proxmark3/client/cmdhficlass.c
pwpiwi 929b61c670 Always enable fast response mode (was enabled for flasher only)
* ensure that CMD_ACK is used exclusively for the very last response of each PM3 operation. All Dbprintf() must be before.
* always switch off field before exiting
* append null packet for USB transfers % 64 bytes
* reformatting and whitespace fixes
2020-01-23 22:18:51 +01:00

2228 lines
62 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>, Hagen Fritsch
// Copyright (C) 2011 Gerhard de Koning Gans
// Copyright (C) 2014 Midnitesnake & Andy Davies & Martin Holst Swende
// Copyright (C) 2019 piwi
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency iClass commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <ctype.h>
#include "iso14443crc.h" // Can also be used for iClass, using 0xE012 as CRC-type
#include "comms.h"
#include "ui.h"
#include "cliparser/cliparser.h"
#include "cmdparser.h"
#include "cmdhficlass.h"
#include "common.h"
#include "util.h"
#include "cmdmain.h"
#include "mbedtls/des.h"
#include "loclass/cipherutils.h"
#include "loclass/cipher.h"
#include "loclass/ikeys.h"
#include "loclass/elite_crack.h"
#include "loclass/fileutils.h"
#include "protocols.h"
#include "usb_cmd.h"
#include "cmdhfmfu.h"
#include "util_posix.h"
#include "cmdhf14a.h" // DropField()
#define ICLASS_KEYS_MAX 8
static uint8_t iClass_Key_Table[ICLASS_KEYS_MAX][8] = {
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }
};
// iclass / picopass chip config structures and shared routines
typedef struct {
uint8_t app_limit; //[8]
uint8_t otp[2]; //[9-10]
uint8_t block_writelock;//[11]
uint8_t chip_config; //[12]
uint8_t mem_config; //[13]
uint8_t eas; //[14]
uint8_t fuses; //[15]
} picopass_conf_block;
typedef struct {
uint8_t csn[8];
picopass_conf_block conf;
uint8_t epurse[8];
uint8_t key_d[8];
uint8_t key_c[8];
uint8_t app_issuer_area[8];
} picopass_hdr;
static void fuse_config(const picopass_hdr *hdr) {
uint8_t fuses = hdr->conf.fuses;
if (fuses & FUSE_FPERS)
PrintAndLog(" Mode: Personalization [Programmable]");
else
PrintAndLog(" Mode: Application [Locked]");
if (fuses & FUSE_CODING1)
PrintAndLog("Coding: RFU");
else {
if (fuses & FUSE_CODING0)
PrintAndLog("Coding: ISO 14443-2 B/ISO 15693");
else
PrintAndLog("Coding: ISO 14443B only");
}
if ((fuses & FUSE_CRYPT1) && (fuses & FUSE_CRYPT0)) PrintAndLog(" Crypt: Secured page, keys not locked");
if ((fuses & FUSE_CRYPT1) && !(fuses & FUSE_CRYPT0)) PrintAndLog(" Crypt: Secured page, keys locked");
if (!(fuses & FUSE_CRYPT1) && (fuses & FUSE_CRYPT0)) PrintAndLog(" Crypt: Non secured page");
if (!(fuses & FUSE_CRYPT1) && !(fuses & FUSE_CRYPT0)) PrintAndLog(" Crypt: No auth possible. Read only if RA is enabled");
if (fuses & FUSE_RA)
PrintAndLog(" RA: Read access enabled");
else
PrintAndLog(" RA: Read access not enabled");
}
static void getMemConfig(uint8_t mem_cfg, uint8_t chip_cfg, uint8_t *max_blk, uint8_t *app_areas, uint8_t *kb) {
// mem-bit 5, mem-bit 7, chip-bit 4: defines chip type
if((chip_cfg & 0x10) && !(mem_cfg & 0x80) && !(mem_cfg & 0x20)) {
*kb = 2;
*app_areas = 2;
*max_blk = 31;
} else if((chip_cfg & 0x10) && (mem_cfg & 0x80) && !(mem_cfg & 0x20)) {
*kb = 16;
*app_areas = 2;
*max_blk = 255; //16kb
} else if(!(chip_cfg & 0x10) && !(mem_cfg & 0x80) && !(mem_cfg & 0x20)) {
*kb = 16;
*app_areas = 16;
*max_blk = 255; //16kb
} else if((chip_cfg & 0x10) && (mem_cfg & 0x80) && (mem_cfg & 0x20)) {
*kb = 32;
*app_areas = 3;
*max_blk = 255; //16kb
} else if(!(chip_cfg & 0x10) && !(mem_cfg & 0x80) && (mem_cfg & 0x20)) {
*kb = 32;
*app_areas = 17;
*max_blk = 255; //16kb
} else {
*kb = 32;
*app_areas = 2;
*max_blk = 255;
}
}
static void mem_app_config(const picopass_hdr *hdr) {
uint8_t mem = hdr->conf.mem_config;
uint8_t chip = hdr->conf.chip_config;
uint8_t applimit = hdr->conf.app_limit;
if (applimit < 6) applimit = 26;
uint8_t kb = 2;
uint8_t app_areas = 2;
uint8_t max_blk = 31;
getMemConfig(mem, chip, &max_blk, &app_areas, &kb);
PrintAndLog(" Mem: %u KBits/%u App Areas (%u * 8 bytes) [%02X]", kb, app_areas, max_blk+1, mem);
PrintAndLog(" AA1: blocks 06-%02X", applimit);
PrintAndLog(" AA2: blocks %02X-%02X", applimit+1, max_blk);
}
static void printIclassDumpInfo(uint8_t* iclass_dump) {
fuse_config((picopass_hdr*)iclass_dump);
mem_app_config((picopass_hdr*)iclass_dump);
}
static void usage_hf_iclass_chk(void) {
PrintAndLog("Checkkeys loads a dictionary text file with 8byte hex keys to test authenticating against a iClass tag");
PrintAndLog("Usage: hf iclass chk [h|e|r] <f (*.dic)>");
PrintAndLog("Options:");
PrintAndLog("h Show this help");
PrintAndLog("f <filename> Dictionary file with default iclass keys");
PrintAndLog(" e target Elite / High security key scheme");
PrintAndLog(" r interpret dictionary file as raw (diversified keys)");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass chk f default_iclass_keys.dic");
PrintAndLog(" hf iclass chk f default_iclass_keys.dic e");
}
static int CmdHFiClassList(const char *Cmd) {
PrintAndLog("Deprecated command, use 'hf list iclass' instead");
return 0;
}
static int CmdHFiClassSnoop(const char *Cmd) {
CLIParserInit("hf iclass snoop", "\nSnoop a communication between an iClass Reader and an iClass Tag.", NULL);
void* argtable[] = {
arg_param_begin,
arg_lit0("j", "jam", "Jam (prevent) e-purse Updates"),
arg_param_end
};
if (CLIParserParseString(Cmd, argtable, arg_getsize(argtable), true)){
CLIParserFree();
return 0;
}
bool jam_epurse_update = arg_get_lit(1);
const uint8_t update_epurse_sequence[2] = {0x87, 0x02};
UsbCommand c = {CMD_SNOOP_ICLASS, {0}};
if (jam_epurse_update) {
c.arg[0] = sizeof(update_epurse_sequence);
memcpy(c.d.asBytes, update_epurse_sequence, sizeof(update_epurse_sequence));
}
SendCommand(&c);
return 0;
}
static void usage_hf_iclass_sim(void) {
PrintAndLog("Usage: hf iclass sim <option> [CSN]");
PrintAndLog(" options");
PrintAndLog(" 0 <CSN> simulate the given CSN");
PrintAndLog(" 1 simulate default CSN");
PrintAndLog(" 2 Reader-attack, gather reader responses to extract elite key");
PrintAndLog(" 3 Full simulation using emulator memory (see 'hf iclass eload')");
PrintAndLog(" example: hf iclass sim 0 031FEC8AF7FF12E0");
PrintAndLog(" example: hf iclass sim 2");
PrintAndLog(" example: hf iclass eload 'tagdump.bin'");
PrintAndLog(" hf iclass sim 3");
}
// the original malicious IDs from Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult,
// and Milosch Meriac. Dismantling iClass and iClass Elite.
