proxmark3/client/cmdhw.c
2020-05-11 14:46:22 +02:00

483 lines
10 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Hardware commands
//-----------------------------------------------------------------------------
#include "cmdhw.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "ui.h"
#include "comms.h"
#include "cmdparser.h"
#include "cmdmain.h"
#include "cmddata.h"
static uint32_t hw_capabilities = 0;
static int CmdHelp(const char *Cmd);
static void lookupChipID(uint32_t iChipID, uint32_t mem_used)
{
char asBuff[100];
uint32_t mem_avail = 0;
switch(iChipID)
{
case 0x270B0A40:
sprintf(asBuff,"AT91SAM7S512 Rev A");
break;
case 0x270B0A4F:
sprintf(asBuff,"AT91SAM7S512 Rev B");
break;
case 0x270D0940:
sprintf(asBuff,"AT91SAM7S256 Rev A");
break;
case 0x270B0941:
sprintf(asBuff,"AT91SAM7S256 Rev B");
break;
case 0x270B0942:
sprintf(asBuff,"AT91SAM7S256 Rev C");
break;
case 0x270B0943:
sprintf(asBuff,"AT91SAM7S256 Rev D");
break;
case 0x270C0740:
sprintf(asBuff,"AT91SAM7S128 Rev A");
break;
case 0x270A0741:
sprintf(asBuff,"AT91SAM7S128 Rev B");
break;
case 0x270A0742:
sprintf(asBuff,"AT91SAM7S128 Rev C");
break;
case 0x270A0743:
sprintf(asBuff,"AT91SAM7S128 Rev D");
break;
case 0x27090540:
sprintf(asBuff,"AT91SAM7S64 Rev A");
break;
case 0x27090543:
sprintf(asBuff,"AT91SAM7S64 Rev B");
break;
case 0x27090544:
sprintf(asBuff,"AT91SAM7S64 Rev C");
break;
case 0x27080342:
sprintf(asBuff,"AT91SAM7S321 Rev A");
break;
case 0x27080340:
sprintf(asBuff,"AT91SAM7S32 Rev A");
break;
case 0x27080341:
sprintf(asBuff,"AT91SAM7S32 Rev B");
break;
case 0x27050241:
sprintf(asBuff,"AT9SAM7S161 Rev A");
break;
case 0x27050240:
sprintf(asBuff,"AT91SAM7S16 Rev A");
break;
}
PrintAndLog("uC: %s",asBuff);
switch((iChipID&0xE0)>>5)
{
case 1:
sprintf(asBuff,"ARM946ES");
break;
case 2:
sprintf(asBuff,"ARM7TDMI");
break;
case 4:
sprintf(asBuff,"ARM920T");
break;
case 5:
sprintf(asBuff,"ARM926EJS");
break;
}
PrintAndLog("Embedded Processor: %s",asBuff);
switch((iChipID&0xF00)>>8)
{
case 0:
mem_avail = 0;
break;
case 1:
mem_avail = 8;
break;
case 2:
mem_avail = 16;
break;
case 3:
mem_avail = 32;
break;
case 5:
mem_avail = 64;
break;
case 7:
mem_avail = 128;
break;
case 9:
mem_avail = 256;
break;
case 10:
mem_avail = 512;
break;
case 12:
mem_avail = 1024;
break;
case 14:
mem_avail = 2048;
break;
}
PrintAndLog("Nonvolatile Program Memory Size: %dK bytes. Used: %d bytes (%2.0f\%). Free: %d bytes (%2.0f\%).",
mem_avail,
mem_used,
mem_avail == 0 ? 0 : (float)mem_used/(mem_avail*1024)*100,
mem_avail*1024 - mem_used,
mem_avail == 0 ? 0 : (float)(mem_avail*1024-mem_used)/(mem_avail*1024)*100
);
switch((iChipID&0xF000)>>12)
{
case 0:
sprintf(asBuff,"None");
break;
case 1:
sprintf(asBuff,"8K bytes");
break;
case 2:
sprintf(asBuff,"16K bytes");
break;
case 3:
sprintf(asBuff,"32K bytes");
break;
case 5:
sprintf(asBuff,"64K bytes");
break;
case 7:
sprintf(asBuff,"128K bytes");
break;
case 9:
sprintf(asBuff,"256K bytes");
break;
case 10:
sprintf(asBuff,"512K bytes");
break;
case 12:
sprintf(asBuff,"1024K bytes");
break;
case 14:
sprintf(asBuff,"2048K bytes");
break;
}
PrintAndLog("Second Nonvolatile Program Memory Size: %s",asBuff);
switch((iChipID&0xF0000)>>16)
{
case 1:
sprintf(asBuff,"1K bytes");
break;
case 2:
