mirror of
https://github.com/Proxmark/proxmark3.git
synced 2024-11-23 14:00:18 -08:00
867e10a5fd
* merge cmd.c into usb_cdc.c * move back usb_cdc.[ch] to common/ * declare low level functions usb_read() and usb_write() and more functions as static * use cmd_receive() in bootrom.c and appmain.c * remove unused memory wasting csrTab[100] in usb_cdc.c * replace more byte_t by uint8_t * more whitespace fixes
1293 lines
37 KiB
C
1293 lines
37 KiB
C
//-----------------------------------------------------------------------------
|
|
// Jonathan Westhues, split Nov 2006
|
|
// piwi 2018
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Routines to support ISO 14443B. This includes both the reader software and
|
|
// the `fake tag' modes.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "iso14443b.h"
|
|
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "usb_cdc.h"
|
|
#include "util.h"
|
|
#include "string.h"
|
|
#include "iso14443crc.h"
|
|
#include "fpgaloader.h"
|
|
#include "BigBuf.h"
|
|
|
|
#define RECEIVE_SAMPLES_TIMEOUT 64 // TR0 max is 256/fs = 256/(848kHz) = 302us or 64 samples from FPGA
|
|
#define ISO14443B_DMA_BUFFER_SIZE 128
|
|
|
|
// PCB Block number for APDUs
|
|
static uint8_t pcb_blocknum = 0;
|
|
|
|
//=============================================================================
|
|
// An ISO 14443 Type B tag. We listen for commands from the reader, using
|
|
// a UART kind of thing that's implemented in software. When we get a
|
|
// frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
|
|
// If it's good, then we can do something appropriate with it, and send
|
|
// a response.
|
|
//=============================================================================
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Code up a string of octets at layer 2 (including CRC, we don't generate
|
|
// that here) so that they can be transmitted to the reader. Doesn't transmit
|
|
// them yet, just leaves them ready to send in ToSend[].
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeIso14443bAsTag(const uint8_t *cmd, int len)
|
|
{
|
|
int i;
|
|
|
|
ToSendReset();
|
|
|
|
// Transmit a burst of ones, as the initial thing that lets the
|
|
// reader get phase sync. This (TR1) must be > 80/fs, per spec,
|
|
// but tag that I've tried (a Paypass) exceeds that by a fair bit,
|
|
// so I will too.
|
|
for(i = 0; i < 20; i++) {
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
// Send SOF.
|
|
for(i = 0; i < 10; i++) {
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
}
|
|
for(i = 0; i < 2; i++) {
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
for(i = 0; i < len; i++) {
|
|
int j;
|
|
uint8_t b = cmd[i];
|
|
|
|
// Start bit
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
|
|
// Data bits
|
|
for(j = 0; j < 8; j++) {
|
|
if(b & 1) {
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
} else {
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// Stop bit
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
// Send EOF.
|
|
for(i = 0; i < 10; i++) {
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
}
|
|
for(i = 0; i < 2; i++) {
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// The software UART that receives commands from the reader, and its state
|
|
// variables.
|
|
//-----------------------------------------------------------------------------
|
|
static struct {
|
|
enum {
|
|
STATE_UNSYNCD,
|
|
STATE_GOT_FALLING_EDGE_OF_SOF,
|
|
STATE_AWAITING_START_BIT,
|
|
STATE_RECEIVING_DATA
|
|
} state;
|
|
uint16_t shiftReg;
|
|
int bitCnt;
|
|
int byteCnt;
|
|
int byteCntMax;
|
|
int posCnt;
|
|
uint8_t *output;
|
|
} Uart;
|
|
|
|
/* Receive & handle a bit coming from the reader.
|
|
*
|
|
* This function is called 4 times per bit (every 2 subcarrier cycles).
|
|
* Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
|
|
*
|
|
* LED handling:
|
|
* LED A -> ON once we have received the SOF and are expecting the rest.