#define NUM_CSNS 15
static uint8_t csns[8 * NUM_CSNS] = {
0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x04, 0x0E, 0x08, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x09, 0x0D, 0x05, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0A, 0x0C, 0x06, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0F, 0x0B, 0x03, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x08, 0x0A, 0x0C, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0D, 0x09, 0x09, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0E, 0x08, 0x0A, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x03, 0x07, 0x17, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x3C, 0x06, 0xE0, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x01, 0x05, 0x1D, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x02, 0x04, 0x1E, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x07, 0x03, 0x1B, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x00, 0x02, 0x24, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x05, 0x01, 0x21, 0xF7, 0xFF, 0x12, 0xE0 };
// pre-defined 9 CSNs by iceman.
// only one csn depend on several others.
// six depends only on the first csn, (0,1, 0x45)
// #define NUM_CSNS 9
// static uint8_t csns[8 * NUM_CSNS] = {
// 0x01, 0x0A, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
// 0x0C, 0x06, 0x0C, 0xFE, 0xF7, 0xFF, 0x12, 0xE0,
// 0x10, 0x97, 0x83, 0x7B, 0xF7, 0xFF, 0x12, 0xE0,
// 0x13, 0x97, 0x82, 0x7A, 0xF7, 0xFF, 0x12, 0xE0,
// 0x07, 0x0E, 0x0D, 0xF9, 0xF7, 0xFF, 0x12, 0xE0,
// 0x14, 0x96, 0x84, 0x76, 0xF7, 0xFF, 0x12, 0xE0,
// 0x17, 0x96, 0x85, 0x71, 0xF7, 0xFF, 0x12, 0xE0,
// 0xCE, 0xC5, 0x0F, 0x77, 0xF7, 0xFF, 0x12, 0xE0,
// 0xD2, 0x5A, 0x82, 0xF8, 0xF7, 0xFF, 0x12, 0xE0
// //0x04, 0x08, 0x9F, 0x78, 0x6E, 0xFF, 0x12, 0xE0
// };
static int CmdHFiClassSim(const char *Cmd) {
uint8_t simType = 0;
uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0};
if (strlen(Cmd) < 1) {
usage_hf_iclass_sim();
return 0;
}
simType = param_get8ex(Cmd, 0, 0, 10);
if (simType == ICLASS_SIM_MODE_CSN) {
if (param_gethex(Cmd, 1, CSN, 16)) {
PrintAndLog("A CSN should consist of 16 HEX symbols");
usage_hf_iclass_sim();
return 0;
}
PrintAndLog("--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8));
}
if (simType == ICLASS_SIM_MODE_READER_ATTACK) {
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType, NUM_CSNS}};
UsbCommand resp = {0};
memcpy(c.d.asBytes, csns, 8 * NUM_CSNS);
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, -1)) {
PrintAndLog("Command timed out");
return 0;
}
uint8_t num_mac_responses = resp.arg[1];
PrintAndLog("Mac responses: %d MACs obtained (should be %d)", num_mac_responses, NUM_CSNS);
size_t datalen = NUM_CSNS * 24;
/*
* Now, time to dump to file. We'll use this format:
* <8-byte CSN><8-byte CC><4 byte NR><4 byte MAC>....
* So, it should wind up as
* 8 * 24 bytes.
*
* The returndata from the pm3 is on the following format
* <8 byte CC><4 byte NR><4 byte MAC>
* CSN is the same as was sent in
**/
void* dump = malloc(datalen);
for(int i = 0; i < NUM_CSNS; i++) {
memcpy(dump + i*24, csns+i*8, 8); //CSN
//copy CC from response
memcpy(dump + i*24 + 8, resp.d.asBytes + i*16, 8);
//Then comes NR_MAC (eight bytes from the response)
memcpy(dump + i*24 + 16, resp.d.asBytes + i*16 + 8, 8);
}
/** Now, save to dumpfile **/
saveFile("iclass_mac_attack", "bin", dump,datalen);
free(dump);
} else if (simType == ICLASS_SIM_MODE_CSN || simType == ICLASS_SIM_MODE_CSN_DEFAULT || simType == ICLASS_SIM_MODE_FULL) {
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType, 0}};
memcpy(c.d.asBytes, CSN, 8);
SendCommand(&c);
} else {
PrintAndLog("Undefined simtype %d", simType);
usage_hf_iclass_sim();
return 0;
}
return 0;
}
int HFiClassReader(bool loop, bool verbose) {
bool tagFound = false;
UsbCommand c = {CMD_READER_ICLASS, {FLAG_ICLASS_READER_INIT | FLAG_ICLASS_READER_CLEARTRACE | FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_CC | FLAG_ICLASS_READER_AA} };
UsbCommand resp;
while (!ukbhit()) {
SendCommand(&c);
if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
uint8_t readStatus = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
// no tag found
if (readStatus == 0 && !loop) {
// abort
if (verbose) PrintAndLog("Quitting...");
DropField();
return 0;
}
if (readStatus & FLAG_ICLASS_READER_CSN) {
PrintAndLog(" CSN: %s",sprint_hex(data,8));
tagFound = true;
}
if (readStatus & FLAG_ICLASS_READER_CC) {
PrintAndLog(" CC: %s",sprint_hex(data+16,8));
}
if (readStatus & FLAG_ICLASS_READER_CONF) {
printIclassDumpInfo(data);
}
if (readStatus & FLAG_ICLASS_READER_AA) {
bool legacy = true;
PrintAndLog(" AppIA: %s",sprint_hex(data+8*5,8));
for (int i = 0; i<8; i++) {
if (data[8*5+i] != 0xFF) {
legacy = false;
}
}
PrintAndLog(" : Possible iClass %s",(legacy) ? "(legacy tag)" : "(NOT legacy tag)");
}
if (tagFound && !loop) return 1;
} else {
if (verbose) PrintAndLog("Error: No response from Proxmark.");
break;
}
if (!loop) break;
}
DropField();
return 0;
}
static void usage_hf_iclass_reader(void) {
PrintAndLogEx(NORMAL, "Act as a Iclass reader. Look for iClass tags until Enter or the pm3 button is pressed\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass reader [h] [1]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help text");
PrintAndLogEx(NORMAL, " 1 read only 1 tag");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass reader 1");
}
static int CmdHFiClassReader(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') {
usage_hf_iclass_reader();
return 0;
}
bool findone = (cmdp == '1') ? false : true;
return HFiClassReader(findone, true);
}
static void usage_hf_iclass_eload(void) {
PrintAndLog("Loads iclass tag-dump into emulator memory on device");
PrintAndLog("Usage: hf iclass eload f <filename>");
PrintAndLog("");
PrintAndLog("Example: hf iclass eload f iclass_tagdump-aa162d30f8ff12f1.bin");
}
static int CmdHFiClassELoad(const char *Cmd) {
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h') {
usage_hf_iclass_eload();
return 0;
}
//File handling and reading
FILE *f;
char filename[FILE_PATH_SIZE];
if (opt == 'f' && param_getstr(Cmd, 1, filename, sizeof(filename)) > 0) {
f = fopen(filename, "rb");
} else {
usage_hf_iclass_eload();
return 0;
}
if (!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 1;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if (fsize < 0) {
PrintAndLog("Error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = malloc(fsize);
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
printIclassDumpInfo(dump);
//Validate
if (bytes_read < fsize) {
prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize );
