proxmark3/client/cmdhflist.c

1250 lines
40 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
// Copyright (C) Merlok - 2017
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Command: hf list. It shows data from arm buffer.
//-----------------------------------------------------------------------------
#include "cmdhflist.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include "util.h"
#include "ui.h"
#include "cliparser/cliparser.h"
#include "comms.h"
#include "iso14443crc.h"
#include "iso15693tools.h"
#include "parity.h"
#include "protocols.h"
#include "crapto1/crapto1.h"
#include "mifare/mifarehost.h"
#include "mifare/mifaredefault.h"
#include "usb_cmd.h"
#include "pcsc.h"
typedef struct {
uint32_t uid; // UID
uint32_t nt; // tag challenge
uint32_t nt_enc; // encrypted tag challenge
uint8_t nt_enc_par; // encrypted tag challenge parity
uint32_t nr_enc; // encrypted reader challenge
uint32_t ar_enc; // encrypted reader response
uint8_t ar_enc_par; // encrypted reader response parity
uint32_t at_enc; // encrypted tag response
uint8_t at_enc_par; // encrypted tag response parity
bool first_auth; // is first authentication
uint32_t ks2; // ar ^ ar_enc
uint32_t ks3; // at ^ at_enc
} TAuthData;
enum MifareAuthSeq {
masNone,
masNt,
masNrAr,
masAt,
masAuthComplete,
masFirstData,
masData,
masError,
};
static enum MifareAuthSeq MifareAuthState;
static TAuthData AuthData;
static void ClearAuthData() {
AuthData.uid = 0;
AuthData.nt = 0;
AuthData.first_auth = true;
AuthData.ks2 = 0;
AuthData.ks3 = 0;
}
/**
* @brief iso14443A_CRC_check Checks CRC in command or response
* @param isResponse
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
static uint8_t iso14443A_CRC_check(bool isResponse, uint8_t* data, uint8_t len)
{
uint8_t b1,b2;
if(len <= 2) return 2;
if(isResponse & (len < 6)) return 2;
ComputeCrc14443(CRC_14443_A, data, len-2, &b1, &b2);
if (b1 != data[len-2] || b2 != data[len-1]) {
return 0;
} else {
return 1;
}
}
static uint8_t iso14443_4_CRC_check(uint8_t* data, uint8_t len)
{
uint8_t b1,b2;
if(len <= 2) return 2;
ComputeCrc14443(CRC_14443_A, data, len-2, &b1, &b2);
if (b1 != data[len-2] || b2 != data[len-1]) {
return 0;
} else {
return 1;
}
}
static uint8_t mifare_CRC_check(bool isResponse, uint8_t* data, uint8_t len)
{
switch(MifareAuthState) {
case masNone:
case masError:
return iso14443A_CRC_check(isResponse, data, len);
default:
return 2;
}
}
/**
* @brief iso14443B_CRC_check Checks CRC in command or response
* @param isResponse
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
static uint8_t iso14443B_CRC_check(bool isResponse, uint8_t* data, uint8_t len)
{
uint8_t b1,b2;
if(len <= 2) return 2;
ComputeCrc14443(CRC_14443_B, data, len-2, &b1, &b2);
if(b1 != data[len-2] || b2 != data[len-1]) {
return 0;
} else {
return 1;
}
}
static uint8_t iso15693_CRC_check(uint8_t* d, uint16_t n)
{
if (n <= 2) return 2;
return (Iso15693Crc(d, n) == ISO15693_CRC_CHECK ? 1 : 0);
}
/**
* @brief iclass_CRC_Ok Checks CRC in command or response
* @param isResponse
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
uint8_t iclass_CRC_check(bool isResponse, uint8_t* data, uint8_t len)
{
if(len < 4) return 2;//CRC commands (and responses) are all at least 4 bytes
uint8_t b1, b2;
if(!isResponse)//Commands to tag
{
/**
These commands should have CRC. Total length leftmost
4 READ
4 READ4
12 UPDATE - unsecured, ends with CRC16
14 UPDATE - secured, ends with signature instead
4 PAGESEL
**/
if(len == 4 || len == 12)//Covers three of them
{
//Don't include the command byte
ComputeCrc14443(CRC_ICLASS, (data+1), len-3, &b1, &b2);
return b1 == data[len -2] && b2 == data[len-1];
}
return 2;
}else{
/**
These tag responses should have CRC. Total length leftmost
10 READ data[8] crc[2]
34 READ4 data[32]crc[2]
10 UPDATE data[8] crc[2]
10 SELECT csn[8] crc[2]
10 IDENTIFY asnb[8] crc[2]
10 PAGESEL block1[8] crc[2]
10 DETECT csn[8] crc[2]
These should not
4 CHECK chip_response[4]
8 READCHECK data[8]
1 ACTALL sof[1]
1 ACT sof[1]
In conclusion, without looking at the command; any response
of length 10 or 34 should have CRC
**/
if(len != 10 && len != 34) return true;
ComputeCrc14443(CRC_ICLASS, data, len-2, &b1, &b2);