|
|
* LED A -> OFF once we have received EOF or are in error state or unsynced
|
|
*
|
|
* Returns: true if we received a EOF
|
|
* false if we are still waiting for some more
|
|
*/
|
|
static RAMFUNC int Handle14443bUartBit(uint8_t bit)
|
|
{
|
|
switch(Uart.state) {
|
|
case STATE_UNSYNCD:
|
|
if(!bit) {
|
|
// we went low, so this could be the beginning
|
|
// of an SOF
|
|
Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
|
|
Uart.posCnt = 0;
|
|
Uart.bitCnt = 0;
|
|
}
|
|
break;
|
|
|
|
case STATE_GOT_FALLING_EDGE_OF_SOF:
|
|
Uart.posCnt++;
|
|
if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
|
|
if(bit) {
|
|
if(Uart.bitCnt > 9) {
|
|
// we've seen enough consecutive
|
|
// zeros that it's a valid SOF
|
|
Uart.posCnt = 0;
|
|
Uart.byteCnt = 0;
|
|
Uart.state = STATE_AWAITING_START_BIT;
|
|
LED_A_ON(); // Indicate we got a valid SOF
|
|
} else {
|
|
// didn't stay down long enough
|
|
// before going high, error
|
|
Uart.state = STATE_UNSYNCD;
|
|
}
|
|
} else {
|
|
// do nothing, keep waiting
|
|
}
|
|
Uart.bitCnt++;
|
|
}
|
|
if(Uart.posCnt >= 4) Uart.posCnt = 0;
|
|
if(Uart.bitCnt > 12) {
|
|
// Give up if we see too many zeros without
|
|
// a one, too.
|
|
LED_A_OFF();
|
|
Uart.state = STATE_UNSYNCD;
|
|
}
|
|
break;
|
|
|
|
case STATE_AWAITING_START_BIT:
|
|
Uart.posCnt++;
|
|
if(bit) {
|
|
if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
|
|
// stayed high for too long between
|
|
// characters, error
|
|
Uart.state = STATE_UNSYNCD;
|
|
}
|
|
} else {
|
|
// falling edge, this starts the data byte
|
|
Uart.posCnt = 0;
|
|
Uart.bitCnt = 0;
|
|
Uart.shiftReg = 0;
|
|
Uart.state = STATE_RECEIVING_DATA;
|
|
}
|
|
break;
|
|
|
|
case STATE_RECEIVING_DATA:
|
|
Uart.posCnt++;
|
|
if(Uart.posCnt == 2) {
|
|
// time to sample a bit
|
|
Uart.shiftReg >>= 1;
|
|
if(bit) {
|
|
Uart.shiftReg |= 0x200;
|
|
}
|
|
Uart.bitCnt++;
|
|
}
|
|
if(Uart.posCnt >= 4) {
|
|
Uart.posCnt = 0;
|
|
}
|
|
if(Uart.bitCnt == 10) {
|
|
if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
|
|
{
|
|
// this is a data byte, with correct
|
|
// start and stop bits
|
|
Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
|
|
Uart.byteCnt++;
|
|
|
|
if(Uart.byteCnt >= Uart.byteCntMax) {
|
|
// Buffer overflowed, give up
|
|
LED_A_OFF();
|
|
Uart.state = STATE_UNSYNCD;
|
|
} else {
|
|
// so get the next byte now
|
|
Uart.posCnt = 0;
|
|
Uart.state = STATE_AWAITING_START_BIT;
|
|
}
|
|
} else if (Uart.shiftReg == 0x000) {
|
|
// this is an EOF byte
|
|
LED_A_OFF(); // Finished receiving
|
|
Uart.state = STATE_UNSYNCD;
|
|
if (Uart.byteCnt != 0) {
|
|
return true;
|
|
}
|
|
} else {
|
|
// this is an error
|
|
LED_A_OFF();
|
|
Uart.state = STATE_UNSYNCD;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
LED_A_OFF();
|
|
Uart.state = STATE_UNSYNCD;
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
static void UartReset()
|
|
{
|
|
Uart.byteCntMax = MAX_FRAME_SIZE;
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.byteCnt = 0;
|
|
Uart.bitCnt = 0;
|
|
}
|
|
|
|
|
|
static void UartInit(uint8_t *data)
|
|
{
|
|
Uart.output = data;
|
|
UartReset();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Receive a command (from the reader to us, where we are the simulated tag),
|
|
// and store it in the given buffer, up to the given maximum length. Keeps
|
|
// spinning, waiting for a well-framed command, until either we get one
|
|
// (returns true) or someone presses the pushbutton on the board (false).
|
|
//
|
|
// Assume that we're called with the SSC (to the FPGA) and ADC path set
|
|
// correctly.
|
|
//-----------------------------------------------------------------------------
|
|
static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len)
|
|
{
|
|
// Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
|
|
|
|
// Now run a `software UART' on the stream of incoming samples.
|
|
UartInit(received);
|
|
|
|
for(;;) {
|
|
WDT_HIT();
|
|
|
|
if(BUTTON_PRESS()) return false;
|
|
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) {
|
|
if(Handle14443bUartBit(b & mask)) {
|
|
*len = Uart.byteCnt;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Main loop of simulated tag: receive commands from reader, decide what
|
|
// response to send, and send it.