free(dump);
return 1;
}
//Send to device
uint32_t bytes_sent = 0;
uint32_t bytes_remaining = bytes_read;
while (bytes_remaining > 0) {
uint32_t bytes_in_packet = MIN(USB_CMD_DATA_SIZE, bytes_remaining);
UsbCommand c = {CMD_ICLASS_EML_MEMSET, {bytes_sent,bytes_in_packet,0}};
memcpy(c.d.asBytes, dump+bytes_sent, bytes_in_packet);
SendCommand(&c);
bytes_remaining -= bytes_in_packet;
bytes_sent += bytes_in_packet;
}
free(dump);
PrintAndLog("Sent %d bytes of data to device emulator memory", bytes_sent);
return 0;
}
static int readKeyfile(const char *filename, size_t len, uint8_t* buffer) {
FILE *f = fopen(filename, "rb");
if(!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 1;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
size_t bytes_read = fread(buffer, 1, len, f);
fclose(f);
if(fsize != len)
{
PrintAndLog("Warning, file size is %d, expected %d", fsize, len);
return 1;
}
if(bytes_read != len)
{
PrintAndLog("Warning, could only read %d bytes, expected %d" ,bytes_read, len);
return 1;
}
return 0;
}
static void usage_hf_iclass_decrypt(void) {
PrintAndLog("Usage: hf iclass decrypt f <tagdump>");
PrintAndLog("");
PrintAndLog("OBS! In order to use this function, the file 'iclass_decryptionkey.bin' must reside");
PrintAndLog("in the working directory. The file should be 16 bytes binary data");
PrintAndLog("");
PrintAndLog("example: hf iclass decrypt f tagdump_12312342343.bin");
PrintAndLog("");
PrintAndLog("OBS! This is pretty stupid implementation, it tries to decrypt every block after block 6. ");
PrintAndLog("Correct behaviour would be to decrypt only the application areas where the key is valid,");
PrintAndLog("which is defined by the configuration block.");
}
static int CmdHFiClassDecrypt(const char *Cmd) {
uint8_t key[16] = { 0 };
if(readKeyfile("iclass_decryptionkey.bin", 16, key))
{
usage_hf_iclass_decrypt();
return 1;
}
PrintAndLog("Decryption file found... ");
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h') {
usage_hf_iclass_decrypt();
return 0;
}
//Open the tagdump-file
FILE *f;
char filename[FILE_PATH_SIZE];
if(opt == 'f' && param_getstr(Cmd, 1, filename, sizeof(filename)) > 0) {
f = fopen(filename, "rb");
if ( f == NULL ) {
PrintAndLog("Could not find file %s", filename);
return 1;
}
} else {
usage_hf_iclass_decrypt();
return 0;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
uint8_t enc_dump[8] = {0};
uint8_t *decrypted = malloc(fsize);
mbedtls_des3_context ctx = { {0} };
mbedtls_des3_set2key_dec( &ctx, key);
size_t bytes_read = fread(enc_dump, 1, 8, f);
//Use the first block (CSN) for filename
char outfilename[FILE_PATH_SIZE] = { 0 };
snprintf(outfilename,FILE_PATH_SIZE,"iclass_tagdump-%02x%02x%02x%02x%02x%02x%02x%02x-decrypted",
enc_dump[0],enc_dump[1],enc_dump[2],enc_dump[3],
enc_dump[4],enc_dump[5],enc_dump[6],enc_dump[7]);
size_t blocknum =0;
while(bytes_read == 8)
{
if(blocknum < 7)
{
memcpy(decrypted+(blocknum*8), enc_dump, 8);
}else{
mbedtls_des3_crypt_ecb(&ctx, enc_dump,decrypted +(blocknum*8) );
}
printvar("decrypted block", decrypted +(blocknum*8), 8);
bytes_read = fread(enc_dump, 1, 8, f);
blocknum++;
}
fclose(f);
saveFile(outfilename,"bin", decrypted, blocknum*8);
free(decrypted);
return 0;
}
static void usage_hf_iclass_encrypt(void) {
PrintAndLog("Usage: hf iclass encrypt <BlockData>");
PrintAndLog("");
PrintAndLog("OBS! In order to use this function, the file 'iclass_decryptionkey.bin' must reside");
PrintAndLog("in the working directory. The file should be 16 bytes binary data");
PrintAndLog("");
PrintAndLog("example: hf iclass encrypt 0102030405060708");
PrintAndLog("");
}
static int iClassEncryptBlkData(uint8_t *blkData) {
uint8_t key[16] = { 0 };
if(readKeyfile("iclass_decryptionkey.bin", 16, key))
{
usage_hf_iclass_encrypt();
return 1;
}
PrintAndLog("Decryption file found... ");
uint8_t encryptedData[16];
uint8_t *encrypted = encryptedData;
mbedtls_des3_context ctx = { {0} };
mbedtls_des3_set2key_enc( &ctx, key);
mbedtls_des3_crypt_ecb(&ctx, blkData,encrypted);
//printvar("decrypted block", decrypted, 8);
memcpy(blkData,encrypted,8);
return 1;
}
static int CmdHFiClassEncryptBlk(const char *Cmd) {
uint8_t blkData[8] = {0};
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h') {
usage_hf_iclass_encrypt();
return 0;
}
//get the bytes to encrypt
if (param_gethex(Cmd, 0, blkData, 16)) {
PrintAndLog("BlockData must include 16 HEX symbols");
return 0;
}
if (!iClassEncryptBlkData(blkData)) return 0;
printvar("encrypted block", blkData, 8);
return 1;
}
static void Calc_wb_mac(uint8_t blockno, uint8_t *data, uint8_t *div_key, uint8_t MAC[4]) {
uint8_t WB[9];
WB[0] = blockno;
memcpy(WB+1, data, 8);
doMAC_N(WB, sizeof(WB), div_key, MAC);
//printf("Cal wb mac block [%02x][%02x%02x%02x%02x%02x%02x%02x%02x] : MAC [%02x%02x%02x%02x]",WB[0],WB[1],WB[2],WB[3],WB[4],WB[5],WB[6],WB[7],WB[8],MAC[0],MAC[1],MAC[2],MAC[3]);
}
static bool iClass_select(uint8_t *CSN, bool verbose, bool cleartrace, bool init) {
UsbCommand c = {CMD_READER_ICLASS, {FLAG_ICLASS_READER_CSN}};
if (init) c.arg[0] |= FLAG_ICLASS_READER_INIT;
if (cleartrace) c.arg[0] |= FLAG_ICLASS_READER_CLEARTRACE;
UsbCommand resp;
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLog("Command execute timeout");
return false;
}
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
if (isOK & FLAG_ICLASS_READER_CSN) {
memcpy(CSN, data, 8);
if (verbose) PrintAndLog("CSN: %s", sprint_hex(CSN, 8));
} else {
PrintAndLog("Failed to select card! Aborting");
return false;
}
return true;
}
static void HFiClassCalcDivKey(uint8_t *CSN, uint8_t *KEY, uint8_t *div_key, bool elite){
uint8_t keytable[128] = {0};
uint8_t key_index[8] = {0};
if (elite) {
uint8_t key_sel[8] = { 0 };
uint8_t key_sel_p[8] = { 0 };
hash2(KEY, keytable);
hash1(CSN, key_index);
for(uint8_t i = 0; i < 8 ; i++)
key_sel[i] = keytable[key_index[i]] & 0xFF;
//Permute from iclass format to standard format
permutekey_rev(key_sel, key_sel_p);
diversifyKey(CSN, key_sel_p, div_key);
} else {
diversifyKey(CSN, KEY, div_key);
}
}
static bool iClass_authenticate(uint8_t *CSN, uint8_t *KEY, uint8_t *MAC, uint8_t *div_key, bool use_credit_key, bool elite, bool rawkey, bool replay, bool verbose) {
//get div_key
if (rawkey || replay)
memcpy(div_key, KEY, 8);
else
HFiClassCalcDivKey(CSN, KEY, div_key, elite);
char keytypetext[23] = "legacy diversified key";
if (rawkey) {
strcpy(keytypetext, "raw key");
} else if (replay) {
strcpy(keytypetext, "replayed NR/MAC");
} else if (elite) {
strcpy(keytypetext, "Elite diversified key");
}
if (verbose) PrintAndLog("Authenticating with %s: %s", keytypetext, sprint_hex(div_key, 8));