return b1 == data[len -2] && b2 == data[len-1];
}
}
void annotateIclass(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) {
switch(cmd[0])
{
case ICLASS_CMD_ACTALL: snprintf(exp, size, "ACTALL"); break;
case ICLASS_CMD_READ_OR_IDENTIFY: {
if (cmdsize > 1){
snprintf(exp,size,"READ(%d)",cmd[1]);
} else {
snprintf(exp,size,"IDENTIFY");
}
break;
}
case ICLASS_CMD_SELECT: snprintf(exp,size, "SELECT"); break;
case ICLASS_CMD_PAGESEL: snprintf(exp,size, "PAGESEL(%d)", cmd[1]); break;
case ICLASS_CMD_READCHECK_KC: snprintf(exp,size, "READCHECK[Kc](%d)", cmd[1]); break;
case ICLASS_CMD_READCHECK_KD: snprintf(exp,size, "READCHECK[Kd](%d)", cmd[1]); break;
case ICLASS_CMD_CHECK_KC:
case ICLASS_CMD_CHECK_KD: snprintf(exp,size, "CHECK"); break;
case ICLASS_CMD_DETECT: snprintf(exp,size, "DETECT"); break;
case ICLASS_CMD_HALT: snprintf(exp,size, "HALT"); break;
case ICLASS_CMD_UPDATE: snprintf(exp,size, "UPDATE(%d)",cmd[1]); break;
case ICLASS_CMD_ACT: snprintf(exp,size, "ACT"); break;
case ICLASS_CMD_READ4: snprintf(exp,size, "READ4(%d)",cmd[1]); break;
default: snprintf(exp,size, "?"); break;
}
return;
}
void annotateIso15693(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) {
if (cmdsize >= 2) {
switch (cmd[1]) {
// Mandatory Commands, all Tags must support them:
case ISO15693_INVENTORY :snprintf(exp, size, "INVENTORY");return;
case ISO15693_STAYQUIET :snprintf(exp, size, "STAY_QUIET");return;
// Optional Commands, Tags may support them:
case ISO15693_READBLOCK :snprintf(exp, size, "READBLOCK");return;
case ISO15693_WRITEBLOCK :snprintf(exp, size, "WRITEBLOCK");return;
case ISO15693_LOCKBLOCK :snprintf(exp, size, "LOCKBLOCK");return;
case ISO15693_READ_MULTI_BLOCK :snprintf(exp, size, "READ_MULTI_BLOCK");return;
case ISO15693_WRITE_MULTI_BLOCK :snprintf(exp, size, "WRITE_MULTI_BLOCK");return;
case ISO15693_SELECT :snprintf(exp, size, "SELECT");return;
case ISO15693_RESET_TO_READY :snprintf(exp, size, "RESET_TO_READY");return;
case ISO15693_WRITE_AFI :snprintf(exp, size, "WRITE_AFI");return;
case ISO15693_LOCK_AFI :snprintf(exp, size, "LOCK_AFI");return;
case ISO15693_WRITE_DSFID :snprintf(exp, size, "WRITE_DSFID");return;
case ISO15693_LOCK_DSFID :snprintf(exp, size, "LOCK_DSFID");return;
case ISO15693_GET_SYSTEM_INFO :snprintf(exp, size, "GET_SYSTEM_INFO");return;
case ISO15693_READ_MULTI_SECSTATUS :snprintf(exp, size, "READ_MULTI_SECSTATUS");return;
default: break;
}
if (cmd[1] > ISO15693_STAYQUIET && cmd[1] < ISO15693_READBLOCK) snprintf(exp, size, "Mandatory RFU");
else if (cmd[1] > ISO15693_READ_MULTI_SECSTATUS && cmd[1] <= 0x9F) snprintf(exp, size, "Optional RFU");
else if ( cmd[1] >= 0xA0 && cmd[1] <= 0xDF ) snprintf(exp, size, "Custom command");
else if ( cmd[1] >= 0xE0 && cmd[1] <= 0xFF ) snprintf(exp, size, "Proprietary command");
}
}
void annotateTopaz(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize)
{
switch(cmd[0]) {
case TOPAZ_REQA :snprintf(exp, size, "REQA");break;
case TOPAZ_WUPA :snprintf(exp, size, "WUPA");break;
case TOPAZ_RID :snprintf(exp, size, "RID");break;
case TOPAZ_RALL :snprintf(exp, size, "RALL");break;
case TOPAZ_READ :snprintf(exp, size, "READ");break;
case TOPAZ_WRITE_E :snprintf(exp, size, "WRITE-E");break;
case TOPAZ_WRITE_NE :snprintf(exp, size, "WRITE-NE");break;
case TOPAZ_RSEG :snprintf(exp, size, "RSEG");break;
case TOPAZ_READ8 :snprintf(exp, size, "READ8");break;
case TOPAZ_WRITE_E8 :snprintf(exp, size, "WRITE-E8");break;
case TOPAZ_WRITE_NE8 :snprintf(exp, size, "WRITE-NE8");break;
default: snprintf(exp,size,"?"); break;
}
}
void annotateIso7816(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize)
{
switch ( cmd[1] ){
case ISO7816_READ_BINARY :snprintf(exp, size, "READ BINARY");break;
case ISO7816_WRITE_BINARY :snprintf(exp, size, "WRITE BINARY");break;
case ISO7816_UPDATE_BINARY :snprintf(exp, size, "UPDATE BINARY");break;
case ISO7816_ERASE_BINARY :snprintf(exp, size, "ERASE BINARY");break;
case ISO7816_READ_RECORDS :snprintf(exp, size, "READ RECORD(S)");break;
case ISO7816_WRITE_RECORD :snprintf(exp, size, "WRITE RECORD");break;
case ISO7816_APPEND_RECORD :snprintf(exp, size, "APPEND RECORD");break;
case ISO7816_UPDATE_DATA :snprintf(exp, size, "UPDATE DATA");break;
