proxmark3/armsrc/mifarecmd.c
pwpiwi aa8ff592ae
add a specific check function for static nonces (used in 'hf mf nested') (#911)
* add a specific check function for static nonces in 'hf mf nested'
* uses a fixed nr_enc and does all the crypto operations on client
* for all possible keys calculate par_enc and ar_enc and send them to device
* CHANGELOG update
2020-03-16 13:32:00 +01:00

1698 lines
45 KiB
C

//-----------------------------------------------------------------------------
// Merlok - June 2011, 2012
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
// Midnitesnake - Dec 2013
// Andy Davies - Apr 2014
// Iceman - May 2014
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
#include "mifarecmd.h"
#include <stdint.h>
#include "proxmark3.h"
#include "usb_cdc.h"
#include "crapto1/crapto1.h"
#include "iso14443a.h"
#include "BigBuf.h"
#include "mifareutil.h"
#include "apps.h"
#include "protocols.h"
#include "util.h"
#include "parity.h"
#include "crc.h"
#include "fpgaloader.h"
#define HARDNESTED_AUTHENTICATION_TIMEOUT 848 // card times out 1ms after wrong authentication (according to NXP documentation)
#define HARDNESTED_PRE_AUTHENTICATION_LEADTIME 400 // some (non standard) cards need a pause after select before they are ready for first authentication
/*
// the block number for the ISO14443-4 PCB
static uint8_t pcb_blocknum = 0;
// Deselect card by sending a s-block. the crc is precalced for speed
static uint8_t deselect_cmd[] = {0xc2,0xe0,0xb4};
static void OnSuccess(){
pcb_blocknum = 0;
ReaderTransmit(deselect_cmd, 3 , NULL);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
*/
static void OnError(uint8_t reason){
// pcb_blocknum = 0;
// ReaderTransmit(deselect_cmd, 3 , NULL);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK,0,reason,0,0,0);
LED_A_OFF();
}
//-----------------------------------------------------------------------------
// Select, Authenticate, Read a MIFARE tag.
// read block
//-----------------------------------------------------------------------------
void MifareReadBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
{
LED_A_ON();
uint8_t blockNo = arg0;
uint8_t keyType = arg1;
uint64_t ui64Key = 0;
ui64Key = bytes_to_num(datain, 6);
byte_t isOK = 0;
byte_t dataoutbuf[16];
uint8_t uid[10];
uint32_t cuid;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
while (true) {
if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
break;
};
if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, NULL)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Auth error");
break;
};
if(mifare_classic_readblock(pcs, cuid, blockNo, dataoutbuf)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Read block error");
break;
};
if(mifare_classic_halt(pcs, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
break;
};
isOK = 1;
break;
}
// ----------------------------- crypto1 destroy
crypto1_destroy(pcs);
if (MF_DBGLEVEL >= 2) DbpString("READ BLOCK FINISHED");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,16);
LED_B_OFF();
LEDsoff();
}
void MifareUC_Auth(uint8_t arg0, uint8_t *keybytes){
LED_A_ON();
bool turnOffField = (arg0 == 1);
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Can't select card");
OnError(0);
return;
};
if (!mifare_ultra_auth(keybytes)){
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Authentication failed");
OnError(1);
return;
}
if (turnOffField) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
}
cmd_send(CMD_ACK,1,0,0,0,0);
LED_A_OFF();
}
// Arg0 = BlockNo,
// Arg1 = UsePwd bool
// datain = PWD bytes,
void MifareUReadBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain)
{
LED_A_ON();
uint8_t blockNo = arg0;
byte_t dataout[16] = {0x00};
bool useKey = (arg1 == 1); //UL_C
bool usePwd = (arg1 == 2); //UL_EV1/NTAG
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true);
if(!len) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Can't select card (RC:%02X)",len);
OnError(1);
return;
}
// UL-C authentication
if (useKey) {
uint8_t key[16] = {0x00};
memcpy(key, datain, sizeof(key) );
if ( !mifare_ultra_auth(key) ) {
OnError(1);
return;
}
}
// UL-EV1 / NTAG authentication
if (usePwd) {
uint8_t pwd[4] = {0x00};
memcpy(pwd, datain, 4);
uint8_t pack[4] = {0,0,0,0};
if (!mifare_ul_ev1_auth(pwd, pack)) {
OnError(1);
return;
}
}
if (mifare_ultra_readblock(blockNo, dataout)) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Read block error");
OnError(2);
return;
}
if (mifare_ultra_halt()) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Halt error");
OnError(3);
return;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK,1,0,0,dataout,16);
LED_A_OFF();
}
//-----------------------------------------------------------------------------
// Select, Authenticate, Read a MIFARE tag.