|
|
//-----------------------------------------------------------------------------
|
|
void SimulateIso14443bTag(void)
|
|
{
|
|
LED_A_ON();
|
|
// the only commands we understand is WUPB, AFI=0, Select All, N=1:
|
|
static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB
|
|
// ... and REQB, AFI=0, Normal Request, N=1:
|
|
static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
|
|
// ... and HLTB
|
|
static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
|
|
// ... and ATTRIB
|
|
static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
|
|
|
|
// ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
|
|
// supports only 106kBit/s in both directions, max frame size = 32Bytes,
|
|
// supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
|
|
static const uint8_t response1[] = {
|
|
0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
|
|
0x00, 0x21, 0x85, 0x5e, 0xd7
|
|
};
|
|
// response to HLTB and ATTRIB
|
|
static const uint8_t response2[] = {0x00, 0x78, 0xF0};
|
|
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
const uint8_t *resp;
|
|
uint8_t *respCode;
|
|
uint16_t respLen, respCodeLen;
|
|
|
|
// allocate command receive buffer
|
|
BigBuf_free();
|
|
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
|
|
|
|
uint16_t len;
|
|
uint16_t cmdsRecvd = 0;
|
|
|
|
// prepare the (only one) tag answer:
|
|
CodeIso14443bAsTag(response1, sizeof(response1));
|
|
uint8_t *resp1Code = BigBuf_malloc(ToSendMax);
|
|
memcpy(resp1Code, ToSend, ToSendMax);
|
|
uint16_t resp1CodeLen = ToSendMax;
|
|
|
|
// prepare the (other) tag answer:
|
|
CodeIso14443bAsTag(response2, sizeof(response2));
|
|
uint8_t *resp2Code = BigBuf_malloc(ToSendMax);
|
|
memcpy(resp2Code, ToSend, ToSendMax);
|
|
uint16_t resp2CodeLen = ToSendMax;
|
|
|
|
// We need to listen to the high-frequency, peak-detected path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
|
|
|
|
cmdsRecvd = 0;
|
|
|
|
for(;;) {
|
|
|
|
if(!GetIso14443bCommandFromReader(receivedCmd, &len)) {
|
|
Dbprintf("button pressed, received %d commands", cmdsRecvd);
|
|
break;
|
|
}
|
|
|
|
LogTrace(receivedCmd, len, 0, 0, NULL, true);
|
|
|
|
// Good, look at the command now.
|
|
if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0)
|
|
|| (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) {
|
|
resp = response1;
|
|
respLen = sizeof(response1);
|
|
respCode = resp1Code;
|
|
respCodeLen = resp1CodeLen;
|
|
} else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0])
|
|
|| (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) {
|
|
resp = response2;
|
|
respLen = sizeof(response2);
|
|
respCode = resp2Code;
|
|
respCodeLen = resp2CodeLen;
|
|
} else {
|
|
Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
|
|
// And print whether the CRC fails, just for good measure
|
|
uint8_t b1, b2;
|
|
if (len >= 3){ // if crc exists
|
|
ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
|
|
if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
|
|
// Not so good, try again.
|
|
DbpString("+++CRC fail");
|
|
|
|
} else {
|
|
DbpString("CRC passes");
|
|
}
|
|
}
|
|
//get rid of compiler warning
|
|
respCodeLen = 0;
|
|
resp = response1;
|
|
respLen = 0;
|
|
respCode = resp1Code;
|
|
//don't crash at new command just wait and see if reader will send other new cmds.
|
|
//break;
|
|
}
|
|
|
|
cmdsRecvd++;
|
|
|
|
if(cmdsRecvd > 0x30) {
|
|
DbpString("many commands later...");
|
|
break;
|
|
}
|
|
|
|
if(respCodeLen <= 0) continue;
|
|
|
|
// Modulate BPSK
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
|
|
AT91C_BASE_SSC->SSC_THR = 0xff;
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
|
|
|
|
// Transmit the response.
|
|
uint16_t i = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
uint8_t b = respCode[i];
|
|
|
|
AT91C_BASE_SSC->SSC_THR = b;
|
|
|
|
i++;
|
|
if(i > respCodeLen) {
|
|
break;
|
|
}
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
(void)b;
|
|
}
|
|
}
|
|
|
|
// trace the response:
|
|
LogTrace(resp, respLen, 0, 0, NULL, false);
|
|
|
|
}
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
//=============================================================================
|
|
// An ISO 14443 Type B reader. We take layer two commands, code them
|
|
// appropriately, and then send them to the tag. We then listen for the
|
|
// tag's response, which we leave in the buffer to be demodulated on the
|
|
// PC side.