case ISO7816_GET_DATA :snprintf(exp, size, "GET DATA");break;
case ISO7816_PUT_DATA :snprintf(exp, size, "PUT DATA");break;
case ISO7816_SELECT_FILE :snprintf(exp, size, "SELECT FILE");break;
case ISO7816_VERIFY :snprintf(exp, size, "VERIFY");break;
case ISO7816_INTERNAL_AUTHENTICATE :snprintf(exp, size, "INTERNAL AUTHENTICATE");break;
case ISO7816_EXTERNAL_AUTHENTICATE :snprintf(exp, size, "EXTERNAL AUTHENTICATE");break;
case ISO7816_GET_CHALLENGE :snprintf(exp, size, "GET CHALLENGE");break;
case ISO7816_MANAGE_CHANNEL :snprintf(exp, size, "MANAGE CHANNEL");break;
case ISO7816_GET_RESPONSE :snprintf(exp, size, "GET RESPONSE");break;
case ISO7816_ENVELOPE :snprintf(exp, size, "ENVELOPE");break;
case ISO7816_GET_PROCESSING_OPTIONS :snprintf(exp, size, "GET PROCESSING OPTIONS");break;
default :snprintf(exp,size,"?"); break;
}
}
void annotateIso14443_4(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) {
// S-block
if ((cmd[0] & 0xc3) == 0xc2) {
switch (cmd[0] & 0x30) {
case 0x00 : snprintf(exp, size, "S-block DESELECT"); break;
case 0x30 : snprintf(exp, size, "S-block WTX"); break;
default : snprintf(exp, size, "S-block (RFU)"); break;
}
}
// R-block (ack)
else if ((cmd[0] & 0xe0) == 0xa0) {
if ((cmd[0] & 0x10) == 0)
snprintf(exp, size, "R-block ACK");
else
snprintf(exp, size, "R-block NACK");
}
// I-block
else {
int pos = 1;
switch (cmd[0] & 0x0c) {
case 0x08: // CID following
case 0x04: // NAD following
pos = 2;
break;
case 0x0c: // CID and NAD following
pos = 3;
break;
default:
pos = 1; // no CID, no NAD
break;
}
annotateIso7816(exp, size, &cmd[pos], cmdsize-pos);
}
}
/**
06 00 = INITIATE
0E xx = SELECT ID (xx = Chip-ID)
0B = Get UID
08 yy = Read Block (yy = block number)
09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written)
0C = Reset to Inventory
0F = Completion
0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate)
**/
void annotateIso14443b(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) {
switch(cmd[0]){
case ISO14443B_REQB : snprintf(exp,size,"REQB");break;
case ISO14443B_ATTRIB : snprintf(exp,size,"ATTRIB");break;
case ISO14443B_HALT : snprintf(exp,size,"HALT");break;
case ISO14443B_INITIATE : snprintf(exp,size,"INITIATE");break;
case ISO14443B_SELECT : snprintf(exp,size,"SELECT(%d)",cmd[1]);break;
case ISO14443B_GET_UID : snprintf(exp,size,"GET UID");break;
case ISO14443B_READ_BLK : snprintf(exp,size,"READ_BLK(%d)", cmd[1]);break;
case ISO14443B_WRITE_BLK : snprintf(exp,size,"WRITE_BLK(%d)",cmd[1]);break;
case ISO14443B_RESET : snprintf(exp,size,"RESET");break;
case ISO14443B_COMPLETION : snprintf(exp,size,"COMPLETION");break;
case ISO14443B_AUTHENTICATE : snprintf(exp,size,"AUTHENTICATE");break;
default : snprintf(exp,size ,"?");break;
}
}
void annotateIso14443a(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) {
switch(cmd[0])
{
case ISO14443A_CMD_WUPA:
snprintf(exp,size,"WUPA");
break;
case ISO14443A_CMD_ANTICOLL_OR_SELECT:{
// 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor)
// 93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK)
if(cmd[1] == 0x70)
{
snprintf(exp,size,"SELECT_UID"); break;
}else
{
snprintf(exp,size,"ANTICOLL"); break;
}
}
case ISO14443A_CMD_ANTICOLL_OR_SELECT_2:{
//95 20 = Anticollision of cascade level2
//95 70 = Select of cascade level2
if(cmd[2] == 0x70)
{
snprintf(exp,size,"SELECT_UID-2"); break;
}else
{
snprintf(exp,size,"ANTICOLL-2"); break;
}
}
case ISO14443A_CMD_REQA:
snprintf(exp,size,"REQA");
break;
case MIFARE_CMD_READBLOCK: snprintf(exp,size,"READBLOCK(%d)",cmd[1]); break;
case MIFARE_CMD_WRITEBLOCK: snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]); break;
case ISO14443A_CMD_HALT:
snprintf(exp,size,"HALT");
MifareAuthState = masNone;
break;
case ISO14443A_CMD_RATS: snprintf(exp,size,"RATS"); break;
case MIFARE_CMD_INC: snprintf(exp,size,"INC(%d)",cmd[1]); break;
case MIFARE_CMD_DEC: snprintf(exp,size,"DEC(%d)",cmd[1]); break;
case MIFARE_CMD_RESTORE: snprintf(exp,size,"RESTORE(%d)",cmd[1]); break;
case MIFARE_CMD_TRANSFER: snprintf(exp,size,"TRANSFER(%d)",cmd[1]); break;
case MIFARE_AUTH_KEYA:
if ( cmdsize > 3) {
snprintf(exp,size,"AUTH-A(%d)",cmd[1]);
MifareAuthState = masNt;
} else {
// case MIFARE_ULEV1_VERSION : both 0x60.