// read sector (data = 4 x 16 bytes = 64 bytes, or 16 x 16 bytes = 256 bytes)
//-----------------------------------------------------------------------------
void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
{
// params
uint8_t sectorNo = arg0;
uint8_t keyType = arg1;
uint64_t ui64Key = 0;
ui64Key = bytes_to_num(datain, 6);
// variables
byte_t isOK = 0;
byte_t dataoutbuf[16 * 16];
uint8_t uid[10];
uint32_t cuid;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
isOK = 1;
if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
isOK = 0;
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
}
if(isOK && mifare_classic_auth(pcs, cuid, FirstBlockOfSector(sectorNo), keyType, ui64Key, AUTH_FIRST, NULL)) {
isOK = 0;
if (MF_DBGLEVEL >= 1) Dbprintf("Auth error");
}
for (uint8_t blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) {
if(mifare_classic_readblock(pcs, cuid, FirstBlockOfSector(sectorNo) + blockNo, dataoutbuf + 16 * blockNo)) {
isOK = 0;
if (MF_DBGLEVEL >= 1) Dbprintf("Read sector %2d block %2d error", sectorNo, blockNo);
break;
}
}
if(mifare_classic_halt(pcs, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
}
// ----------------------------- crypto1 destroy
crypto1_destroy(pcs);
if (MF_DBGLEVEL >= 2) DbpString("READ SECTOR FINISHED");
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,16*NumBlocksPerSector(sectorNo));
LED_B_OFF();
LEDsoff();
}
// arg0 = blockNo (start)
// arg1 = Pages (number of blocks)
// arg2 = useKey
// datain = KEY bytes
void MifareUReadCard(uint8_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain)
{
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// free eventually allocated BigBuf memory
BigBuf_free();
// params
uint8_t blockNo = arg0;
uint16_t blocks = arg1;
bool useKey = (arg2 == 1); //UL_C
bool usePwd = (arg2 == 2); //UL_EV1/NTAG
uint32_t countblocks = 0;
uint8_t *dataout = BigBuf_malloc(CARD_MEMORY_SIZE);
if (dataout == NULL){
Dbprintf("out of memory");
OnError(1);
return;
}
int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true);
if (!len) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Can't select card (RC:%d)",len);
OnError(1);
return;
}
// UL-C authentication
if (useKey) {
uint8_t key[16] = {0x00};
memcpy(key, datain, sizeof(key) );
if ( !mifare_ultra_auth(key) ) {
OnError(1);
return;
}
}
// UL-EV1 / NTAG authentication
if (usePwd) {
uint8_t pwd[4] = {0x00};
memcpy(pwd, datain, sizeof(pwd));
uint8_t pack[4] = {0,0,0,0};
if (!mifare_ul_ev1_auth(pwd, pack)){
OnError(1);
return;
}
}
for (int i = 0; i < blocks; i++){
if ((i*4) + 4 >= CARD_MEMORY_SIZE) {
Dbprintf("Data exceeds buffer!!");
break;
}
len = mifare_ultra_readblock(blockNo + i, dataout + 4 * i);
if (len) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Read block %d error",i);
// if no blocks read - error out
if (i==0){
OnError(2);
return;
} else {
//stop at last successful read block and return what we got
break;
}
} else {
countblocks++;
}
}
len = mifare_ultra_halt();
if (len) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Halt error");
OnError(3);
return;
}
if (MF_DBGLEVEL >= MF_DBG_DEBUG) Dbprintf("Blocks read %d", countblocks);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
cmd_send(CMD_ACK, 1, countblocks*4, BigBuf_max_traceLen(), 0, 0);
BigBuf_free();
LED_A_OFF();
}
//-----------------------------------------------------------------------------
// Select, Authenticate, Write a MIFARE tag.
// read block
//-----------------------------------------------------------------------------
void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
{
// params
uint8_t blockNo = arg0;
uint8_t keyType = arg1;
uint64_t ui64Key = 0;
byte_t blockdata[16];
ui64Key = bytes_to_num(datain, 6);
memcpy(blockdata, datain + 10, 16);
// variables
byte_t isOK = 0;
uint8_t uid[10];
uint32_t cuid;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
while (true) {
if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
break;
};
if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, NULL)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Auth error");
break;
};
if(mifare_classic_writeblock(pcs, cuid, blockNo, blockdata)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Write block error");
break;
};
if(mifare_classic_halt(pcs, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
break;
};
isOK = 1;
break;
}
// ----------------------------- crypto1 destroy
crypto1_destroy(pcs);
if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,0,0);
LED_B_OFF();
LEDsoff();
}
/* // Command not needed but left for future testing
void MifareUWriteBlockCompat(uint8_t arg0, uint8_t *datain)
{
uint8_t blockNo = arg0;
byte_t blockdata[16] = {0x00};
memcpy(blockdata, datain, 16);
uint8_t uid[10] = {0x00};
LED_A_ON(); LED_B_OFF(); LED_C_OFF();
clear_trace();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!iso14443a_select_card(uid, NULL, NULL, true, 0)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
OnError(0);
return;
};
if(mifare_ultra_writeblock_compat(blockNo, blockdata)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Write block error");
OnError(0);
return; };
if(mifare_ultra_halt()) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
OnError(0);
return;
};
if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK,1,0,0,0,0);
LEDsoff();
}
*/
// Arg0 : Block to write to.