UsbCommand resp;
UsbCommand d = {CMD_ICLASS_READCHECK, {2, use_credit_key, 0}};
clearCommandBuffer();
SendCommand(&d);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
if (verbose) PrintAndLog("Auth Command (READCHECK[2]) execute timeout");
return false;
}
bool isOK = resp.arg[0];
if (!isOK) {
if (verbose) PrintAndLog("Couldn't get Card Challenge");
return false;
}
if (replay) {
memcpy(MAC, KEY+4, 4);
} else {
uint8_t CCNR[12];
memcpy(CCNR, resp.d.asBytes, 8);
memset(CCNR+8, 0x00, 4); // default NR = {0, 0, 0, 0}
doMAC(CCNR, div_key, MAC);
}
d.cmd = CMD_ICLASS_CHECK;
if (replay) {
memcpy(d.d.asBytes, KEY, 8);
} else {
memset(d.d.asBytes, 0x00, 4); // default NR = {0, 0, 0, 0}
memcpy(d.d.asBytes+4, MAC, 4);
}
clearCommandBuffer();
SendCommand(&d);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
if (verbose) PrintAndLog("Auth Command (CHECK) execute timeout");
return false;
}
isOK = resp.arg[0];
if (!isOK) {
if (verbose) PrintAndLog("Authentication error");
return false;
}
return true;
}
static void usage_hf_iclass_dump(void) {
PrintAndLog("Usage: hf iclass dump f <fileName> k <Key> c <CreditKey> e|r|n\n");
PrintAndLog("Options:");
PrintAndLog(" f <filename> : specify a filename to save dump to");
PrintAndLog(" k <Key> : *Debit Key (AA1) as 16 hex symbols (8 bytes) or 1 hex to select key from memory");
PrintAndLog(" c <CreditKey>: Credit Key (AA2) as 16 hex symbols (8 bytes) or 1 hex to select key from memory");
PrintAndLog(" e : If 'e' is specified, the keys are interpreted as Elite");
PrintAndLog(" Custom Keys (KCus), which can be obtained via reader-attack");
PrintAndLog(" See 'hf iclass sim 2'. This key should be on iclass-format");
PrintAndLog(" r : If 'r' is specified, keys are interpreted as raw blocks 3/4");
PrintAndLog(" n : If 'n' is specified, keys are interpreted as NR/MAC pairs which can be obtained by 'hf iclass snoop'");
PrintAndLog(" NOTE: * = required");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass dump k 001122334455667B");
PrintAndLog(" hf iclass dump k AAAAAAAAAAAAAAAA c 001122334455667B");
PrintAndLog(" hf iclass dump k AAAAAAAAAAAAAAAA e");
}
static void printIclassDumpContents(uint8_t *iclass_dump, uint8_t startblock, uint8_t endblock, size_t filesize) {
uint8_t mem_config;
memcpy(&mem_config, iclass_dump + 13,1);
uint8_t maxmemcount;
uint8_t filemaxblock = filesize / 8;
if (mem_config & 0x80)
maxmemcount = 255;
else
maxmemcount = 31;
//PrintAndLog ("endblock: %d, filesize: %d, maxmemcount: %d, filemaxblock: %d", endblock,filesize, maxmemcount, filemaxblock);
if (startblock == 0)
startblock = 6;
if ((endblock > maxmemcount) || (endblock == 0))
endblock = maxmemcount;
// remember endblock need to relate to zero-index arrays.
if (endblock > filemaxblock-1)
endblock = filemaxblock;
int i = startblock;
printf("------+--+-------------------------+\n");
while (i <= endblock) {
uint8_t *blk = iclass_dump + (i * 8);
printf("Block |%02X| %s|\n", i, sprint_hex(blk, 8) );
i++;
}
printf("------+--+-------------------------+\n");
}
static int CmdHFiClassReader_Dump(const char *Cmd) {
uint8_t MAC[4] = {0x00,0x00,0x00,0x00};
uint8_t div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t c_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t blockno = 0;
uint8_t AA1_maxBlk = 0;
uint8_t maxBlk = 31;
uint8_t app_areas = 1;
uint8_t kb = 2;
uint8_t KEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CreditKEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
uint8_t fileNameLen = 0;
char filename[FILE_PATH_SIZE]={0};
char tempStr[50] = {0};
bool have_debit_key = false;
bool have_credit_key = false;
bool use_credit_key = false;
bool elite = false;
bool rawkey = false;
bool NRMAC_replay = false;
bool errors = false;
bool verbose = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch(param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
usage_hf_iclass_dump();
return 0;
case 'c':
case 'C':
have_credit_key = true;
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, CreditKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(CreditKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLog("No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'k':
case 'K':
have_debit_key = true;
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Debit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Debit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
case 'n':
case 'N':
NRMAC_replay = true;
cmdp++;
break;
case 'v':
case 'V':
verbose = true;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (elite + rawkey + NRMAC_replay > 1) {
PrintAndLog("You cannot combine the 'e', 'r', and 'n' options\n");
errors = true;
}
if (errors || cmdp < 2) {
usage_hf_iclass_dump();
return 0;
}
// if only credit key is given: try for AA1 as well (not for iclass but for some picopass this will work)
if (!have_debit_key && have_credit_key) {
memcpy(KEY, CreditKEY, 8);
}
// clear trace and get first 3 blocks
UsbCommand c = {CMD_READER_ICLASS, {FLAG_ICLASS_READER_INIT | FLAG_ICLASS_READER_CLEARTRACE | FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_CC}};
UsbCommand resp;
uint8_t tag_data[256*8];
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLog("Command execute timeout");
DropField();
return 0;
}
uint8_t readStatus = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
uint8_t status_mask = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_CC;
if (readStatus != status_mask) {
PrintAndLog("No tag found ...");
return 0;
} else {
memcpy(tag_data, data, 8*3);
if (verbose) PrintAndLog("CSN: %s", sprint_hex(tag_data, 8));
AA1_maxBlk = data[8];
getMemConfig(data[13], data[12], &maxBlk, &app_areas, &kb);
// large memory - not able to dump pages currently
if (AA1_maxBlk > maxBlk) AA1_maxBlk = maxBlk;
}
// authenticate with debit key (or credit key if we have no debit key) and get div_key - later store in dump block 3
if (!iClass_authenticate(tag_data, KEY, MAC, div_key, false, elite, rawkey, NRMAC_replay, verbose)) {
DropField();
return 0;
}
// read AA1
UsbCommand w = {CMD_ICLASS_DUMP};
uint32_t blocksRead = 0;
for (blockno = 3; blockno <= AA1_maxBlk; blockno += blocksRead) {
w.arg[0] = blockno;
w.arg[1] = AA1_maxBlk - blockno + 1;
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLog("Command execute time-out 1");
DropField();
return 1;
}
blocksRead = resp.arg[1];
bool isOK = resp.arg[0];
if (!isOK) {
PrintAndLog("Reading AA1 block failed");
DropField();
return 0;
}
memcpy(tag_data + blockno*8, resp.d.asBytes, blocksRead*8);
}
// do we still need to read more blocks (AA2 enabled)?