snprintf(exp,size,"EV1 VERSION");
}
break;
case MIFARE_AUTH_KEYB:
MifareAuthState = masNt;
snprintf(exp,size,"AUTH-B(%d)",cmd[1]);
break;
case MIFARE_MAGICWUPC1: snprintf(exp,size,"MAGIC WUPC1"); break;
case MIFARE_MAGICWUPC2: snprintf(exp,size,"MAGIC WUPC2"); break;
case MIFARE_MAGICWIPEC: snprintf(exp,size,"MAGIC WIPEC"); break;
case MIFARE_ULC_AUTH_1: snprintf(exp,size,"AUTH "); break;
case MIFARE_ULC_AUTH_2: snprintf(exp,size,"AUTH_ANSW"); break;
case MIFARE_ULEV1_AUTH:
if ( cmdsize == 7 )
snprintf(exp,size,"PWD-AUTH KEY: 0x%02x%02x%02x%02x", cmd[1], cmd[2], cmd[3], cmd[4] );
else
snprintf(exp,size,"PWD-AUTH");
break;
case MIFARE_ULEV1_FASTREAD:{
if ( cmdsize >=3 && cmd[2] <= 0xE6)
snprintf(exp,size,"READ RANGE (%d-%d)",cmd[1],cmd[2]);
else
snprintf(exp,size,"?");
break;
}
case MIFARE_ULC_WRITE:{
if ( cmd[1] < 0x21 )
snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]);
else
snprintf(exp,size,"?");
break;
}
case MIFARE_ULEV1_READ_CNT:{
if ( cmd[1] < 5 )
snprintf(exp,size,"READ CNT(%d)",cmd[1]);
else
snprintf(exp,size,"?");
break;
}
case MIFARE_ULEV1_INCR_CNT:{
if ( cmd[1] < 5 )
snprintf(exp,size,"INCR(%d)",cmd[1]);
else
snprintf(exp,size,"?");
break;
}
case MIFARE_ULEV1_READSIG: snprintf(exp,size,"READ_SIG"); break;
case MIFARE_ULEV1_CHECKTEAR: snprintf(exp,size,"CHK_TEARING(%d)",cmd[1]); break;
case MIFARE_ULEV1_VCSL: snprintf(exp,size,"VCSL"); break;
default: snprintf(exp,size,"?"); break;
}
return;
}
void annotateMifare(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize, uint8_t* parity, uint8_t paritysize, bool isResponse) {
if (!isResponse && cmdsize == 1) {
switch(cmd[0]) {
case ISO14443A_CMD_WUPA:
case ISO14443A_CMD_REQA:
MifareAuthState = masNone;
break;
default:
break;
}
}
// get UID
if (MifareAuthState == masNone) {
if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && cmd[1] == 0x70) {
ClearAuthData();
AuthData.uid = bytes_to_num(&cmd[2], 4);
}
if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && cmd[1] == 0x70) {
ClearAuthData();
AuthData.uid = bytes_to_num(&cmd[2], 4);
}
}
switch(MifareAuthState) {
case masNt:
if (cmdsize == 4 && isResponse) {
snprintf(exp,size,"AUTH: nt %s", (AuthData.first_auth) ? "" : "(enc)");
MifareAuthState = masNrAr;
if (AuthData.first_auth) {
AuthData.nt = bytes_to_num(cmd, 4);
} else {
AuthData.nt_enc = bytes_to_num(cmd, 4);
AuthData.nt_enc_par = parity[0];
}
return;
} else {
MifareAuthState = masError;
}
break;
case masNrAr:
if (cmdsize == 8 && !isResponse) {
snprintf(exp,size,"AUTH: nr ar (enc)");
MifareAuthState = masAt;
AuthData.nr_enc = bytes_to_num(cmd, 4);
AuthData.ar_enc = bytes_to_num(&cmd[4], 4);
AuthData.ar_enc_par = parity[0] << 4;
return;
} else {
MifareAuthState = masError;
}
break;
case masAt:
if (cmdsize == 4 && isResponse) {
snprintf(exp,size,"AUTH: at (enc)");
MifareAuthState = masAuthComplete;
AuthData.at_enc = bytes_to_num(cmd, 4);
AuthData.at_enc_par = parity[0];
return;
} else {
MifareAuthState = masError;
}
break;
default:
break;
}
if (!isResponse && ((MifareAuthState == masNone) || (MifareAuthState == masError)))
annotateIso14443a(exp, size, cmd, cmdsize);
}
static uint64_t GetCrypto1ProbableKey(TAuthData *ad) {
struct Crypto1State *revstate = lfsr_recovery64(ad->ks2, ad->ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, ad->nr_enc, 1);
lfsr_rollback_word(revstate, ad->uid ^ ad->nt, 0);
uint64_t lfsr = 0;
crypto1_get_lfsr(revstate, &lfsr);
crypto1_destroy(revstate);
return lfsr;
}
static bool NTParityChk(TAuthData *ad, uint32_t ntx) {
if (
(oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((ad->nt_enc_par >> 5) & 0x01) ^ (ad->nt_enc & 0x01)) ||
(oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((ad->nt_enc_par >> 6) & 0x01) ^ (ad->nt_enc >> 8 & 0x01)) ||
(oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((ad->nt_enc_par >> 7) & 0x01) ^ (ad->nt_enc >> 16 & 0x01))
)
return false;
uint32_t ar = prng_successor(ntx, 64);
if (
(oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ad->ar_enc_par >> 5) & 0x01) ^ (ad->ar_enc & 0x01)) ||
(oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ad->ar_enc_par >> 6) & 0x01) ^ (ad->ar_enc >> 8 & 0x01)) ||
(oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ad->ar_enc_par >> 7) & 0x01) ^ (ad->ar_enc >> 16 & 0x01))
)
return false;
uint32_t at = prng_successor(ntx, 96);
if (
(oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ad->ar_enc_par >> 4) & 0x01) ^ (ad->at_enc >> 24 & 0x01)) ||
(oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((ad->at_enc_par >> 5) & 0x01) ^ (ad->at_enc & 0x01)) ||
(oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((ad->at_enc_par >> 6) & 0x01) ^ (ad->at_enc >> 8 & 0x01)) ||
(oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((ad->at_enc_par >> 7) & 0x01) ^ (ad->at_enc >> 16 & 0x01))