// Arg1 : 0 = use no authentication.
// 1 = use 0x1A authentication.
// 2 = use 0x1B authentication.
// datain : 4 first bytes is data to be written.
// : 4/16 next bytes is authentication key.
void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain)
{
uint8_t blockNo = arg0;
bool useKey = (arg1 == 1); //UL_C
bool usePwd = (arg1 == 2); //UL_EV1/NTAG
byte_t blockdata[4] = {0x00};
memcpy(blockdata, datain,4);
LEDsoff();
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
if(!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
OnError(0);
return;
};
// UL-C authentication
if ( useKey ) {
uint8_t key[16] = {0x00};
memcpy(key, datain+4, sizeof(key) );
if ( !mifare_ultra_auth(key) ) {
OnError(1);
return;
}
}
// UL-EV1 / NTAG authentication
if (usePwd) {
uint8_t pwd[4] = {0x00};
memcpy(pwd, datain+4, 4);
uint8_t pack[4] = {0,0,0,0};
if (!mifare_ul_ev1_auth(pwd, pack)) {
OnError(1);
return;
}
}
if(mifare_ultra_writeblock(blockNo, blockdata)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Write block error");
OnError(0);
return;
};
if(mifare_ultra_halt()) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
OnError(0);
return;
};
if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK,1,0,0,0,0);
LEDsoff();
}
void MifareUSetPwd(uint8_t arg0, uint8_t *datain){
uint8_t pwd[16] = {0x00};
byte_t blockdata[4] = {0x00};
memcpy(pwd, datain, 16);
LED_A_ON(); LED_B_OFF(); LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
if(!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
OnError(0);
return;
};
blockdata[0] = pwd[7];
blockdata[1] = pwd[6];
blockdata[2] = pwd[5];
blockdata[3] = pwd[4];
if(mifare_ultra_writeblock( 44, blockdata)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Write block error");
OnError(44);
return;
};
blockdata[0] = pwd[3];
blockdata[1] = pwd[2];
blockdata[2] = pwd[1];
blockdata[3] = pwd[0];
if(mifare_ultra_writeblock( 45, blockdata)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Write block error");
OnError(45);
return;
};
blockdata[0] = pwd[15];
blockdata[1] = pwd[14];
blockdata[2] = pwd[13];
blockdata[3] = pwd[12];
if(mifare_ultra_writeblock( 46, blockdata)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Write block error");
OnError(46);
return;
};
blockdata[0] = pwd[11];
blockdata[1] = pwd[10];
blockdata[2] = pwd[9];
blockdata[3] = pwd[8];
if(mifare_ultra_writeblock( 47, blockdata)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Write block error");
OnError(47);
return;
};
if(mifare_ultra_halt()) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
OnError(0);
return;
};
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK,1,0,0,0,0);
LEDsoff();
}
// Return 1 if the nonce is invalid else return 0
int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t *parity) {
return ((oddparity8((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ BIT(Ks1,16))) & \
(oddparity8((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ BIT(Ks1,8))) & \
(oddparity8((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ BIT(Ks1,0)))) ? 1 : 0;
}
//-----------------------------------------------------------------------------
// acquire encrypted nonces in order to perform the attack described in
// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain) {
uint64_t ui64Key = 0;
uint8_t uid[10];
uint32_t cuid;
uint8_t cascade_levels = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
int16_t isOK = 0;
uint8_t par_enc[1];
uint8_t nt_par_enc = 0;
uint8_t buf[USB_CMD_DATA_SIZE];
uint32_t timeout;
uint8_t blockNo = arg0 & 0xff;
uint8_t keyType = (arg0 >> 8) & 0xff;
uint8_t targetBlockNo = arg1 & 0xff;
uint8_t targetKeyType = (arg1 >> 8) & 0xff;
ui64Key = bytes_to_num(datain, 6);
bool initialize = flags & 0x0001;
bool slow = flags & 0x0002;
bool field_off = flags & 0x0004;
LED_A_ON();
if (initialize) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
}
uint16_t num_nonces = 0;
bool have_uid = false;
for (uint16_t i = 0; i <= USB_CMD_DATA_SIZE - 9; ) {
// Test if the action was cancelled
if(BUTTON_PRESS()) {
isOK = 2;
field_off = true;
break;
}
if (!have_uid) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info;
if(!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("AcquireNonces: Can't select card (ALL)");
continue;
}
switch (card_info.uidlen) {
case 4 : cascade_levels = 1; break;
case 7 : cascade_levels = 2; break;
case 10: cascade_levels = 3; break;
default: break;
}
have_uid = true;
} else { // no need for anticollision. We can directly select the card
if(!iso14443a_select_card(uid, NULL, NULL, false, cascade_levels, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("AcquireNonces: Can't select card (UID)");