|
|
//=============================================================================
|
|
|
|
static struct {
|
|
enum {
|
|
DEMOD_UNSYNCD,
|
|
DEMOD_PHASE_REF_TRAINING,
|
|
DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
|
|
DEMOD_GOT_FALLING_EDGE_OF_SOF,
|
|
DEMOD_AWAITING_START_BIT,
|
|
DEMOD_RECEIVING_DATA
|
|
} state;
|
|
int bitCount;
|
|
int posCount;
|
|
int thisBit;
|
|
/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
|
|
int metric;
|
|
int metricN;
|
|
*/
|
|
uint16_t shiftReg;
|
|
uint8_t *output;
|
|
int len;
|
|
int sumI;
|
|
int sumQ;
|
|
} Demod;
|
|
|
|
/*
|
|
* Handles reception of a bit from the tag
|
|
*
|
|
* This function is called 2 times per bit (every 4 subcarrier cycles).
|
|
* Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
|
|
*
|
|
* LED handling:
|
|
* LED C -> ON once we have received the SOF and are expecting the rest.
|
|
* LED C -> OFF once we have received EOF or are unsynced
|
|
*
|
|
* Returns: true if we received a EOF
|
|
* false if we are still waiting for some more
|
|
*
|
|
*/
|
|
static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq)
|
|
{
|
|
int v;
|
|
|
|
// The soft decision on the bit uses an estimate of just the
|
|
// quadrant of the reference angle, not the exact angle.
|
|
#define MAKE_SOFT_DECISION() { \
|
|
if(Demod.sumI > 0) { \
|
|
v = ci; \
|
|
} else { \
|
|
v = -ci; \
|
|
} \
|
|
if(Demod.sumQ > 0) { \
|
|
v += cq; \
|
|
} else { \
|
|
v -= cq; \
|
|
} \
|
|
}
|
|
|
|
#define SUBCARRIER_DETECT_THRESHOLD 8
|
|
|
|
// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
|
|
#define AMPLITUDE(ci,cq) (MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2))
|
|
switch(Demod.state) {
|
|
case DEMOD_UNSYNCD:
|
|
if(AMPLITUDE(ci,cq) > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
|
|
Demod.state = DEMOD_PHASE_REF_TRAINING;
|
|
Demod.sumI = ci;
|
|
Demod.sumQ = cq;
|
|
Demod.posCount = 1;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_PHASE_REF_TRAINING:
|
|
if(Demod.posCount < 8) {
|
|
if (AMPLITUDE(ci,cq) > SUBCARRIER_DETECT_THRESHOLD) {
|
|
// set the reference phase (will code a logic '1') by averaging over 32 1/fs.
|
|
// note: synchronization time > 80 1/fs
|
|
Demod.sumI += ci;
|
|
Demod.sumQ += cq;
|
|
Demod.posCount++;
|
|
} else { // subcarrier lost
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
} else {
|
|
Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
|
|
MAKE_SOFT_DECISION();
|
|
if(v < 0) { // logic '0' detected
|
|
Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
|
|
Demod.posCount = 0; // start of SOF sequence
|
|
} else {
|
|
if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
}
|
|
Demod.posCount++;
|
|
break;
|
|
|
|
case DEMOD_GOT_FALLING_EDGE_OF_SOF:
|
|
Demod.posCount++;
|
|
MAKE_SOFT_DECISION();
|
|
if(v > 0) {
|
|
if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
} else {
|
|
LED_C_ON(); // Got SOF
|
|
Demod.posCount = 0;
|
|
Demod.bitCount = 0;
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_AWAITING_START_BIT;
|
|
/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
|
|
Demod.metricN = 0;
|
|
Demod.metric = 0;
|
|
*/
|
|
}
|
|
} else {
|
|
if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu)
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DEMOD_AWAITING_START_BIT:
|
|
Demod.posCount++;
|
|
MAKE_SOFT_DECISION();
|
|
if (v > 0) {
|
|
if (Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
|
|
LED_C_OFF();
|
|
if (Demod.bitCount == 0 && Demod.len == 0) { // received SOF only, this is valid for iClass/Picopass
|
|
return true;
|
|
} else {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
}
|
|
} else { // start bit detected
|
|
Demod.posCount = 1; // this was the first half
|
|
Demod.thisBit = v;
|
|
Demod.shiftReg = 0;
|
|
Demod.state = DEMOD_RECEIVING_DATA;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_RECEIVING_DATA:
|
|
MAKE_SOFT_DECISION();
|
|
if (Demod.posCount == 0) { // first half of bit
|
|
Demod.thisBit = v;
|
|
Demod.posCount = 1;
|
|
} else { // second half of bit
|
|
Demod.thisBit += v;
|
|
|
|
/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
|
|
if(Demod.thisBit > 0) {
|
|
Demod.metric += Demod.thisBit;
|
|
} else {
|
|
Demod.metric -= Demod.thisBit;
|
|
}
|
|
(Demod.metricN)++;
|
|
*/
|
|
|
|
Demod.shiftReg >>= 1;
|
|
if (Demod.thisBit > 0) { // logic '1'
|
|
Demod.shiftReg |= 0x200;
|
|
}
|
|
|
|
Demod.bitCount++;
|
|
if (Demod.bitCount == 10) {
|
|
uint16_t s = Demod.shiftReg;
|
|
if ((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0'
|
|
uint8_t b = (s >> 1);
|
|
Demod.output[Demod.len] = b;
|
|
Demod.len++;
|
|
Demod.bitCount = 0;
|
|
Demod.state = DEMOD_AWAITING_START_BIT;
|
|
} else {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
if (s == 0x000) {
|
|
// This is EOF (start, stop and all data bits == '0'
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
Demod.posCount = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
static void DemodReset()
|
|
{
|
|
// Clear out the state of the "UART" that receives from the tag.
