sent += bytes_in_packet;
printf("."); fflush(stdout);
}
free(dump);
printf("\n");
PrintAndLogEx(SUCCESS, "RDV4.0 Smartcard Socket Firmware updating, don\'t turn off your PM3!");
// trigger the firmware upgrade
UsbCommand c = {CMD_SMART_UPGRADE, {firmware_size, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2500) ) {
PrintAndLogEx(WARNING, "timeout while waiting for reply.");
return 1;
}
if ( (resp.arg[0] & 0xFF ) )
PrintAndLogEx(SUCCESS, "RDV4.0 Smartcard Socket Firmware upgraded successful");
else
PrintAndLogEx(FAILED, "RDV4.0 Smartcard Socket Firmware Upgrade failed");
return 0;
}
static int CmdSmartInfo(const char *Cmd){
uint8_t cmdp = 0;
bool errors = false, silent = false;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h': return usage_sm_info();
case 's':
silent = true;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
cmdp++;
}
//Validations
if (errors ) return usage_sm_info();
smart_card_atr_t card;
if (!smart_getATR(&card)) {
if (!silent) PrintAndLogEx(WARNING, "smart card select failed");
return 1;
}
if (!card.atr_len) {
if (!silent) PrintAndLogEx(ERR, "can't get ATR from a smart card");
return 1;
}
// print header
PrintAndLogEx(INFO, "--- Smartcard Information ---------");
PrintAndLogEx(INFO, "-------------------------------------------------------------");
PrintAndLogEx(INFO, "ISO7618-3 ATR : %s", sprint_hex(card.atr, card.atr_len));
PrintAndLogEx(INFO, "\nhttp://smartcard-atr.appspot.com/parse?ATR=%s", sprint_hex_inrow(card.atr, card.atr_len) );
// print ATR
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "ATR");
PrintATR(card.atr, card.atr_len);
// print D/F (brom byte TA1 or defaults)
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "D/F (TA1)");
int Di = GetATRDi(card.atr, card.atr_len);
int Fi = GetATRFi(card.atr, card.atr_len);
float F = GetATRF(card.atr, card.atr_len);
if (GetATRTA1(card.atr, card.atr_len) == 0x11)
PrintAndLogEx(INFO, "Using default values...");
PrintAndLogEx(NORMAL, "\t- Di=%d", Di);
PrintAndLogEx(NORMAL, "\t- Fi=%d", Fi);
PrintAndLogEx(NORMAL, "\t- F=%.1f MHz", F);
if (Di && Fi) {
PrintAndLogEx(NORMAL, "\t- Cycles/ETU=%d", Fi/Di);
PrintAndLogEx(NORMAL, "\t- %.1f bits/sec at 4MHz", (float)4000000 / (Fi/Di));
PrintAndLogEx(NORMAL, "\t- %.1f bits/sec at Fmax=%.1fMHz", (F * 1000000) / (Fi/Di), F);
} else {
PrintAndLogEx(WARNING, "\t- Di or Fi is RFU.");
};
return 0;
}
int CmdSmartReader(const char *Cmd){
uint8_t cmdp = 0;
bool errors = false, silent = false;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h': return usage_sm_reader();
case 's':
silent = true;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
cmdp++;
}
//Validations
if (errors ) return usage_sm_reader();
smart_card_atr_t card;
if (!smart_getATR(&card)) {
if (!silent) PrintAndLogEx(WARNING, "smart card select failed");
return 1;
}
PrintAndLogEx(INFO, "ISO7816-3 ATR : %s", sprint_hex(card.atr, card.atr_len));
return 0;
}
static int CmdSmartSetClock(const char *Cmd){
uint8_t cmdp = 0;
bool errors = false;
uint8_t clock = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h': return usage_sm_setclock();
case 'c':
clock = param_get8ex(Cmd, cmdp+1, 2, 10);
if ( clock > 2)
errors = true;
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0) return usage_sm_setclock();
UsbCommand c = {CMD_SMART_SETCLOCK, {clock, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2500) ) {
PrintAndLogEx(WARNING, "smart card select failed");
return 1;
}
uint8_t isok = resp.arg[0] & 0xFF;
if (!isok) {
PrintAndLogEx(WARNING, "smart card set clock failed");
return 1;
}
switch (clock) {
case 0:
PrintAndLogEx(SUCCESS, "Clock changed to 16mhz giving 10800 baudrate");
break;
case 1:
PrintAndLogEx(SUCCESS, "Clock changed to 8mhz giving 21600 baudrate");
break;
case 2:
PrintAndLogEx(SUCCESS, "Clock changed to 4mhz giving 86400 baudrate");
break;
default:
break;
}
return 0;
}
static int CmdSmartList(const char *Cmd) {
if (UseAlternativeSmartcardReader) {
CmdHFList("7816 p");
} else {
CmdHFList("7816");
}
return 0;
}
static int CmdSmartBruteforceSFI(const char *Cmd) {
char ctmp = tolower(param_getchar(Cmd, 0));
if (ctmp == 'h') return usage_sm_brute();
uint8_t data[5] = {0x00, 0xB2, 0x00, 0x00, 0x00};
PrintAndLogEx(INFO, "Selecting card");
if ( !smart_select(false) ) {
return 1;
}
PrintAndLogEx(INFO, "Selecting PSE aid");
CmdSmartRaw("s 0 t d 00a404000e325041592e5359532e4444463031");
CmdSmartRaw("0 t d 00a4040007a000000004101000"); // mastercard
// CmdSmartRaw("0 t d 00a4040007a0000000031010"); // visa
PrintAndLogEx(INFO, "starting");
int response_len = 0;
uint8_t* response = malloc(ISO7816_MAX_FRAME_SIZE);
if (!response)
return 1;
for (uint8_t i=1; i < 4; i++) {
for (int p1=1; p1 < 5; p1++) {
data[2] = p1;
data[3] = (i << 3) + 4;
smart_transmit(data, sizeof(data), SC_RAW_T0, response, &response_len, ISO7816_MAX_FRAME_SIZE);
if ( response[0] == 0x6C ) {
data[4] = response[1];
smart_transmit(data, sizeof(data), SC_RAW_T0, response, &response_len, ISO7816_MAX_FRAME_SIZE);
// TLV decoder
if (response_len > 4)
TLVPrintFromBuffer(response+1, response_len-3);
data[4] = 0;
}
memset(response, 0x00, ISO7816_MAX_FRAME_SIZE);
}
}
free(response);
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"select", CmdSmartSelect, 1, "Select the Smartcard Reader to use"},
{"list", CmdSmartList, 1, "List ISO 7816 history"},
{"info", CmdSmartInfo, 1, "Tag information"},
{"reader", CmdSmartReader, 1, "Act like an IS07816 reader"},
{"raw", CmdSmartRaw, 1, "Send raw hex data to tag"},
{"upgrade", CmdSmartUpgrade, 0, "Upgrade firmware"},
{"setclock", CmdSmartSetClock, 1, "Set clock speed"},
{"brute", CmdSmartBruteforceSFI, 1, "Bruteforce SFI"},
{NULL, NULL, 0, NULL}
};
int CmdSmartcard(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
static int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}