continue;
}
}
if (slow) {
timeout = GetCountSspClk() + HARDNESTED_PRE_AUTHENTICATION_LEADTIME;
while(GetCountSspClk() < timeout);
}
uint32_t nt1;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL, NULL)) {
if (MF_DBGLEVEL >= 1) Dbprintf("AcquireNonces: Auth1 error");
continue;
}
// nested authentication
uint16_t len = mifare_sendcmd_short(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par_enc, NULL);
if (len != 4) {
if (MF_DBGLEVEL >= 1) Dbprintf("AcquireNonces: Auth2 error len=%d", len);
continue;
}
// send an incomplete dummy response in order to trigger the card's authentication failure timeout
uint8_t dummy_answer[1] = {0};
ReaderTransmit(dummy_answer, 1, NULL);
timeout = GetCountSspClk() + HARDNESTED_AUTHENTICATION_TIMEOUT;
num_nonces++;
if (num_nonces % 2) {
memcpy(buf+i, receivedAnswer, 4);
nt_par_enc = par_enc[0] & 0xf0;
} else {
nt_par_enc |= par_enc[0] >> 4;
memcpy(buf+i+4, receivedAnswer, 4);
memcpy(buf+i+8, &nt_par_enc, 1);
i += 9;
}
// wait for the card to become ready again
while(GetCountSspClk() < timeout);
}
crypto1_destroy(pcs);
if (field_off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
}
if (MF_DBGLEVEL >= 3) DbpString("AcquireEncryptedNonces finished");
cmd_send(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
LED_A_OFF();
}
//-----------------------------------------------------------------------------
// MIFARE nested authentication.
//
//-----------------------------------------------------------------------------
void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *datain) {
uint8_t blockNo = arg0 & 0xff;
uint8_t keyType = (arg0 >> 8) & 0xff;
uint8_t targetBlockNo = arg1 & 0xff;
uint8_t targetKeyType = (arg1 >> 8) & 0xff;
uint64_t ui64Key = 0;
ui64Key = bytes_to_num(datain, 6);
uint16_t rtr, i, j, len;
uint16_t davg;
static uint16_t dmin, dmax;
uint8_t uid[10];
uint32_t cuid, nt1, nt2_enc, nttmp, nttest, ks1;
uint8_t par[1];
uint32_t target_nt[2], target_ks[2];
uint32_t fixed_nt = 0;
uint8_t target_nt_duplicate_count = 0;
uint8_t par_array[4];
uint16_t ncount = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint32_t auth1_time, auth2_time, authentication_timeout = 0;
static uint16_t delta_time;
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// free eventually allocated BigBuf memory
BigBuf_free();
if (calibrate) clear_trace();
set_tracing(true);
// statistics on nonce distance
int16_t isOK = 0;
#define NESTED_MAX_TRIES 12
uint16_t unsuccessfull_tries = 0;
if (calibrate) { // for first call only. Otherwise reuse previous calibration
WDT_HIT();
davg = dmax = 0;
dmin = 2000;
delta_time = 0;
for (rtr = 0; rtr < 17; rtr++) {
// prepare next select. No need to power down the card.
if (mifare_classic_halt(pcs, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Halt error");
rtr--;
continue;
}
// Test if the action was cancelled
if (BUTTON_PRESS()) {
isOK = -2;
break;
}
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Can't select card");
rtr--;
continue;
};
auth1_time = 0;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time, NULL)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth1 error");
rtr--;
continue;
};
fixed_nt = nt1;
if (delta_time) {
auth2_time = auth1_time + delta_time;
} else {
auth2_time = 0;
}
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2_enc, &auth2_time, NULL)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth2 error");
rtr--;
continue;
};
nttmp = prng_successor(nt1, 100); //NXP Mifare is typical around 840,but for some unlicensed/compatible mifare card this can be 160
for (i = 101; i < 1200; i++) {
nttmp = prng_successor(nttmp, 1);
if (nttmp == nt2_enc) break;
}
if (i != 1200) {
if (rtr != 0) {
davg += i;
dmin = MIN(dmin, i);
dmax = MAX(dmax, i);
}
else {
delta_time = auth2_time - auth1_time + 32; // allow some slack for proper timing
}
if (MF_DBGLEVEL >= 3) Dbprintf("Nested: calibrating... ntdist=%d", i);
} else {
unsuccessfull_tries++;
if (unsuccessfull_tries > NESTED_MAX_TRIES) { // card isn't vulnerable to nested attack (random numbers are not predictable)
isOK = -3;
}
}
}
davg = (davg + (rtr - 1)/2) / (rtr - 1);
if (MF_DBGLEVEL >= 3) Dbprintf("rtr=%d isOK=%d min=%d max=%d avg=%d, delta_time=%d", rtr, isOK, dmin, dmax, davg, delta_time);
dmin = davg - 2;
dmax = davg + 2;
}
// -------------------------------------------------------------------------------------------------
// get crypted nonces for target sector
for (i = 0; i < 2 && !isOK; i++) { // look for exactly two different nonces
target_nt[i] = 0;
while (target_nt[i] == 0 && !isOK) { // continue until we have an unambiguous nonce
// prepare next select. No need to power down the card.