)
return false;
return true;
}
static bool CheckCrypto1Parity(uint8_t *cmd_enc, uint8_t cmdsize, uint8_t *cmd, uint8_t *parity_enc) {
for (int i = 0; i < cmdsize - 1; i++) {
if (oddparity8(cmd[i]) ^ (cmd[i + 1] & 0x01) ^ ((parity_enc[i / 8] >> (7 - i % 8)) & 0x01) ^ (cmd_enc[i + 1] & 0x01))
return false;
}
return true;
}
static bool NestedCheckKey(uint64_t key, TAuthData *ad, uint8_t *cmd, uint8_t cmdsize, uint8_t *parity) {
uint8_t buf[32] = {0};
struct Crypto1State *pcs;
AuthData.ks2 = 0;
AuthData.ks3 = 0;
pcs = crypto1_create(key);
uint32_t nt1 = crypto1_word(pcs, ad->nt_enc ^ ad->uid, 1) ^ ad->nt_enc;
uint32_t ar = prng_successor(nt1, 64);
uint32_t at = prng_successor(nt1, 96);
crypto1_word(pcs, ad->nr_enc, 1);
// uint32_t nr1 = crypto1_word(pcs, ad->nr_enc, 1) ^ ad->nr_enc; // if needs deciphered nr
uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ad->ar_enc;
uint32_t at1 = crypto1_word(pcs, 0, 0) ^ ad->at_enc;
if (!(ar == ar1 && at == at1 && NTParityChk(ad, nt1))) {
crypto1_destroy(pcs);
return false;
}
memcpy(buf, cmd, cmdsize);
mf_crypto1_decrypt(pcs, buf, cmdsize, 0);
crypto1_destroy(pcs);
if (!CheckCrypto1Parity(cmd, cmdsize, buf, parity))
return false;
if(!CheckCrc14443(CRC_14443_A, buf, cmdsize))
return false;
AuthData.nt = nt1;
AuthData.ks2 = AuthData.ar_enc ^ ar;
AuthData.ks3 = AuthData.at_enc ^ at;
return true;
}
static bool DecodeMifareData(uint8_t *cmd, uint8_t cmdsize, uint8_t *parity, bool isResponse, uint8_t *mfData, size_t *mfDataLen) {
static struct Crypto1State *traceCrypto1;
static uint64_t mfLastKey;
*mfDataLen = 0;
if (MifareAuthState == masAuthComplete) {
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
traceCrypto1 = NULL;
}
MifareAuthState = masFirstData;
return false;
}
if (cmdsize > 32)
return false;
if (MifareAuthState == masFirstData) {
if (AuthData.first_auth) {
AuthData.ks2 = AuthData.ar_enc ^ prng_successor(AuthData.nt, 64);
AuthData.ks3 = AuthData.at_enc ^ prng_successor(AuthData.nt, 96);
mfLastKey = GetCrypto1ProbableKey(&AuthData);
PrintAndLog(" | * | key | probable key:%012"PRIx64" Prng:%s ks2:%08x ks3:%08x | |",
mfLastKey,
validate_prng_nonce(AuthData.nt) ? "WEAK": "HARD",
AuthData.ks2,
AuthData.ks3);
AuthData.first_auth = false;
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
} else {
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
traceCrypto1 = NULL;
}
// check last used key
if (mfLastKey) {
if (NestedCheckKey(mfLastKey, &AuthData, cmd, cmdsize, parity)) {
PrintAndLog(" | * | key | last used key:%012"PRIx64" ks2:%08x ks3:%08x | |",
mfLastKey,
AuthData.ks2,
AuthData.ks3);
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
};
}
// check default keys
if (!traceCrypto1) {
for (int defaultKeyCounter = 0; defaultKeyCounter < MifareDefaultKeysSize; defaultKeyCounter++){
if (NestedCheckKey(MifareDefaultKeys[defaultKeyCounter], &AuthData, cmd, cmdsize, parity)) {
PrintAndLog(" | * | key | default key:%012"PRIx64" ks2:%08x ks3:%08x | |",
MifareDefaultKeys[defaultKeyCounter],
AuthData.ks2,
AuthData.ks3);
mfLastKey = MifareDefaultKeys[defaultKeyCounter];
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
break;
};
}
}
// nested
if (!traceCrypto1 && validate_prng_nonce(AuthData.nt)) {
uint32_t ntx = prng_successor(AuthData.nt, 90);
for (int i = 0; i < 16383; i++) {
ntx = prng_successor(ntx, 1);
if (NTParityChk(&AuthData, ntx)){
uint32_t ks2 = AuthData.ar_enc ^ prng_successor(ntx, 64);
uint32_t ks3 = AuthData.at_enc ^ prng_successor(ntx, 96);
struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3);
memcpy(mfData, cmd, cmdsize);
mf_crypto1_decrypt(pcs, mfData, cmdsize, 0);
crypto1_destroy(pcs);
if (CheckCrypto1Parity(cmd, cmdsize, mfData, parity) && CheckCrc14443(CRC_14443_A, mfData, cmdsize)) {
AuthData.ks2 = ks2;
AuthData.ks3 = ks3;
AuthData.nt = ntx;
mfLastKey = GetCrypto1ProbableKey(&AuthData);
PrintAndLog(" | * | key | nested probable key:%012"PRIx64" ks2:%08x ks3:%08x | |",
mfLastKey,
AuthData.ks2,
AuthData.ks3);
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
break;
}
}
}
}
//hardnested
if (!traceCrypto1) {
printf("hardnested not implemented. uid:%x nt:%x ar_enc:%x at_enc:%x\n", AuthData.uid, AuthData.nt, AuthData.ar_enc, AuthData.at_enc);
MifareAuthState = masError;
/* TOO SLOW( needs to have more strong filter. with this filter - aprox 4 mln tests
uint32_t t = msclock();
uint32_t t1 = t;
int n = 0;
for (uint32_t i = 0; i < 0xFFFFFFFF; i++) {
if (NTParityChk(&AuthData, i)){
uint32_t ks2 = AuthData.ar_enc ^ prng_successor(i, 64);
uint32_t ks3 = AuthData.at_enc ^ prng_successor(i, 96);
struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3);
n++;
if (!(n % 100000)) {
printf("delta=%d n=%d ks2=%x ks3=%x \n", msclock() - t1 , n, ks2, ks3);
t1 = msclock();