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
Demod.posCount = 0;
|
|
memset(Demod.output, 0x00, MAX_FRAME_SIZE);
|
|
}
|
|
|
|
|
|
static void DemodInit(uint8_t *data)
|
|
{
|
|
Demod.output = data;
|
|
DemodReset();
|
|
}
|
|
|
|
|
|
/*
|
|
* Demodulate the samples we received from the tag, also log to tracebuffer
|
|
* quiet: set to 'true' to disable debug output
|
|
*/
|
|
static int GetSamplesFor14443bDemod(int timeout, bool quiet) {
|
|
int ret = 0;
|
|
int maxBehindBy = 0;
|
|
bool gotFrame = false;
|
|
int lastRxCounter, samples = 0;
|
|
int8_t ci, cq;
|
|
|
|
// Allocate memory from BigBuf for some buffers
|
|
// free all previous allocations first
|
|
BigBuf_free();
|
|
|
|
// The response (tag -> reader) that we're receiving.
|
|
uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
|
|
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
uint16_t *dmaBuf = (uint16_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE * sizeof(uint16_t));
|
|
|
|
// Set up the demodulator for tag -> reader responses.
|
|
DemodInit(receivedResponse);
|
|
|
|
// wait for last transfer to complete
|
|
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY))
|
|
|
|
// Setup and start DMA.
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
|
|
FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
|
|
|
|
uint16_t *upTo = dmaBuf;
|
|
lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
|
|
|
|
// Signal field is ON with the appropriate LED:
|
|
LED_D_ON();
|
|
// And put the FPGA in the appropriate mode
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_848_KHZ | FPGA_HF_READER_MODE_RECEIVE_IQ);
|
|
|
|
for(;;) {
|
|
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1);
|
|
if(behindBy > maxBehindBy) {
|
|
maxBehindBy = behindBy;
|
|
}
|
|
|
|
if(behindBy < 1) continue;
|
|
|
|
ci = *upTo >> 8;
|
|
cq = *upTo;
|
|
upTo++;
|
|
lastRxCounter--;
|
|
if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
|
|
upTo = dmaBuf; // start reading the circular buffer from the beginning
|
|
lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
|
|
}
|
|
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; // DMA Next Counter registers
|
|
}
|
|
samples++;
|
|
|
|
if (Handle14443bSamplesDemod(ci, cq)) {
|
|
ret = Demod.len;
|
|
gotFrame = true;
|
|
break;
|
|
}
|
|
|
|
if(samples > timeout && Demod.state < DEMOD_PHASE_REF_TRAINING) {
|
|
ret = -1;
|
|
LED_C_OFF();
|
|
break;
|
|
}
|
|
}
|
|
|
|
FpgaDisableSscDma();
|
|
|
|
if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", maxBehindBy, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ);
|
|
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
//Tracing
|
|
LogTrace(Demod.output, Demod.len, 0, 0, NULL, false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Transmit the command (to the tag) that was placed in ToSend[].
|
|
//-----------------------------------------------------------------------------
|
|
static void TransmitFor14443b(void)
|
|
{
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_SHALLOW_MOD);
|
|
LED_B_ON();
|
|
for(int c = 0; c < ToSendMax; c++) {
|
|
uint8_t data = ToSend[c];
|
|
for (int i = 0; i < 8; i++) {
|
|
uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff;
|
|
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
|
|
AT91C_BASE_SSC->SSC_THR = send_word;
|
|
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
|
|
AT91C_BASE_SSC->SSC_THR = send_word;
|
|
data <<= 1;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
LED_B_OFF();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Code a layer 2 command (string of octets, including CRC) into ToSend[],
|
|
// so that it is ready to transmit to the tag using TransmitFor14443b().