if (mifare_classic_halt(pcs, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Halt error");
continue;
}
// break out of the loop on button press
if (BUTTON_PRESS()) {
isOK = -2;
break;
}
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Can't select card");
continue;
}
auth1_time = 0;
authentication_timeout = 0;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time, &authentication_timeout)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth1 error");
continue;
}
// nested authentication
auth2_time = auth1_time + delta_time;
len = mifare_sendcmd_short(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, &auth2_time);
if (len != 4) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth2 error len=%d", len);
continue;
}
nt2_enc = bytes_to_num(receivedAnswer, 4);
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i+1, nt1, nt2_enc, par[0]);
// Parity validity check
for (j = 0; j < 4; j++) {
par_array[j] = (oddparity8(receivedAnswer[j]) != ((par[0] >> (7-j)) & 0x01));
}
ncount = 0;
nttest = prng_successor(nt1, dmin - 1);
for (j = dmin; j < dmax + 1; j++) {
nttest = prng_successor(nttest, 1);
ks1 = nt2_enc ^ nttest;
if (valid_nonce(nttest, nt2_enc, ks1, par_array)){
if (ncount > 0) { // we are only interested in disambiguous nonces, try again
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: dismissed (ambigous), ntdist=%d", i+1, j);
target_nt[i] = 0;
break;
}
target_nt[i] = nttest;
target_ks[i] = ks1;
ncount++;
if (i == 1 && target_nt[1] == target_nt[0]) { // we need two different nonces
if( ++target_nt_duplicate_count >= NESTED_MAX_TRIES ) { // unable to get a 2nd nonce after NESTED_MAX_TRIES tries, probably a fixed nonce
if (MF_DBGLEVEL >= 2) Dbprintf("Nonce#2: cannot get nonce that != nonce#1, continuing anyway with single nonce! ntdist=%d", j);
break;
}
target_nt[1] = 0;
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#2: dismissed (= nonce#1), ntdist=%d", j);
break;
}
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: valid, ntdist=%d", i+1, j);
}
}
if (target_nt[i] == 0 && j == dmax+1 && MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: dismissed (all invalid)", i+1);
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
crypto1_destroy(pcs);
uint8_t buf[4 + 4 * 4 + 4 + 4];
memcpy(buf, &cuid, 4);
memcpy(buf+4, &target_nt[0], 4);
memcpy(buf+8, &target_ks[0], 4);
memcpy(buf+12, &target_nt[1], 4);
memcpy(buf+16, &target_ks[1], 4);
memcpy(buf+20, &authentication_timeout, 4);
memcpy(buf+24, &fixed_nt, 4);
if (MF_DBGLEVEL >= 3) DbpString("NESTED FINISHED");
cmd_send(CMD_ACK, isOK, 0, targetBlockNo + (targetKeyType * 0x100), buf, sizeof(buf));
LED_A_OFF();
}
//-----------------------------------------------------------------------------
// MIFARE check keys. key count up to 85.
//
//-----------------------------------------------------------------------------
void MifareChkKeys(uint16_t arg0, uint32_t arg1, uint8_t arg2, uint8_t *datain) {
uint8_t blockNo = arg0 & 0xff;
uint8_t keyType = arg0 >> 8;
bool clearTrace = arg1 & 0x01;
bool multisectorCheck = arg1 & 0x02;
bool init = arg1 & 0x04;
bool drop_field = arg1 & 0x08;
bool fixed_nonce = arg1 & 0x10;
uint32_t auth_timeout = arg1 >> 16;
uint8_t keyCount = arg2;
LED_A_ON();
if (init) {
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
}
if (clearTrace) {
clear_trace();
}
set_tracing(true);
// clear debug level. We are expecting lots of authentication failures...