}
}
}
printf("delta=%d n=%d\n", msclock() - t, n);
*/
}
}
MifareAuthState = masData;
}
if (MifareAuthState == masData && traceCrypto1) {
memcpy(mfData, cmd, cmdsize);
mf_crypto1_decrypt(traceCrypto1, mfData, cmdsize, 0);
*mfDataLen = cmdsize;
}
return *mfDataLen > 0;
}
bool is_last_record(uint16_t tracepos, uint8_t *trace, uint16_t traceLen) {
return(tracepos + sizeof(uint32_t) + sizeof(uint16_t) + sizeof(uint16_t) >= traceLen);
}
bool next_record_is_response(uint16_t tracepos, uint8_t *trace) {
uint16_t next_records_datalen = *((uint16_t *)(trace + tracepos + sizeof(uint32_t) + sizeof(uint16_t)));
return(next_records_datalen & 0x8000);
}
bool merge_topaz_reader_frames(uint32_t timestamp, uint32_t *duration, uint16_t *tracepos, uint16_t traceLen, uint8_t *trace, uint8_t *frame, uint8_t *topaz_reader_command, uint16_t *data_len) {
#define MAX_TOPAZ_READER_CMD_LEN 16
uint32_t last_timestamp = timestamp + *duration;
if ((*data_len != 1) || (frame[0] == TOPAZ_WUPA) || (frame[0] == TOPAZ_REQA)) return false;
memcpy(topaz_reader_command, frame, *data_len);
while (!is_last_record(*tracepos, trace, traceLen) && !next_record_is_response(*tracepos, trace)) {
uint32_t next_timestamp = *((uint32_t *)(trace + *tracepos));
*tracepos += sizeof(uint32_t);
uint16_t next_duration = *((uint16_t *)(trace + *tracepos));
*tracepos += sizeof(uint16_t);
uint16_t next_data_len = *((uint16_t *)(trace + *tracepos)) & 0x7FFF;
*tracepos += sizeof(uint16_t);
uint8_t *next_frame = (trace + *tracepos);
*tracepos += next_data_len;
if ((next_data_len == 1) && (*data_len + next_data_len <= MAX_TOPAZ_READER_CMD_LEN)) {
memcpy(topaz_reader_command + *data_len, next_frame, next_data_len);
*data_len += next_data_len;
last_timestamp = next_timestamp + next_duration;
} else {
// rewind and exit
*tracepos = *tracepos - next_data_len - sizeof(uint16_t) - sizeof(uint16_t) - sizeof(uint32_t);
break;
}
uint16_t next_parity_len = (next_data_len-1)/8 + 1;
*tracepos += next_parity_len;
}
*duration = last_timestamp - timestamp;
return true;
}
uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, uint8_t protocol, bool showWaitCycles, bool markCRCBytes, uint32_t *prev_EOT, bool times_in_us) {
bool isResponse;
uint16_t data_len, parity_len;
uint32_t duration;
uint8_t topaz_reader_command[9];
uint32_t timestamp, first_timestamp;
uint32_t EndOfTransmissionTimestamp = 0;
char explanation[30] = {0};
uint8_t mfData[32] = {0};
size_t mfDataLen = 0;
if (tracepos + sizeof(uint32_t) + sizeof(uint16_t) + sizeof(uint16_t) > traceLen) return traceLen;
first_timestamp = *((uint32_t *)(trace));
timestamp = *((uint32_t *)(trace + tracepos));
tracepos += 4;
duration = *((uint16_t *)(trace + tracepos));
tracepos += 2;
data_len = *((uint16_t *)(trace + tracepos));
tracepos += 2;
if (data_len & 0x8000) {
data_len &= 0x7fff;
isResponse = true;
} else {
isResponse = false;
}
parity_len = (data_len-1)/8 + 1;
if (tracepos + data_len + parity_len > traceLen) {
return traceLen;
}
uint8_t *frame = trace + tracepos;
tracepos += data_len;
uint8_t *parityBytes = trace + tracepos;
tracepos += parity_len;
if (protocol == TOPAZ && !isResponse) {
// topaz reader commands come in 1 or 9 separate frames with 7 or 8 Bits each.
// merge them:
if (merge_topaz_reader_frames(timestamp, &duration, &tracepos, traceLen, trace, frame, topaz_reader_command, &data_len)) {
frame = topaz_reader_command;
}
}
// adjust for different time scales
if (protocol == ICLASS || protocol == ISO_15693) {
duration *= 32;
}
//Check the CRC status
uint8_t crcStatus = 2;
if (data_len > 2) {
switch (protocol) {
case ICLASS:
crcStatus = iclass_CRC_check(isResponse, frame, data_len);
break;
case ISO_14443B:
case TOPAZ:
crcStatus = iso14443B_CRC_check(isResponse, frame, data_len);
break;
case PROTO_MIFARE:
crcStatus = mifare_CRC_check(isResponse, frame, data_len);
break;
case ISO_14443A:
crcStatus = iso14443A_CRC_check(isResponse, frame, data_len);
break;
case ISO_14443_4:
crcStatus = iso14443_4_CRC_check(frame, data_len);
break;
case ISO_15693:
crcStatus = iso15693_CRC_check(frame, data_len);
break;
default:
break;
}
}
//0 CRC-command, CRC not ok
//1 CRC-command, CRC ok
//2 Not crc-command
//--- Draw the data column
char line[16][110];
for (int j = 0; j < data_len && j/16 < 16; j++) {
uint8_t parityBits = parityBytes[j>>3];
if (protocol != ISO_14443B
&& protocol != ISO_15693
&& protocol != ICLASS
&& protocol != ISO_7816_4
&& (isResponse || protocol == ISO_14443A)
&& (oddparity8(frame[j]) != ((parityBits >> (7-(j&0x0007))) & 0x01))) {
snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x!", frame[j]);
} else {
snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x ", frame[j]);
}
}
if (markCRCBytes) {
if (crcStatus == 0 || crcStatus == 1) { //CRC-command