if (have_credit_key && maxBlk > AA1_maxBlk) {
if (!use_credit_key) {
//turn off hf field before authenticating with different key
DropField();
// AA2 authenticate credit key and git c_div_key - later store in dump block 4
uint8_t CSN[8];
if (!iClass_select(CSN, verbose, false, true) || !iClass_authenticate(CSN, CreditKEY, MAC, c_div_key, true, false, false, NRMAC_replay, verbose)){
DropField();
return 0;
}
}
for ( ; blockno <= maxBlk; blockno += blocksRead) {
w.arg[0] = blockno;
w.arg[1] = maxBlk - blockno + 1;
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLog("Command execute time-out 1");
DropField();
return 1;
}
blocksRead = resp.arg[1];
bool isOK = resp.arg[0];
if (!isOK) {
PrintAndLog("Reading AA2 block failed");
DropField();
return 0;
}
memcpy(tag_data + blockno*8, resp.d.asBytes, blocksRead*8);
}
}
DropField();
// add diversified keys to dump
if (have_debit_key) {
memcpy(tag_data + 3*8, div_key, 8);
} else {
memset(tag_data + 3*8, 0xff, 8);
}
if (have_credit_key) {
memcpy(tag_data + 4*8, c_div_key, 8);
} else {
memset(tag_data + 4*8, 0xff, 8);
}
// print the dump
printf("------+--+-------------------------+\n");
printf("CSN |00| %s|\n",sprint_hex(tag_data, 8));
printIclassDumpContents(tag_data, 1, blockno-1, blockno*8);
if (filename[0] == 0) {
snprintf(filename, FILE_PATH_SIZE,"iclass_tagdump-%02x%02x%02x%02x%02x%02x%02x%02x",
tag_data[0],tag_data[1],tag_data[2],tag_data[3],
tag_data[4],tag_data[5],tag_data[6],tag_data[7]);
}
// save the dump to .bin file
PrintAndLog("Saving dump file - %d blocks read", blockno);
saveFile(filename, "bin", tag_data, blockno*8);
return 1;
}
static int WriteBlock(uint8_t blockno, uint8_t *bldata, uint8_t *KEY, bool use_credit_key, bool elite, bool rawkey, bool NRMAC_replay, bool verbose) {
uint8_t MAC[4] = {0x00,0x00,0x00,0x00};
uint8_t div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CSN[8];
if (!iClass_select(CSN, verbose, true, true) || !iClass_authenticate(CSN, KEY, MAC, div_key, use_credit_key, elite, rawkey, NRMAC_replay, verbose)) {
DropField();
return 0;
}
UsbCommand resp;
Calc_wb_mac(blockno, bldata, div_key, MAC);
UsbCommand w = {CMD_ICLASS_WRITEBLOCK, {blockno}};
memcpy(w.d.asBytes, bldata, 8);
memcpy(w.d.asBytes + 8, MAC, 4);
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLog("Write Command execute timeout");
DropField();
return 0;
}
bool isOK = resp.arg[0];
if (!isOK) {
PrintAndLog("Write Block Failed");
DropField();
return 0;
}
PrintAndLog("Write Block Successful");
return 1;
}
static void usage_hf_iclass_writeblock(void) {
PrintAndLog("Options:");
PrintAndLog(" b <Block> : The block number as 2 hex symbols");
PrintAndLog(" d <data> : Set the Data to write as 16 hex symbols");
PrintAndLog(" k <Key> : Access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLog(" c : If 'c' is specified, the key set is assumed to be the credit key\n");
PrintAndLog(" e : If 'e' is specified, elite computations applied to key");
PrintAndLog(" r : If 'r' is specified, no computations applied to key");
PrintAndLog(" o : override protection and allow modification of blocks 0...4");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass writeblk b 0A d AAAAAAAAAAAAAAAA k 001122334455667B");
PrintAndLog(" hf iclass writeblk b 1B d AAAAAAAAAAAAAAAA k 001122334455667B c");
PrintAndLog(" hf iclass writeblk b 03 d AAAAAAAAAAAAAAAA k 001122334455667B c o");
}
static int CmdHFiClass_WriteBlock(const char *Cmd) {
uint8_t blockno = 0;
uint8_t bldata[8] = {0};
uint8_t KEY[8] = {0};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool use_credit_key = false;
bool elite = false;
bool rawkey = false;
bool override_protection = false;
bool errors = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch(param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
usage_hf_iclass_writeblock();
return 0;
case 'b':
case 'B':
if (param_gethex(Cmd, cmdp+1, &blockno, 2)) {
PrintAndLog("Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'c':
case 'C':
use_credit_key = true;
cmdp++;
break;
case 'd':
case 'D':
if (param_gethex(Cmd, cmdp+1, bldata, 16)) {
PrintAndLog("Data must include 16 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'k':
case 'K':
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
case 'o':
case 'O':
override_protection = true;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if (errors) {
usage_hf_iclass_writeblock();
return 0;
}
}
if (elite && rawkey) {
PrintAndLog("You cannot combine the 'e' and 'r' options\n");
errors = true;
}
if (cmdp < 6) {
usage_hf_iclass_writeblock();
return 0;
}
if (blockno < 5) {
if (override_protection) {
PrintAndLog("Info: modifying keys, e-purse or configuration block.");
} else {
PrintAndLog("You are going to modify keys, e-purse or configuration block.");
PrintAndLog("You must add the 'o' (override) option to confirm that you know what you are doing");
return 0;
}
}
int ans = WriteBlock(blockno, bldata, KEY, use_credit_key, elite, rawkey, false, true);
DropField();
return ans;
}
static void usage_hf_iclass_clone(void) {
PrintAndLog("Usage: hf iclass clone f <tagfile.bin> b <first block> l <last block> k <KEY> c e|r o");
PrintAndLog("Options:");
PrintAndLog(" f <filename>: specify a filename to clone from");
PrintAndLog(" b <Block> : The first block to clone as 2 hex symbols");
PrintAndLog(" l <Last Blk>: The last block to clone as 2 hex symbols");
PrintAndLog(" k <Key> : Access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLog(" c : If 'c' is specified, the key set is assumed to be the credit key\n");
PrintAndLog(" e : If 'e' is specified, elite computations applied to key");
PrintAndLog(" r : If 'r' is specified, no computations applied to key");
PrintAndLog(" o : override protection and allow modification of target blocks 0...4");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass clone f iclass_tagdump-121345.bin b 06 l 1A k 1122334455667788 e");
PrintAndLog(" hf iclass clone f iclass_tagdump-121345.bin b 05 l 19 k 0");
PrintAndLog(" hf iclass clone f iclass_tagdump-121345.bin b 06 l 19 k 0 e");
PrintAndLog(" hf iclass clone f iclass_tagdump-121345.bin b 06 l 19 k 0 e");
PrintAndLog(" hf iclass clone f iclass_tagdump-121345.bin b 03 l 19 k 0 e o");
}
static int CmdHFiClassCloneTag(const char *Cmd) {
char filename[FILE_PATH_SIZE] = {0};
char tempStr[50]={0};
uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t fileNameLen = 0;
uint8_t startblock = 0;
uint8_t endblock = 0;
uint8_t dataLen = 0;
bool use_credit_key = false;
bool elite = false;
bool rawkey = false;
bool override_protection = false;
bool errors = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
usage_hf_iclass_clone();
return 0;
case 'b':
case 'B':
if (param_gethex(Cmd, cmdp+1, &startblock, 2)) {
PrintAndLog("Start Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'c':
case 'C':
use_credit_key = true;
cmdp++;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLog("No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'k':
case 'K':
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'l':