int OLD_MF_DBGLEVEL = MF_DBGLEVEL;
MF_DBGLEVEL = MF_DBG_NONE;
int res = 0;
if (multisectorCheck) {
TKeyIndex keyIndex = {{0}};
uint8_t sectorCnt = blockNo;
res = MifareMultisectorChk(datain, keyCount, sectorCnt, keyType, &auth_timeout, OLD_MF_DBGLEVEL, &keyIndex);
if (res >= 0) {
cmd_send(CMD_ACK, 1, res, 0, keyIndex, 80);
} else {
cmd_send(CMD_ACK, 0, res, 0, NULL, 0);
}
} else if (fixed_nonce) {
res = MifareChkBlockKeysFixedNonce(datain, keyCount, blockNo, keyType, &auth_timeout, OLD_MF_DBGLEVEL);
if (res > 0) {
cmd_send(CMD_ACK, 1, res, 0, NULL, 0); // key found
} else {
cmd_send(CMD_ACK, 0, res, 0, NULL, 0); // no key found or aborted
}
} else {
res = MifareChkBlockKeys(datain, keyCount, blockNo, keyType, &auth_timeout, OLD_MF_DBGLEVEL);
if (res > 0) {
cmd_send(CMD_ACK, 1, res, 0, datain + (res - 1) * 6, 6);
} else {
cmd_send(CMD_ACK, 0, res, 0, NULL, 0);
}
}
if (drop_field || res != 0) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
}
// restore debug level
MF_DBGLEVEL = OLD_MF_DBGLEVEL;
LED_A_OFF();
}
//-----------------------------------------------------------------------------
// MIFARE Personalize UID. Only for Mifare Classic EV1 7Byte UID
//-----------------------------------------------------------------------------
void MifarePersonalizeUID(uint8_t keyType, uint8_t perso_option, uint8_t *data) {
uint8_t uid[10];
uint32_t cuid;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
LED_A_ON();
clear_trace();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
bool isOK = false;
while (true) {
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
break;
}
uint8_t block_number = 0;
uint64_t key = bytes_to_num(data, 6);
if (mifare_classic_auth(pcs, cuid, block_number, keyType, key, AUTH_FIRST, NULL)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Auth error");
break;
}
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
int len = mifare_sendcmd_short(pcs, true, MIFARE_EV1_PERSONAL_UID, perso_option, receivedAnswer, receivedAnswerPar, NULL);
if (len != 1 || receivedAnswer[0] != CARD_ACK) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
break;;
}
isOK = true;
break;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
crypto1_destroy(pcs);
if (MF_DBGLEVEL >= 2) DbpString("PERSONALIZE UID FINISHED");
cmd_send(CMD_ACK, isOK, 0, 0, NULL, 0);
LED_A_OFF();
}
//-----------------------------------------------------------------------------
// MIFARE commands set debug level
//
//-----------------------------------------------------------------------------
void MifareSetDbgLvl(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){
MF_DBGLEVEL = arg0;
Dbprintf("Debug level: %d", MF_DBGLEVEL);
}
//-----------------------------------------------------------------------------
// Work with emulator memory
//
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
// involved in dealing with emulator memory. But if it is called later, it might
// destroy the Emulator Memory.
//-----------------------------------------------------------------------------
void MifareEMemClr(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
emlClearMem();
}
void MifareEMemSet(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
emlSetMem(datain, arg0, arg1); // data, block num, blocks count
}
void MifareEMemGet(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
byte_t buf[USB_CMD_DATA_SIZE];
emlGetMem(buf, arg0, arg1); // data, block num, blocks count (max 4)
LED_B_ON();
cmd_send(CMD_ACK,arg0,arg1,0,buf,USB_CMD_DATA_SIZE);
LED_B_OFF();
}
//-----------------------------------------------------------------------------
// Load a card into the emulator memory
//
//-----------------------------------------------------------------------------
void MifareECardLoad(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){
uint8_t numSectors = arg0;
uint8_t keyType = arg1;
uint64_t ui64Key = 0;
uint32_t cuid;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
// variables
byte_t dataoutbuf[16];
byte_t dataoutbuf2[16];
uint8_t uid[10];
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(false);
bool isOK = true;
if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
isOK = false;
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
}
for (uint8_t sectorNo = 0; isOK && sectorNo < numSectors; sectorNo++) {
ui64Key = emlGetKey(sectorNo, keyType);
if (sectorNo == 0){
if(isOK && mifare_classic_auth(pcs, cuid, FirstBlockOfSector(sectorNo), keyType, ui64Key, AUTH_FIRST, NULL)) {
isOK = false;
if (MF_DBGLEVEL >= 1) Dbprintf("Sector[%2d]. Auth error", sectorNo);
break;
}
} else {
if(isOK && mifare_classic_auth(pcs, cuid, FirstBlockOfSector(sectorNo), keyType, ui64Key, AUTH_NESTED, NULL)) {
isOK = false;
if (MF_DBGLEVEL >= 1) Dbprintf("Sector[%2d]. Auth nested error", sectorNo);
break;
}
}
for (uint8_t blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) {
if(isOK && mifare_classic_readblock(pcs, cuid, FirstBlockOfSector(sectorNo) + blockNo, dataoutbuf)) {
isOK = false;
if (MF_DBGLEVEL >= 1) Dbprintf("Error reading sector %2d block %2d", sectorNo, blockNo);
break;
};
if (isOK) {
if (blockNo < NumBlocksPerSector(sectorNo) - 1) {
emlSetMem(dataoutbuf, FirstBlockOfSector(sectorNo) + blockNo, 1);