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
|
|
{
|
|
int i, j;
|
|
uint8_t b;
|
|
|
|
ToSendReset();
|
|
|
|
// Send SOF
|
|
for(i = 0; i < 10; i++) {
|
|
ToSendStuffBit(0);
|
|
}
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
|
|
for(i = 0; i < len; i++) {
|
|
// Start bit
|
|
ToSendStuffBit(0);
|
|
// Data bits
|
|
b = cmd[i];
|
|
for(j = 0; j < 8; j++) {
|
|
if(b & 1) {
|
|
ToSendStuffBit(1);
|
|
} else {
|
|
ToSendStuffBit(0);
|
|
}
|
|
b >>= 1;
|
|
}
|
|
// Stop bit
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
// Send EOF
|
|
for(i = 0; i < 10; i++) {
|
|
ToSendStuffBit(0);
|
|
}
|
|
ToSendStuffBit(1);
|
|
|
|
// ensure that last byte is filled up
|
|
for(i = 0; i < 8; i++) {
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
// Convert from last character reference to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
|
|
/**
|
|
Convenience function to encode, transmit and trace iso 14443b comms
|
|
**/
|
|
static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
|
|
{
|
|
CodeIso14443bAsReader(cmd, len);
|
|
TransmitFor14443b();
|
|
LogTrace(cmd,len, 0, 0, NULL, true);
|
|
}
|
|
|
|
/* Sends an APDU to the tag
|
|
* TODO: check CRC and preamble
|
|
*/
|
|
int iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response) {
|
|
LED_A_ON();
|
|
uint8_t message_frame[message_length + 4];
|
|
// PCB
|
|
message_frame[0] = 0x0A | pcb_blocknum;
|
|
pcb_blocknum ^= 1;
|
|
// CID
|
|
message_frame[1] = 0;
|
|
// INF
|
|
memcpy(message_frame + 2, message, message_length);
|
|
// EDC (CRC)
|
|
ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]);
|
|
// send
|
|
CodeAndTransmit14443bAsReader(message_frame, message_length + 4);
|
|
// get response
|
|
int ret = GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
|
|
FpgaDisableTracing();
|
|
if (ret < 3) {
|
|
LED_A_OFF();
|
|
return 0;
|
|
}
|
|
// TODO: Check CRC
|
|
// copy response contents
|
|
if (response != NULL) {
|
|
memcpy(response, Demod.output, Demod.len);
|
|
}
|
|
LED_A_OFF();
|
|
return ret;
|
|
}
|
|
|
|
/* Perform the ISO 14443 B Card Selection procedure
|
|
* Currently does NOT do any collision handling.
|
|
* It expects 0-1 cards in the device's range.
|
|
* TODO: Support multiple cards (perform anticollision)
|
|
* TODO: Verify CRC checksums
|
|
*/
|
|
int iso14443b_select_card()
|
|
{
|
|
// WUPB command (including CRC)
|
|
// Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
|
|
static const uint8_t wupb[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
|
|
// ATTRIB command (with space for CRC)
|
|
uint8_t attrib[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
|
|
|
|
// first, wake up the tag
|
|
CodeAndTransmit14443bAsReader(wupb, sizeof(wupb));
|
|
int ret = GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
|
|
// ATQB too short?
|
|
if (ret < 14) {
|
|
return 2;
|
|
}
|
|
|
|
// select the tag
|
|
// copy the PUPI to ATTRIB
|
|
memcpy(attrib + 1, Demod.output + 1, 4);
|
|
/* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into
|
|
ATTRIB (Param 3) */
|
|
attrib[7] = Demod.output[10] & 0x0F;
|
|
ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10);
|
|
CodeAndTransmit14443bAsReader(attrib, sizeof(attrib));
|
|
ret = GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
|
|
// Answer to ATTRIB too short?
|
|
if (ret < 3) {
|
|
return 2;
|
|
}
|
|
// reset PCB block number
|
|
pcb_blocknum = 0;
|
|
return 1;
|
|
}
|
|
|
|
// Set up ISO 14443 Type B communication (similar to iso14443a_setup)
|
|
void iso14443b_setup() {
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
// Set up the synchronous serial port
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
|
|
// connect Demodulated Signal to ADC:
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_SHALLOW_MOD);
|
|
|
|
DemodReset();
|
|
UartReset();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read a SRI512 ISO 14443B tag.
|
|
//
|
|
// SRI512 tags are just simple memory tags, here we're looking at making a dump
|
|
// of the contents of the memory. No anticollision algorithm is done, we assume
|
|
// we have a single tag in the field.
|
|
//
|
|
// I tried to be systematic and check every answer of the tag, every CRC, etc...
|
|
//-----------------------------------------------------------------------------
|
|
void ReadSTMemoryIso14443b(uint32_t dwLast)
|
|
{
|
|
LED_A_ON();
|
|
uint8_t i = 0x00;
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
// Make sure that we start from off, since the tags are stateful;
|
|
// confusing things will happen if we don't reset them between reads.