case 'L':
if (param_gethex(Cmd, cmdp+1, &endblock, 2)) {
PrintAndLog("Last Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
case 'o':
case 'O':
override_protection = true;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if (errors) {
usage_hf_iclass_clone();
return 0;
}
}
if (cmdp < 8) {
usage_hf_iclass_clone();
return 0;
}
if (startblock < 5) {
if (override_protection) {
PrintAndLog("Info: modifying keys, e-purse or configuration block.");
} else {
PrintAndLog("You are going to modify keys, e-purse or configuration block.");
PrintAndLog("You must add the 'o' (override) option to confirm that you know what you are doing");
return 0;
}
}
if ((endblock - startblock + 1) * 12 > USB_CMD_DATA_SIZE) {
PrintAndLog("Trying to write too many blocks at once. Max: %d", USB_CMD_DATA_SIZE/12);
}
// file handling and reading
FILE *f;
f = fopen(filename,"rb");
if (!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 1;
}
uint8_t tag_data[USB_CMD_DATA_SIZE/12][8];
fseek(f, startblock*8, SEEK_SET);
for (int i = 0; i < endblock - startblock + 1; i++) {
if (fread(&tag_data[i], 1, 8, f) == 0 ) {
PrintAndLog("File reading error.");
fclose(f);
return 2;
}
}
uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00};
uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t CSN[8];
if (!iClass_select(CSN, true, true, true) || !iClass_authenticate(CSN, KEY, MAC, div_key, use_credit_key, elite, rawkey, false, true)) {
DropField();
return 0;
}
UsbCommand w = {CMD_ICLASS_CLONE, {startblock, endblock}};
uint8_t *ptr;
// calculate MAC for every block we will write
for (int i = 0; i < endblock - startblock + 1; i++) {
Calc_wb_mac(startblock + i, tag_data[i], div_key, MAC);
ptr = w.d.asBytes + i * 12;
memcpy(ptr, tag_data[i], 8);
memcpy(ptr + 8, MAC, 4);
}
uint8_t p[12];
PrintAndLog("Cloning");
for (int i = 0; i < endblock - startblock + 1; i++){
memcpy(p, w.d.asBytes + (i * 12), 12);
PrintAndLog("Block |%02x| %02x%02x%02x%02x%02x%02x%02x%02x | MAC |%02x%02x%02x%02x|",
i + startblock, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11]);
}
UsbCommand resp;
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLog("Command execute timeout");
DropField();
return 0;
}
DropField();
return 1;
}
static int ReadBlock(uint8_t *KEY, uint8_t blockno, uint8_t keyType, bool elite, bool rawkey, bool NRMAC_replay, bool verbose, bool auth) {
uint8_t MAC[4]={0x00,0x00,0x00,0x00};
uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CSN[8];
if (!iClass_select(CSN, verbose, true, true)) {
DropField();
return 0;
}
if (auth) {
if (!iClass_authenticate(CSN, KEY, MAC, div_key, (keyType==0x18), elite, rawkey, NRMAC_replay, verbose)) {
DropField();
return 0;
}
}
UsbCommand resp;
UsbCommand w = {CMD_ICLASS_READBLOCK, {blockno}};
clearCommandBuffer();
SendCommand(&w);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) {
PrintAndLog("Command execute timeout");
DropField();
return 0;
}
bool isOK = resp.arg[0];
if (!isOK) {
PrintAndLog("Read Block Failed");
DropField();
return 0;
}
//data read is stored in: resp.d.asBytes[0-15]
if (verbose)
PrintAndLog("Block %02X: %s\n",blockno, sprint_hex(resp.d.asBytes,8));
return 1;
}
static void usage_hf_iclass_readblock(void) {
PrintAndLog("Usage: hf iclass readblk b <Block> k <Key> [c] [e|r|n]\n");
PrintAndLog("Options:");
PrintAndLog(" b <Block> : The block number as 2 hex symbols");
PrintAndLog(" k <Key> : Access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLog(" c : If 'c' is specified, the key set is assumed to be the credit key\n");
PrintAndLog(" e : If 'e' is specified, elite computations applied to key");
PrintAndLog(" r : If 'r' is specified, no computations applied to key");
PrintAndLog(" n : If 'n' is specified, <Key> specifies a NR/MAC pair which can be obtained by 'hf iclass snoop'");
PrintAndLog("Samples:");
PrintAndLog(" hf iclass readblk b 06 k 0011223344556677");
PrintAndLog(" hf iclass readblk b 1B k 0011223344556677 c");
PrintAndLog(" hf iclass readblk b 0A k 0");
}
static int CmdHFiClass_ReadBlock(const char *Cmd) {
uint8_t blockno=0;
uint8_t keyType = 0x88; //debit key
uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool elite = false;
bool rawkey = false;
bool NRMAC_replay = false;
bool errors = false;
bool auth = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
usage_hf_iclass_readblock();
return 0;
case 'b':
case 'B':
if (param_gethex(Cmd, cmdp+1, &blockno, 2)) {
PrintAndLog("Block No must include 2 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'c':
case 'C':
keyType = 0x18;
cmdp++;
break;
case 'e':
case 'E':
elite = true;
cmdp++;
break;
case 'k':
case 'K':
auth = true;
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
case 'R':
rawkey = true;
cmdp++;
break;
case 'n':
case 'N':
NRMAC_replay = true;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (elite + rawkey + NRMAC_replay > 1) {
PrintAndLog("You cannot combine the 'e', 'r', and 'n' options\n");
errors = true;
}
if (errors) {
usage_hf_iclass_readblock();
return 0;
}
if (cmdp < 2) {
usage_hf_iclass_readblock();
return 0;
}
if (!auth)
PrintAndLog("warning: no authentication used with read, only a few specific blocks can be read accurately without authentication.");
return ReadBlock(KEY, blockno, keyType, elite, rawkey, NRMAC_replay, true, auth);
}
static int CmdHFiClass_loclass(const char *Cmd) {
char opt = param_getchar(Cmd, 0);
if (strlen(Cmd)<1 || opt == 'h') {
PrintAndLog("Usage: hf iclass loclass [options]");
PrintAndLog("Options:");
PrintAndLog("h Show this help");
PrintAndLog("t Perform self-test");
PrintAndLog("f <filename> Bruteforce iclass dumpfile");
PrintAndLog(" An iclass dumpfile is assumed to consist of an arbitrary number of");
PrintAndLog(" malicious CSNs, and their protocol responses");
PrintAndLog(" The binary format of the file is expected to be as follows: ");
PrintAndLog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLog(" <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLog(" ... totalling N*24 bytes");
return 0;
}
char fileName[255] = {0};
if(opt == 'f') {
if(param_getstr(Cmd, 1, fileName, sizeof(fileName)) > 0) {
return bruteforceFileNoKeys(fileName);
} else {
PrintAndLog("You must specify a filename");
}
} else if(opt == 't') {
int errors = testCipherUtils();
errors += testMAC();
errors += doKeyTests(0);
errors += testElite();
if(errors) {
prnlog("OBS! There were errors!!!");
}
return errors;
}
return 0;
}
static void usage_hf_iclass_readtagfile() {
PrintAndLog("Usage: hf iclass readtagfile <filename> [startblock] [endblock]");
}
static int CmdHFiClassReadTagFile(const char *Cmd) {
int startblock = 0;
int endblock = 0;
char tempnum[5];
FILE *f;
char filename[FILE_PATH_SIZE];
if (param_getstr(Cmd, 0, filename, sizeof(filename)) < 1) {
usage_hf_iclass_readtagfile();
return 0;
}
if (param_getstr(Cmd, 1, tempnum, sizeof(tempnum)) < 1)
startblock = 0;
else
sscanf(tempnum,"%d",&startblock);
if (param_getstr(Cmd,2, tempnum, sizeof(tempnum)) < 1)
endblock = 0;
else
sscanf(tempnum,"%d",&endblock);
// file handling and reading
f = fopen(filename,"rb");