sprintf(asBuff,"2K bytes");
break;
case 3:
sprintf(asBuff,"6K bytes");
break;
case 4:
sprintf(asBuff,"112K bytes");
break;
case 5:
sprintf(asBuff,"4K bytes");
break;
case 6:
sprintf(asBuff,"80K bytes");
break;
case 7:
sprintf(asBuff,"160K bytes");
break;
case 8:
sprintf(asBuff,"8K bytes");
break;
case 9:
sprintf(asBuff,"16K bytes");
break;
case 10:
sprintf(asBuff,"32K bytes");
break;
case 11:
sprintf(asBuff,"64K bytes");
break;
case 12:
sprintf(asBuff,"128K bytes");
break;
case 13:
sprintf(asBuff,"256K bytes");
break;
case 14:
sprintf(asBuff,"96K bytes");
break;
case 15:
sprintf(asBuff,"512K bytes");
break;
}
PrintAndLog("Internal SRAM Size: %s",asBuff);
switch((iChipID&0xFF00000)>>20)
{
case 0x19:
sprintf(asBuff,"AT91SAM9xx Series");
break;
case 0x29:
sprintf(asBuff,"AT91SAM9XExx Series");
break;
case 0x34:
sprintf(asBuff,"AT91x34 Series");
break;
case 0x37:
sprintf(asBuff,"CAP7 Series");
break;
case 0x39:
sprintf(asBuff,"CAP9 Series");
break;
case 0x3B:
sprintf(asBuff,"CAP11 Series");
break;
case 0x40:
sprintf(asBuff,"AT91x40 Series");
break;
case 0x42:
sprintf(asBuff,"AT91x42 Series");
break;
case 0x55:
sprintf(asBuff,"AT91x55 Series");
break;
case 0x60:
sprintf(asBuff,"AT91SAM7Axx Series");
break;
case 0x61:
sprintf(asBuff,"AT91SAM7AQxx Series");
break;
case 0x63:
sprintf(asBuff,"AT91x63 Series");
break;
case 0x70:
sprintf(asBuff,"AT91SAM7Sxx Series");
break;
case 0x71:
sprintf(asBuff,"AT91SAM7XCxx Series");
break;
case 0x72:
sprintf(asBuff,"AT91SAM7SExx Series");
break;
case 0x73:
sprintf(asBuff,"AT91SAM7Lxx Series");
break;
case 0x75:
sprintf(asBuff,"AT91SAM7Xxx Series");
break;
case 0x92:
sprintf(asBuff,"AT91x92 Series");
break;
case 0xF0:
sprintf(asBuff,"AT75Cxx Series");
break;
}
PrintAndLog("Architecture Identifier: %s",asBuff);
switch((iChipID&0x70000000)>>28)
{
case 0:
sprintf(asBuff,"ROM");
break;
case 1:
sprintf(asBuff,"ROMless or on-chip Flash");
break;
case 4:
sprintf(asBuff,"SRAM emulating ROM");
break;
case 2:
sprintf(asBuff,"Embedded Flash Memory");
break;
case 3:
sprintf(asBuff,"ROM and Embedded Flash Memory\nNVPSIZ is ROM size\nNVPSIZ2 is Flash size");
break;
}
PrintAndLog("Nonvolatile Program Memory Type: %s",asBuff);
}
int CmdDetectReader(const char *Cmd)
{
UsbCommand c={CMD_LISTEN_READER_FIELD};
// 'l' means LF - 125/134 kHz
if(*Cmd == 'l') {
c.arg[0] = 1;
} else if (*Cmd == 'h') {
c.arg[0] = 2;
} else if (*Cmd != '\0') {
PrintAndLog("use 'detectreader' or 'detectreader l' or 'detectreader h'");
return 0;
}
SendCommand(&c);
return 0;
}
// ## FPGA Control
int CmdFPGAOff(const char *Cmd)
{
UsbCommand c = {CMD_FPGA_MAJOR_MODE_OFF};
SendCommand(&c);
return 0;
}
int CmdLCD(const char *Cmd)
{
unsigned int i, j;
UsbCommand c={CMD_LCD};
sscanf(Cmd, "%x %u", &i, &j);
while (j--) {
c.arg[0] = i & 0x1ff;
SendCommand(&c);
}
return 0;
}
int CmdLCDReset(const char *Cmd)
{
UsbCommand c = {CMD_LCD_RESET, {strtol(Cmd, NULL, 0), 0, 0}};
SendCommand(&c);
return 0;
}
int CmdReadmem(const char *Cmd)
{
UsbCommand c = {CMD_READ_MEM, {strtol(Cmd, NULL, 0), 0, 0}};
SendCommand(&c);
return 0;
}
int CmdReset(const char *Cmd)
{
UsbCommand c = {CMD_HARDWARE_RESET};
SendCommand(&c);
return 0;
}
/*
* Sets the divisor for LF frequency clock: lets the user choose any LF frequency below
* 600kHz.