char *pos1 = line[(data_len-2)/16]+(((data_len-2) % 16) * 4);
(*pos1) = '[';
char *pos2 = line[(data_len)/16]+(((data_len) % 16) * 4);
sprintf(pos2, "%c", ']');
}
}
// mark short bytes (less than 8 Bit + Parity)
if (protocol == ISO_14443A || protocol == PROTO_MIFARE) {
if (duration < 128 * (9 * data_len)) {
line[(data_len-1)/16][((data_len-1)%16) * 4 + 3] = '\'';
}
}
if (data_len == 0) {
if (protocol == ICLASS && duration == 2048) {
sprintf(line[0], " <SOF>");
} else if (protocol == ISO_15693 && duration == 512) {
sprintf(line[0], " <EOF>");
} else {
sprintf(line[0], " <empty trace - possible error>");
}
}
//--- Draw the CRC column
char *crc = (crcStatus == 0 ? "!crc" : (crcStatus == 1 ? " ok " : " "));
if (protocol == PROTO_MIFARE)
annotateMifare(explanation, sizeof(explanation), frame, data_len, parityBytes, parity_len, isResponse);
if (!isResponse) {
switch(protocol) {
case ICLASS: annotateIclass(explanation,sizeof(explanation),frame,data_len); break;
case ISO_14443A: annotateIso14443a(explanation,sizeof(explanation),frame,data_len); break;
case ISO_14443B: annotateIso14443b(explanation,sizeof(explanation),frame,data_len); break;
case TOPAZ: annotateTopaz(explanation,sizeof(explanation),frame,data_len); break;
case ISO_15693: annotateIso15693(explanation,sizeof(explanation),frame,data_len); break;
case ISO_7816_4: annotateIso7816(explanation, sizeof(explanation), frame, data_len); break;
case ISO_14443_4: annotateIso14443_4(explanation, sizeof(explanation), frame, data_len); break;
default: break;
}
}
uint32_t previousEndOfTransmissionTimestamp = 0;
if (prev_EOT) {
if (*prev_EOT) {
previousEndOfTransmissionTimestamp = *prev_EOT;
} else {
previousEndOfTransmissionTimestamp = timestamp;
}
}
EndOfTransmissionTimestamp = timestamp + duration;
if (prev_EOT) *prev_EOT = EndOfTransmissionTimestamp;
int num_lines = MIN((data_len - 1)/16 + 1, 16);
for (int j = 0; j < num_lines ; j++) {
if (j == 0) {
uint32_t time1 = timestamp - first_timestamp;
uint32_t time2 = EndOfTransmissionTimestamp - first_timestamp;
if (prev_EOT) {
time1 = timestamp - previousEndOfTransmissionTimestamp;
time2 = duration;
}
if (times_in_us) {
PrintAndLog(" %10.1f | %10.1f | %s |%-64s | %s| %s",
(float)time1/13.56,
(float)time2/13.56,
isResponse ? "Tag" : "Rdr",
line[j],
(j == num_lines-1) ? crc : " ",
(j == num_lines-1) ? explanation : "");
} else {
PrintAndLog(" %10" PRIu32 " | %10" PRIu32 " | %s |%-64s | %s| %s",
time1,
time2,
isResponse ? "Tag" : "Rdr",
line[j],
(j == num_lines-1) ? crc : " ",
(j == num_lines-1) ? explanation : "");
}
} else {
PrintAndLog(" | | |%-64s | %s| %s",
line[j],
(j == num_lines-1) ? crc : " ",
(j == num_lines-1) ? explanation : "");
}
}
if (DecodeMifareData(frame, data_len, parityBytes, isResponse, mfData, &mfDataLen)) {
memset(explanation, 0x00, sizeof(explanation));
if (!isResponse) {
explanation[0] = '>';
annotateIso14443a(&explanation[1], sizeof(explanation) - 1, mfData, mfDataLen);
}
uint8_t crcc = iso14443A_CRC_check(isResponse, mfData, mfDataLen);
PrintAndLog(" | * | dec |%-64s | %-4s| %s",
sprint_hex(mfData, mfDataLen),
(crcc == 0 ? "!crc" : (crcc == 1 ? " ok " : " ")),
(true) ? explanation : "");
};
if (is_last_record(tracepos, trace, traceLen)) return traceLen;
if (showWaitCycles && !isResponse && next_record_is_response(tracepos, trace)) {
uint32_t next_timestamp = *((uint32_t *)(trace + tracepos));
PrintAndLog(" %10d | %10d | %s | fdt (Frame Delay Time): %d",
(EndOfTransmissionTimestamp - first_timestamp),
(next_timestamp - first_timestamp),
" ",
(next_timestamp - EndOfTransmissionTimestamp));
}
return tracepos;
}
int CmdHFList(const char *Cmd) {
CLIParserInit("hf list", "\nList or save protocol data.",
"examples: hf list 14a -f -- interpret as ISO14443A communication and display Frame Delay Times\n"\
" hf list iclass -- interpret as iClass trace\n"\
" hf list -s myCardTrace.trc -- save trace for later use\n"\
" hf list 14a -l myCardTrace.trc -- load trace and interpret as ISO14443A communication\n");
void* argtable[] = {
arg_param_begin,
arg_lit0("f", "fdt", "display fdt (frame delay times)"),
arg_lit0("r", "relative", "show relative times (gap and duration)"),
arg_lit0("c", "crc" , "mark CRC bytes"),
arg_lit0("p", "pcsc", "show trace buffer from PCSC card reader instead of PM3"),
arg_str0("l", "load", "<filename>", "load trace from file"),
arg_str0("s", "save", "<filename>", "save trace to file"),
arg_lit0("u", "us", "display times in microseconds instead of clock cycles"),
arg_str0(NULL, NULL, "<protocol>", "protocol to interpret. Possible values:\n"\
"\traw - just show raw data without annotations (default)\n"\
"\t14a - interpret data as ISO14443A communications\n"\
"\tmf - interpret data as ISO14443A communications and decrypt Mifare Crypto1 stream\n"\