if(!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 1;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if ( fsize < 0 ) {
PrintAndLog("Error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = malloc(fsize);
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
uint8_t *csn = dump;
printf("------+--+-------------------------+\n");
printf("CSN |00| %s|\n", sprint_hex(csn, 8) );
// printIclassDumpInfo(dump);
printIclassDumpContents(dump,startblock,endblock,bytes_read);
free(dump);
return 0;
}
/*
uint64_t xorcheck(uint64_t sdiv,uint64_t hdiv) {
uint64_t new_div = 0x00;
new_div ^= sdiv;
new_div ^= hdiv;
return new_div;
}
uint64_t hexarray_to_uint64(uint8_t *key) {
char temp[17];
uint64_t uint_key;
for (int i = 0;i < 8;i++)
sprintf(&temp[(i *2)],"%02X",key[i]);
temp[16] = '\0';
if (sscanf(temp,"%016" SCNx64,&uint_key) < 1)
return 0;
return uint_key;
}
*/
//when told CSN, oldkey, newkey, if new key is elite (elite), and if old key was elite (oldElite)
//calculate and return xor_div_key (ready for a key write command)
//print all div_keys if verbose
static void HFiClassCalcNewKey(uint8_t *CSN, uint8_t *OLDKEY, uint8_t *NEWKEY, uint8_t *xor_div_key, bool elite, bool oldElite, bool verbose){
uint8_t old_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t new_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
//get old div key
HFiClassCalcDivKey(CSN, OLDKEY, old_div_key, oldElite);
//get new div key
HFiClassCalcDivKey(CSN, NEWKEY, new_div_key, elite);
for (uint8_t i = 0; i < sizeof(old_div_key); i++){
xor_div_key[i] = old_div_key[i] ^ new_div_key[i];
}
if (verbose) {
printf("Old Div Key : %s\n",sprint_hex(old_div_key,8));
printf("New Div Key : %s\n",sprint_hex(new_div_key,8));
printf("Xor Div Key : %s\n",sprint_hex(xor_div_key,8));
}
}
static void usage_hf_iclass_calc_newkey(void) {
PrintAndLog("HELP : Manage iClass Keys in client memory:\n");
PrintAndLog("Usage: hf iclass calc_newkey o <Old key> n <New key> s [csn] e");
PrintAndLog(" Options:");
PrintAndLog(" o <oldkey> : *specify a key as 16 hex symbols or a key number as 1 symbol");
PrintAndLog(" n <newkey> : *specify a key as 16 hex symbols or a key number as 1 symbol");
PrintAndLog(" s <csn> : specify a card Serial number to diversify the key (if omitted will attempt to read a csn)");
PrintAndLog(" e : specify new key as elite calc");
PrintAndLog(" ee : specify old and new key as elite calc");
PrintAndLog("Samples:");
PrintAndLog(" e key to e key given csn : hf iclass calcnewkey o 1122334455667788 n 2233445566778899 s deadbeafdeadbeaf ee");
PrintAndLog(" std key to e key read csn: hf iclass calcnewkey o 1122334455667788 n 2233445566778899 e");
PrintAndLog(" std to std read csn : hf iclass calcnewkey o 1122334455667788 n 2233445566778899");
PrintAndLog("NOTE: * = required\n");
}
static int CmdHFiClassCalcNewKey(const char *Cmd) {
uint8_t OLDKEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t NEWKEY[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t xor_div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CSN[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool givenCSN = false;
bool oldElite = false;
bool elite = false;
bool errors = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch(param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
usage_hf_iclass_calc_newkey();
return 0;
case 'e':
case 'E':
dataLen = param_getstr(Cmd, cmdp, tempStr, sizeof(tempStr));
if (dataLen==2)
oldElite = true;
elite = true;
cmdp++;
break;
case 'n':
case 'N':
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, NEWKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(NEWKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: NewKey Nbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: NewKey is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'o':
case 'O':
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, OLDKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(OLDKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLog("\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLog("\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 's':
case 'S':
givenCSN = true;
if (param_gethex(Cmd, cmdp+1, CSN, 16)) {
usage_hf_iclass_calc_newkey();
return 0;
}
cmdp += 2;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if (errors) {
usage_hf_iclass_calc_newkey();
return 0;
}
}
if (cmdp < 4) {
usage_hf_iclass_calc_newkey();
return 0;
}
if (!givenCSN)
if (!iClass_select(CSN, true, true, true)) {
DropField();
return 0;
}
DropField();
HFiClassCalcNewKey(CSN, OLDKEY, NEWKEY, xor_div_key, elite, oldElite, true);
return 0;
}
static int loadKeys(char *filename) {
FILE *f;
f = fopen(filename,"rb");
if(!f) {
PrintAndLog("Failed to read from file '%s'", filename);
return 0;
}
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
fseek(f, 0, SEEK_SET);
if ( fsize < 0 ) {
PrintAndLog("Error, when getting filesize");
fclose(f);
return 1;
}
uint8_t *dump = malloc(fsize);
size_t bytes_read = fread(dump, 1, fsize, f);
fclose(f);
if (bytes_read > ICLASS_KEYS_MAX * 8){
PrintAndLog("File is too long to load - bytes: %u", bytes_read);
free(dump);
return 0;
}
uint8_t i = 0;
for (; i < bytes_read/8; i++){
memcpy(iClass_Key_Table[i],dump+(i*8),8);
}
free(dump);
PrintAndLog("%u keys loaded", i);
return 1;
}
static int saveKeys(char *filename) {
FILE *f;
f = fopen(filename,"wb");
if (f == NULL) {
printf("error opening file %s\n",filename);
return 0;
}
for (uint8_t i = 0; i < ICLASS_KEYS_MAX; i++){
if (fwrite(iClass_Key_Table[i],8,1,f) != 1){
PrintAndLog("save key failed to write to file: %s", filename);
break;
}
}
fclose(f);
return 0;
}
static int printKeys(void) {
PrintAndLog("");
for (uint8_t i = 0; i < ICLASS_KEYS_MAX; i++){
PrintAndLog("%u: %s",i,sprint_hex(iClass_Key_Table[i],8));
}
PrintAndLog("");
return 0;
}
static void usage_hf_iclass_managekeys(void) {
PrintAndLog("HELP : Manage iClass Keys in client memory:\n");
PrintAndLog("Usage: hf iclass managekeys n [keynbr] k [key] f [filename] s l p\n");
PrintAndLog(" Options:");
PrintAndLog(" n <keynbr> : specify the keyNbr to set in memory");
PrintAndLog(" k <key> : set a key in memory");
PrintAndLog(" f <filename>: specify a filename to use with load or save operations");
PrintAndLog(" s : save keys in memory to file specified by filename");
PrintAndLog(" l : load keys to memory from file specified by filename");
PrintAndLog(" p : print keys loaded into memory\n");
PrintAndLog("Samples:");
PrintAndLog(" set key : hf iclass managekeys n 0 k 1122334455667788");
PrintAndLog(" save key file: hf iclass managekeys f mykeys.bin s");
PrintAndLog(" load key file: hf iclass managekeys f mykeys.bin l");
PrintAndLog(" print keys : hf iclass managekeys p\n");
}
static int CmdHFiClassManageKeys(const char *Cmd) {
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
uint8_t KEY[8] = {0};
char filename[FILE_PATH_SIZE];
uint8_t fileNameLen = 0;
bool errors = false;
uint8_t operation = 0;
char tempStr[20];
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00) {