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
|
|
|
|
// Now give it time to spin up.
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_SHALLOW_MOD);
|
|
SpinDelay(200);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
// First command: wake up the tag using the INITIATE command
|
|
uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b};
|
|
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
|
|
int ret = GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
|
|
|
|
if (ret < 0) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("No response from tag");
|
|
LEDsoff();
|
|
return;
|
|
} else {
|
|
Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
|
|
Demod.output[0], Demod.output[1], Demod.output[2]);
|
|
}
|
|
|
|
// There is a response, SELECT the uid
|
|
DbpString("Now SELECT tag:");
|
|
cmd1[0] = 0x0E; // 0x0E is SELECT
|
|
cmd1[1] = Demod.output[0];
|
|
ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
|
|
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
|
|
ret = GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
|
|
if (Demod.len != 3) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
|
|
LEDsoff();
|
|
return;
|
|
}
|
|
// Check the CRC of the answer:
|
|
ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
|
|
if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("CRC Error reading select response.");
|
|
LEDsoff();
|
|
return;
|
|
}
|
|
// Check response from the tag: should be the same UID as the command we just sent:
|
|
if (cmd1[1] != Demod.output[0]) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]);
|
|
LEDsoff();
|
|
return;
|
|
}
|
|
|
|
// Tag is now selected,
|
|
// First get the tag's UID:
|
|
cmd1[0] = 0x0B;
|
|
ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
|
|
CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
|
|
ret = GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
|
|
if (ret != 10) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
|
|
LEDsoff();
|
|
return;
|
|
}
|
|
// The check the CRC of the answer (use cmd1 as temporary variable):
|
|
ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
|
|
if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
|
|
Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
|
|
(cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
|
|
// Do not return;, let's go on... (we should retry, maybe ?)
|
|
}
|
|
Dbprintf("Tag UID (64 bits): %08x %08x",
|
|
(Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
|
|
(Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
|
|
|
|
// Now loop to read all 16 blocks, address from 0 to last block
|
|
Dbprintf("Tag memory dump, block 0 to %d", dwLast);
|
|
cmd1[0] = 0x08;
|
|
i = 0x00;
|
|
dwLast++;
|
|
for (;;) {
|
|
if (i == dwLast) {
|
|
DbpString("System area block (0xff):");
|
|
i = 0xff;
|
|
}
|
|
cmd1[1] = i;
|
|
ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
|
|
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
|
|
ret = GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, true);
|
|
if (ret != 6) { // Check if we got an answer from the tag
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbpString("Expected 6 bytes from tag, got less...");
|
|
LEDsoff();
|
|
return;
|
|
}
|
|
// The check the CRC of the answer (use cmd1 as temporary variable):
|
|
ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
|
|
if (cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
|
|
Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
|
|
(cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
|
|
// Do not return;, let's go on... (we should retry, maybe ?)
|
|
}
|
|
// Now print out the memory location:
|
|
Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
|
|
(Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
|
|
(Demod.output[4]<<8)+Demod.output[5]);
|
|
if (i == 0xff) {
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
// Finally, the `sniffer' combines elements from both the reader and
|
|
// simulated tag, to show both sides of the conversation.
|
|
//=============================================================================
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Record the sequence of commands sent by the reader to the tag, with
|
|
// triggering so that we start recording at the point that the tag is moved
|
|
// near the reader.
|
|
//-----------------------------------------------------------------------------
|
|
/*
|
|
* Memory usage for this function, (within BigBuf)
|
|
* Last Received command (reader->tag) - MAX_FRAME_SIZE
|
|
* Last Received command (tag->reader) - MAX_FRAME_SIZE
|
|
* DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
|
|
* Demodulated samples received - all the rest
|
|
*/
|
|
void RAMFUNC SnoopIso14443b(void)
|
|
{
|
|
LED_A_ON();
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
BigBuf_free();
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
uint16_t *dmaBuf = (uint16_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE * sizeof(uint16_t));
|
|
int lastRxCounter;
|
|
uint16_t *upTo;
|
|
int8_t ci, cq;
|
|
int maxBehindBy = 0;
|
|
|
|
// Count of samples received so far, so that we can include timing
|
|
// information in the trace buffer.
|
|
int samples = 0;
|
|
|
|
DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
|
|
UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
|
|
|
|
// Print some debug information about the buffer sizes
|
|
Dbprintf("Snooping buffers initialized:");
|
|
Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
|
|
Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
|
|
Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
|
|
Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
|
|
|
|
// Signal field is off
|
|
LED_D_OFF();
|
|
|
|
// And put the FPGA in the appropriate mode
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_848_KHZ | FPGA_HF_READER_MODE_SNOOP_IQ);
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
// Setup for the DMA.