} else { // sector trailer, keep the keys, set only the AC
emlGetMem(dataoutbuf2, FirstBlockOfSector(sectorNo) + blockNo, 1);
memcpy(&dataoutbuf2[6], &dataoutbuf[6], 4);
emlSetMem(dataoutbuf2, FirstBlockOfSector(sectorNo) + blockNo, 1);
}
}
}
}
if(mifare_classic_halt(pcs, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
};
// ----------------------------- crypto1 destroy
crypto1_destroy(pcs);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
if (MF_DBGLEVEL >= 2) DbpString("EMUL FILL SECTORS FINISHED");
}
//-----------------------------------------------------------------------------
// Work with "magic Chinese" card (email him: ouyangweidaxian@live.cn)
//
//-----------------------------------------------------------------------------
static bool isBlockTrailer(int blockN) {
if (blockN >= 0 && blockN < 128) {
return ((blockN & 0x03) == 0x03);
}
if (blockN >= 128 && blockN <= 256) {
return ((blockN & 0x0F) == 0x0F);
}
return false;
}
void MifareCWipe(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){
// var
byte_t isOK = 0;
uint32_t numBlocks = arg0;
// cmdParams:
// bit 0 - wipe gen1a
// bit 1 - fill card with default data
// bit 2 - gen1a = 0, gen1b = 1
uint8_t cmdParams = arg1;
bool needWipe = cmdParams & 0x01;
bool needFill = cmdParams & 0x02;
bool gen1b = cmdParams & 0x04;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
uint8_t block0[16] = {0x01, 0x02, 0x03, 0x04, 0x04, 0x08, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xBE, 0xAF};
uint8_t block1[16] = {0x00};
uint8_t blockK[16] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x08, 0x77, 0x8F, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
uint8_t d_block[18] = {0x00};
// card commands
uint8_t wupC1[] = { 0x40 };
uint8_t wupC2[] = { 0x43 };
uint8_t wipeC[] = { 0x41 };
// iso14443 setup
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// tracing
clear_trace();
set_tracing(true);
while (true){
// wipe
if (needWipe){
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
ReaderTransmit(wipeC, sizeof(wipeC), NULL);
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wipeC error");
break;
};
if(mifare_classic_halt(NULL, 0)) {
if (MF_DBGLEVEL > 2) Dbprintf("Halt error");
};
};
// put default data
if (needFill){
// select commands
ReaderTransmitBitsPar(wupC1, 7, 0, NULL);
// gen1b magic tag : do no issue wupC2 and don't expect CARD_ACK response after SELECT_UID (after getting UID from chip in 'hf mf csetuid' command)
if (!gen1b) {
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC2 error");
break;
};
}
// send blocks command
for (int blockNo = 0; blockNo < numBlocks; blockNo++) {
if ((mifare_sendcmd_short(NULL, 0, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 1) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("write block send command error");
break;
};
// check type of block and add crc
if (!isBlockTrailer(blockNo)){
memcpy(d_block, block1, 16);
} else {
memcpy(d_block, blockK, 16);
}
if (blockNo == 0) {
memcpy(d_block, block0, 16);
}
AppendCrc14443a(d_block, 16);
// send write command
ReaderTransmit(d_block, sizeof(d_block), NULL);
if ((ReaderReceive(receivedAnswer, receivedAnswerPar) != 1) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("write block send data error");
break;
};
}
// halt
// do no issue halt command for gen1b
if (!gen1b) {
if (mifare_classic_halt(NULL, 0)) {
if (MF_DBGLEVEL > 2) Dbprintf("Halt error");
break;
}
}
}
break;
}
// reset fpga
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// send USB response
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,NULL,0);
LED_B_OFF();
LEDsoff();
return;
}
void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){
// params
uint8_t needWipe = arg0;
// bit 0 - need get UID
// bit 1 - need wupC
// bit 2 - need HALT after sequence
// bit 3 - need init FPGA and field before sequence
// bit 4 - need reset FPGA and LED
// bit 6 - gen1b backdoor type
uint8_t workFlags = arg1;
uint8_t blockNo = arg2;
// card commands
uint8_t wupC1[] = { 0x40 };
uint8_t wupC2[] = { 0x43 };
uint8_t wipeC[] = { 0x41 };
// variables
byte_t isOK = 0;
uint8_t uid[10] = {0x00};
uint8_t d_block[18] = {0x00};
uint32_t cuid;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
// reset FPGA and LED
if (workFlags & 0x08) {
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
}
while (true) {
// get UID from chip
if (workFlags & 0x01) {
if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
// Continue, if we set wrong UID or wrong UID checksum or some ATQA or SAK we will can't select card. But we need to write block 0 to make card work.
//break;
};
if(mifare_classic_halt(NULL, cuid)) {
if (MF_DBGLEVEL > 2) Dbprintf("Halt error");
// Continue, some magic tags misbehavies and send an answer to it.
// break;
};
};
// reset chip
// Wipe command don't work with gen1b
if (needWipe && !(workFlags & 0x40)){
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
ReaderTransmit(wipeC, sizeof(wipeC), NULL);
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wipeC error");
break;
};
if(mifare_classic_halt(NULL, 0)) {
if (MF_DBGLEVEL > 2) Dbprintf("Halt error");
// Continue, some magic tags misbehavies and send an answer to it.