switch(param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
usage_hf_iclass_managekeys();
return 0;
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLog("No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'n':
case 'N':
keyNbr = param_get8(Cmd, cmdp+1);
if (keyNbr >= ICLASS_KEYS_MAX) {
PrintAndLog("Invalid block number");
errors = true;
}
cmdp += 2;
break;
case 'k':
case 'K':
operation += 3; //set key
dataLen = param_getstr(Cmd, cmdp+1, tempStr, sizeof(tempStr));
if (dataLen == 16) { //ul-c or ev1/ntag key length
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else {
PrintAndLog("\nERROR: Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'p':
case 'P':
operation += 4; //print keys in memory
cmdp++;
break;
case 'l':
case 'L':
operation += 5; //load keys from file
cmdp++;
break;
case 's':
case 'S':
operation += 6; //save keys to file
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if (errors) {
usage_hf_iclass_managekeys();
return 0;
}
}
if (operation == 0){
PrintAndLog("no operation specified (load, save, or print)\n");
usage_hf_iclass_managekeys();
return 0;
}
if (operation > 6){
PrintAndLog("Too many operations specified\n");
usage_hf_iclass_managekeys();
return 0;
}
if (operation > 4 && fileNameLen == 0){
PrintAndLog("You must enter a filename when loading or saving\n");
usage_hf_iclass_managekeys();
return 0;
}
switch (operation){
case 3: memcpy(iClass_Key_Table[keyNbr], KEY, 8); return 1;
case 4: return printKeys();
case 5: return loadKeys(filename);
case 6: return saveKeys(filename);
break;
}
return 0;
}
static int CmdHFiClassCheckKeys(const char *Cmd) {
uint8_t mac[4] = {0x00,0x00,0x00,0x00};
uint8_t key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t div_key[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
// elite key, raw key, standard key
bool use_elite = false;
bool use_raw = false;
bool found_debit = false;
bool found_credit = false;
bool errors = false;
uint8_t cmdp = 0x00;
FILE *f;
char filename[FILE_PATH_SIZE] = {0};
uint8_t fileNameLen = 0;
char buf[17];
uint8_t *keyBlock = NULL, *p;
int keycnt = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
usage_hf_iclass_chk();
return 0;
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLog("No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'e':
case 'E':
use_elite = true;
cmdp++;
break;
case 'r':
case 'R':
use_raw = true;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors) {
usage_hf_iclass_chk();
return 0;
}
if (!(f = fopen(filename , "r"))) {
PrintAndLog("File %s not found or locked.", filename);
return 1;
}
while (fgets(buf, sizeof(buf), f)) {
if (strlen(buf) < 16 || buf[15] == '\n')
continue;
while (fgetc(f) != '\n' && !feof(f)) ; //goto next line
if (buf[0] == '#') continue; //The line start with # is comment, skip
if (!isxdigit(buf[0])){
PrintAndLog("File content error. '%s' must include 16 HEX symbols", buf);
continue;
}
buf[16] = 0;
p = realloc(keyBlock, 8 * (keycnt + 1));
if (!p) {
PrintAndLog("Cannot allocate memory for default keys");
free(keyBlock);
fclose(f);
return 2;
}
keyBlock = p;
memset(keyBlock + 8 * keycnt, 0, 8);
num_to_bytes(strtoull(buf, NULL, 16), 8, keyBlock + 8 * keycnt);
keycnt++;
memset(buf, 0, sizeof(buf));
}
fclose(f);
PrintAndLog("Loaded %2d keys from %s", keycnt, filename);
uint8_t CSN[8];
if (!iClass_select(CSN, false, true, true)) {
DropField();
return 0;
}
for (uint32_t c = 0; c < keycnt; c++) {
memcpy(key, keyBlock + 8 * c, 8);
// debit key
if (iClass_authenticate(CSN, key, mac, div_key, false, use_elite, use_raw, false, false)) {
PrintAndLog("\n Found AA1 debit key\t\t[%s]", sprint_hex(key, 8));
found_debit = true;
}
// credit key
if (iClass_authenticate(CSN, key, mac, div_key, true, use_elite, use_raw, false, false)) {
PrintAndLog("\n Found AA2 credit key\t\t[%s]", sprint_hex(key, 8));
found_credit = true;
}
// both keys found.
if (found_debit && found_credit)
break;
}
DropField();
free(keyBlock);
PrintAndLog("");
return 0;
}
static void usage_hf_iclass_permutekey(void) {
PrintAndLogEx(NORMAL, "Convert keys from standard NIST to iClass format (and vice versa)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: hf iclass permute [h] [r] <key>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " r reverse convert key from iClass to NIST format");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf iclass permute r 0123456789abcdef");
}
static int CmdHFiClassPermuteKey(const char *Cmd) {
uint8_t key[8] = {0};
uint8_t data[16] = {0};
bool isReverse = false;
int len = sizeof(data);
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) == 0 || cmdp == 'h') {
usage_hf_iclass_permutekey();
return 0;
}
if (cmdp == 'r') {
isReverse = true;
param_gethex_ex(Cmd, 1, data, &len);
} else if (cmdp == 'f') {
param_gethex_ex(Cmd, 1, data, &len);
} else {
param_gethex_ex(Cmd, 0, data, &len);
}
if (len % 2) {
usage_hf_iclass_permutekey();
return 0;
}
len >>= 1;
memcpy(key, data, 8);
if (isReverse) {
// generate_rev(data, len);
uint8_t key_std_format[8] = {0};
permutekey_rev(key, key_std_format);
PrintAndLogEx(SUCCESS, "key in standard NIST format: %s \n", sprint_hex(key_std_format, 8));
// if (mbedtls_des_key_check_key_parity(key_std_format
} else {
// generate(data, len);
uint8_t key_iclass_format[8] = {0};
permutekey(key, key_iclass_format);
PrintAndLogEx(SUCCESS, "key in iClass (permuted) format: %s \n", sprint_hex(key_iclass_format, 8));
}
return 0;
}
static int CmdHelp(const char *Cmd);
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"calcnewkey", CmdHFiClassCalcNewKey, 1, "[options..] Calc Diversified keys (blocks 3 & 4) to write new keys"},
{"chk", CmdHFiClassCheckKeys, 0, " Check keys"},
{"clone", CmdHFiClassCloneTag, 0, "[options..] Authenticate and Clone from iClass bin file"},
{"decrypt", CmdHFiClassDecrypt, 1, "[f <fname>] Decrypt tagdump" },
{"dump", CmdHFiClassReader_Dump, 0, "[options..] Authenticate and Dump iClass tag's AA1 and/or AA2"},
{"eload", CmdHFiClassELoad, 0, "[f <fname>] (experimental) Load data into iClass emulator memory"},
{"encryptblk", CmdHFiClassEncryptBlk, 1, "<BlockData> Encrypt given block data"},
{"list", CmdHFiClassList, 0, " (Deprecated) List iClass history"},
{"loclass", CmdHFiClass_loclass, 1, "[options..] Use loclass to perform bruteforce of reader attack dump"},
{"managekeys", CmdHFiClassManageKeys, 1, "[options..] Manage the keys to use with iClass"},
{"permutekey", CmdHFiClassPermuteKey, 1, " iClass key permutation"},
{"readblk", CmdHFiClass_ReadBlock, 0, "[options..] Authenticate and Read iClass block"},
{"reader", CmdHFiClassReader, 0, " Look for iClass tags until a key or the pm3 button is pressed"},
{"readtagfile", CmdHFiClassReadTagFile, 1, "[options..] Display Content from tagfile"},
{"sim", CmdHFiClassSim, 0, "[options..] Simulate iClass tag"},
{"snoop", CmdHFiClassSnoop, 0, " Eavesdrop iClass communication"},
{"writeblk", CmdHFiClass_WriteBlock, 0, "[options..] Authenticate and Write iClass block"},
{NULL, NULL, 0, NULL}
};
int CmdHFiClass(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}