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
|
|
upTo = dmaBuf;
|
|
lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
|
|
FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
|
|
|
|
bool TagIsActive = false;
|
|
bool ReaderIsActive = false;
|
|
// We won't start recording the frames that we acquire until we trigger.
|
|
// A good trigger condition to get started is probably when we see a
|
|
// reader command
|
|
bool triggered = false;
|
|
|
|
// And now we loop, receiving samples.
|
|
for(;;) {
|
|
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1);
|
|
if(behindBy > maxBehindBy) {
|
|
maxBehindBy = behindBy;
|
|
}
|
|
|
|
if(behindBy < 1) continue;
|
|
|
|
ci = *upTo>>8;
|
|
cq = *upTo;
|
|
upTo++;
|
|
lastRxCounter--;
|
|
if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
|
|
upTo = dmaBuf; // start reading the circular buffer from the beginning again
|
|
lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
|
|
if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) {
|
|
Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
|
|
break;
|
|
}
|
|
}
|
|
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE; // DMA Next Counter registers
|
|
WDT_HIT();
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("cancelled");
|
|
break;
|
|
}
|
|
}
|
|
|
|
samples++;
|
|
|
|
if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
|
|
if(Handle14443bUartBit(ci & 0x01)) {
|
|
triggered = true;
|
|
LogTrace(Uart.output, Uart.byteCnt, samples, samples, NULL, true);
|
|
/* And ready to receive another command. */
|
|
UartReset();
|
|
/* And also reset the demod code, which might have been */
|
|
/* false-triggered by the commands from the reader. */
|
|
DemodReset();
|
|
}
|
|
if(Handle14443bUartBit(cq & 0x01)) {
|
|
triggered = true;
|
|
LogTrace(Uart.output, Uart.byteCnt, samples, samples, NULL, true);
|
|
/* And ready to receive another command. */
|
|
UartReset();
|
|
/* And also reset the demod code, which might have been */
|
|
/* false-triggered by the commands from the reader. */
|
|
DemodReset();
|
|
}
|
|
ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
|
|
}
|
|
|
|
if (!ReaderIsActive && triggered) { // no need to try decoding tag data if the reader is sending or not yet triggered
|
|
if (Handle14443bSamplesDemod(ci/2, cq/2) >= 0) {
|
|
//Use samples as a time measurement
|
|
LogTrace(Demod.output, Demod.len, samples, samples, NULL, false);
|
|
// And ready to receive another response.
|
|
DemodReset();
|
|
}
|
|
TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
|
|
}
|
|
|
|
}
|
|
|
|
FpgaDisableSscDma();
|
|
DbpString("Snoop statistics:");
|
|
Dbprintf(" Max behind by: %i", maxBehindBy);
|
|
Dbprintf(" Uart State: %x", Uart.state);
|
|
Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt);
|
|
Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax);
|
|
Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
|
|
LEDsoff();
|
|
}
|
|
|
|
|
|
/*
|
|
* Send raw command to tag ISO14443B
|
|
* @Input
|
|
* datalen len of buffer data
|
|
* recv bool when true wait for data from tag and send to client
|
|
* powerfield bool leave the field on when true
|
|
* data buffer with byte to send
|
|
*
|
|
* @Output
|
|
* none
|
|
*
|
|
*/
|
|
void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[])
|
|
{
|
|
LED_A_ON();
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
// switch field on and give tag some time to power up
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_SHALLOW_MOD);
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
|
|
SpinDelay(10);
|
|
|
|
if (datalen){
|
|
set_tracing(true);
|
|
|
|
CodeAndTransmit14443bAsReader(data, datalen);
|
|
|
|
if (recv) {
|
|
int ret = GetSamplesFor14443bDemod(5*RECEIVE_SAMPLES_TIMEOUT, true);
|
|
FpgaDisableTracing();
|
|
uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE);
|
|
cmd_send(CMD_ACK, ret, 0, 0, Demod.output, iLen);
|
|
}
|
|
|
|
FpgaDisableTracing();
|
|
}
|
|
|
|
if (!powerfield) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
}
|
|
|
|
LED_A_OFF();
|
|
}
|
|
|