// break;
};
};
// write block
if (workFlags & 0x02) {
ReaderTransmitBitsPar(wupC1,7,0, NULL);
// gen1b magic tag : do no issue wupC2 and don't expect CARD_ACK response after SELECT_UID (after getting UID from chip in 'hf mf csetuid' command)
if (!(workFlags & 0x40)) {
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC2 error");
break;
};
}
}
if ((mifare_sendcmd_short(NULL, 0, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 1) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("write block send command error");
break;
};
memcpy(d_block, datain, 16);
AppendCrc14443a(d_block, 16);
ReaderTransmit(d_block, sizeof(d_block), NULL);
if ((ReaderReceive(receivedAnswer, receivedAnswerPar) != 1) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("write block send data error");
break;
};
if (workFlags & 0x04) {
// do no issue halt command for gen1b magic tag (#db# halt error. response len: 1)
if (!(workFlags & 0x40)) {
if (mifare_classic_halt(NULL, 0)) {
if (MF_DBGLEVEL > 2) Dbprintf("Halt error");
// Continue, some magic tags misbehavies and send an answer to it.
// break;
}
}
}
isOK = 1;
break;
}
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,uid,4);
LED_B_OFF();
LEDsoff();
}
void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){
// params
// bit 1 - need wupC
// bit 2 - need HALT after sequence
// bit 3 - need init FPGA and field before sequence
// bit 4 - need reset FPGA and LED
// bit 5 - need to set datain instead of issuing USB reply (called via ARM for StandAloneMode14a)
// bit 6 - gen1b backdoor type
uint8_t workFlags = arg0;
uint8_t blockNo = arg2;
// card commands
uint8_t wupC1[] = { 0x40 };
uint8_t wupC2[] = { 0x43 };
// variables
byte_t isOK = 0;
uint8_t data[18] = {0x00};
uint32_t cuid = 0;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
if (workFlags & 0x08) {
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
}
while (true) {
if (workFlags & 0x02) {
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
// do no issue for gen1b magic tag
if (!(workFlags & 0x40)) {
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != CARD_ACK)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC2 error");
break;
};
}
}
// read block
if ((mifare_sendcmd_short(NULL, 0, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 18)) {
if (MF_DBGLEVEL >= 1) Dbprintf("read block send command error");
break;
};
memcpy(data, receivedAnswer, 18);
if (workFlags & 0x04) {
// do no issue halt command for gen1b magic tag (#db# halt error. response len: 1)
if (!(workFlags & 0x40)) {
if (mifare_classic_halt(NULL, cuid)) {
if (MF_DBGLEVEL > 1) Dbprintf("Halt error");
// Continue, some magic tags misbehavies and send an answer to it.
// break;
}
}
}
isOK = 1;
break;
}
if ((workFlags & 0x10) || (!isOK)) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
LED_B_ON();
if (workFlags & 0x20) {
if (isOK)
memcpy(datain, data, 18);
}
else
cmd_send(CMD_ACK,isOK,0,0,data,18);
LED_B_OFF();
LEDsoff();
}
void MifareCIdent(){
// card commands
uint8_t wupC1[] = { 0x40 };
uint8_t wupC2[] = { 0x43 };
// variables
byte_t isOK = 0;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(ReaderReceive(receivedAnswer, receivedAnswerPar) && (receivedAnswer[0] == CARD_ACK)) {
isOK = 2;
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if(ReaderReceive(receivedAnswer, receivedAnswerPar) && (receivedAnswer[0] == CARD_ACK)) {
isOK = 1;
};
};
// From iceman1001: removed the if, since some magic tags misbehavies and send an answer to it.
mifare_classic_halt(NULL, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,0,0);
LED_B_OFF();
LEDsoff();
}
//
// DESFIRE
//
void Mifare_DES_Auth1(uint8_t arg0, uint8_t *datain){
byte_t dataout[11] = {0x00};
uint8_t uid[10] = {0x00};
uint32_t cuid;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
int len = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
if(!len) {
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Can't select card");
OnError(1);
return;
};
if(mifare_desfire_des_auth1(cuid, dataout)){
if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Authentication part1: Fail.");
OnError(4);
return;
}
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) DbpString("AUTH 1 FINISHED");
cmd_send(CMD_ACK, 1, cuid, 0, dataout, sizeof(dataout));
}
void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain){
uint32_t cuid = arg0;
uint8_t key[16] = {0x00};
byte_t isOK = 0;
byte_t dataout[12] = {0x00};
memcpy(key, datain, 16);
isOK = mifare_desfire_des_auth2(cuid, key, dataout);
if (isOK) {
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Authentication part2: Failed");
OnError(4);
return;
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
if (MF_DBGLEVEL >= MF_DBG_EXTENDED) DbpString("AUTH 2 FINISHED");
cmd_send(CMD_ACK, isOK, 0, 0, dataout, sizeof(dataout));
LEDsoff();
}