"\t14b - interpret data as ISO14443B communications\n"\
"\t15 - interpret data as ISO15693 communications\n"\
"\ticlass - interpret data as iClass communications\n"\
"\ttopaz - interpret data as Topaz communications\n"\
"\t7816 - interpret data as 7816-4 APDU communications\n"\
"\t14-4 - interpret data as ISO14443-4 communications"),
arg_param_end
};
if (CLIParserParseString(Cmd, argtable, arg_getsize(argtable), true)){
CLIParserFree();
return 0;
}
bool showWaitCycles = arg_get_lit(1);
bool relative_times = arg_get_lit(2);
bool markCRCBytes = arg_get_lit(3);
bool PCSCtrace = arg_get_lit(4);
bool loadFromFile = arg_get_str_len(5);
bool saveToFile = arg_get_str_len(6);
bool times_in_us = arg_get_lit(7);
uint32_t previous_EOT = 0;
uint32_t *prev_EOT = NULL;
if (relative_times) {
prev_EOT = &previous_EOT;
}
char load_filename[FILE_PATH_SIZE+1] = {0};
if (loadFromFile) {
strncpy(load_filename, arg_get_str(5)->sval[0], FILE_PATH_SIZE);
}
char save_filename[FILE_PATH_SIZE+1] = {0};
if (saveToFile) {
strncpy(save_filename, arg_get_str(6)->sval[0], FILE_PATH_SIZE);
}
uint8_t protocol = -1;
if (arg_get_str_len(8)) {
if (strcmp(arg_get_str(8)->sval[0], "iclass") == 0) protocol = ICLASS;
else if(strcmp(arg_get_str(8)->sval[0], "14a") == 0) protocol = ISO_14443A;
else if(strcmp(arg_get_str(8)->sval[0], "mf") == 0) protocol = PROTO_MIFARE;
else if(strcmp(arg_get_str(8)->sval[0], "14b") == 0) protocol = ISO_14443B;
else if(strcmp(arg_get_str(8)->sval[0], "topaz") == 0) protocol = TOPAZ;
else if(strcmp(arg_get_str(8)->sval[0], "7816") == 0) protocol = ISO_7816_4;
else if(strcmp(arg_get_str(8)->sval[0], "14-4") == 0) protocol = ISO_14443_4;
else if(strcmp(arg_get_str(8)->sval[0], "15") == 0) protocol = ISO_15693;
else if(strcmp(arg_get_str(8)->sval[0], "raw") == 0) protocol = -1;//No crc, no annotations
else {
PrintAndLog("hf list: invalid argument \"%s\"\nTry 'hf list --help' for more information.", arg_get_str(8)->sval[0]);
CLIParserFree();
return 0;
}
}
CLIParserFree();
uint8_t *trace;
uint32_t tracepos = 0;
uint32_t traceLen = 0;
if (loadFromFile) {
#define TRACE_CHUNK_SIZE (1<<16) // 64K to start with. Will be enough for BigBuf and some room for future extensions
FILE *tracefile = NULL;
size_t bytes_read;
trace = malloc(TRACE_CHUNK_SIZE);
if (trace == NULL) {
PrintAndLog("Cannot allocate memory for trace");
return 2;
}
if ((tracefile = fopen(load_filename,"rb")) == NULL) {
PrintAndLog("Could not open file %s", load_filename);
free(trace);
return 0;
}
while (!feof(tracefile)) {
bytes_read = fread(trace+traceLen, 1, TRACE_CHUNK_SIZE, tracefile);
traceLen += bytes_read;
if (!feof(tracefile)) {
uint8_t *p = realloc(trace, traceLen + TRACE_CHUNK_SIZE);
if (p == NULL) {
PrintAndLog("Cannot allocate memory for trace");
free(trace);
fclose(tracefile);
return 2;
}
trace = p;
}
}
fclose(tracefile);
} else if (PCSCtrace) {
trace = pcsc_get_trace_addr();
traceLen = pcsc_get_traceLen();
} else {
trace = malloc(USB_CMD_DATA_SIZE);
// Query for the size of the trace
UsbCommand response;
if (!(GetFromBigBuf(trace, USB_CMD_DATA_SIZE, 0, &response, 500, false))) {
return 1;
}
traceLen = response.arg[2];
if (traceLen > USB_CMD_DATA_SIZE) {
uint8_t *p = realloc(trace, traceLen);
if (p == NULL) {
PrintAndLog("Cannot allocate memory for trace");
free(trace);
return 2;
}
trace = p;
if (!(GetFromBigBuf(trace, traceLen, 0, NULL, 500, false))) {
return 1;
}
}
}
if (saveToFile) {
FILE *tracefile = NULL;
if ((tracefile = fopen(save_filename,"wb")) == NULL) {
PrintAndLog("Could not create file %s", save_filename);
return 1;
}
fwrite(trace, 1, traceLen, tracefile);
PrintAndLog("Recorded Activity (TraceLen = %d bytes) written to file %s", traceLen, save_filename);
fclose(tracefile);
} else {
PrintAndLog("Recorded Activity (TraceLen = %d bytes)", traceLen);
PrintAndLog("");
if (relative_times) {
PrintAndLog("Gap = time between transfers. Duration = duration of data transfer. Src = Source of transfer");
} else {
PrintAndLog("Start = Start of Frame, End = End of Frame. Src = Source of transfer");
}
if (times_in_us) {
PrintAndLog("All times are in microseconds");
} else {
PrintAndLog("All times are in carrier periods (1/13.56Mhz)");
}
PrintAndLog("");
if (relative_times) {
PrintAndLog(" Gap | Duration | Src | Data (! denotes parity error, ' denotes short bytes) | CRC | Annotation |");
} else {
PrintAndLog(" Start | End | Src | Data (! denotes parity error, ' denotes short bytes) | CRC | Annotation |");
}
PrintAndLog("------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|");
ClearAuthData();
while(tracepos < traceLen) {
tracepos = printTraceLine(tracepos, traceLen, trace, protocol, showWaitCycles, markCRCBytes, prev_EOT, times_in_us);
}
}
free(trace);
return 0;
}