*/
int CmdSetDivisor(const char *Cmd)
{
UsbCommand c = {CMD_SET_LF_DIVISOR, {strtol(Cmd, NULL, 0), 0, 0}};
if (c.arg[0] < 19 || c.arg[0] > 255) {
PrintAndLog("divisor must be between 19 and 255");
} else {
SendCommand(&c);
PrintAndLog("Divisor set, expected freq=%dHz", 12000000 / (c.arg[0]+1));
}
return 0;
}
int CmdSetMux(const char *Cmd)
{
UsbCommand c={CMD_SET_ADC_MUX};
if (strcmp(Cmd, "lopkd") == 0) {
c.arg[0] = 0;
} else if (strcmp(Cmd, "loraw") == 0) {
c.arg[0] = 1;
} else if (strcmp(Cmd, "hipkd") == 0) {
c.arg[0] = 2;
} else if (strcmp(Cmd, "hiraw") == 0) {
c.arg[0] = 3;
}
SendCommand(&c);
return 0;
}
int CmdTune(const char *Cmd)
{
return CmdTuneSamples(Cmd);
}
bool PM3hasSmartcardSlot(void) {
return (hw_capabilities & HAS_SMARTCARD_SLOT);
}
int CmdVersion(const char *Cmd)
{
clearCommandBuffer();
UsbCommand c = {CMD_VERSION};
UsbCommand resp = {0, {0, 0, 0}};
SendCommand(&c);
if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
PrintAndLog("Prox/RFID mark3 RFID instrument");
PrintAndLog((char*)resp.d.asBytes);
lookupChipID(resp.arg[0], resp.arg[1]);
hw_capabilities = resp.arg[2];
}
return 0;
}
int CmdStatus(const char *Cmd)
{
clearCommandBuffer();
UsbCommand c = {CMD_STATUS};
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &c, 1900)) {
PrintAndLog("Status command failed. USB Speed Test timed out");
}
return 0;
}
int CmdPing(const char *Cmd)
{
clearCommandBuffer();
UsbCommand resp;
UsbCommand c = {CMD_PING};
SendCommand(&c);
if (WaitForResponseTimeout(CMD_ACK,&resp,1000)) {
PrintAndLog("Ping successful");
}else{
PrintAndLog("Ping failed");
}
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"detectreader", CmdDetectReader,0, "['l'|'h'] -- Detect external reader field (option 'l' or 'h' to limit to LF or HF)"},
{"fpgaoff", CmdFPGAOff, 0, "Set FPGA off"},
{"lcd", CmdLCD, 0, "<HEX command> <count> -- Send command/data to LCD"},
{"lcdreset", CmdLCDReset, 0, "Hardware reset LCD"},
{"readmem", CmdReadmem, 0, "[address] -- Read memory at decimal address from flash"},
{"reset", CmdReset, 0, "Reset the Proxmark3"},
{"setlfdivisor", CmdSetDivisor, 0, "<19 - 255> -- Drive LF antenna at 12Mhz/(divisor+1)"},
{"setmux", CmdSetMux, 0, "<loraw|hiraw|lopkd|hipkd> -- Set the ADC mux to a specific value"},
{"tune", CmdTune, 0, "['l'|'h'] -- Measure antenna tuning (option 'l' or 'h' to limit to LF or HF)"},
{"version", CmdVersion, 0, "Show version information about the connected Proxmark"},
{"status", CmdStatus, 0, "Show runtime status information about the connected Proxmark"},
{"ping", CmdPing, 0, "Test if the pm3 is responsive"},
{NULL, NULL, 0, NULL}
};
int CmdHW(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}