mirror of
https://github.com/Proxmark/proxmark3.git
synced 2024-11-21 04:50:14 -08:00
2598 lines
87 KiB
C
2598 lines
87 KiB
C
//-----------------------------------------------------------------------------
|
|
// Merlok - June 2011, 2012
|
|
// Gerhard de Koning Gans - May 2008
|
|
// Hagen Fritsch - June 2010
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Routines to support ISO 14443 type A.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "iso14443a.h"
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "util.h"
|
|
#include "usb_cdc.h"
|
|
#include "iso14443crc.h"
|
|
#include "crapto1/crapto1.h"
|
|
#include "mifareutil.h"
|
|
#include "mifaresniff.h"
|
|
#include "BigBuf.h"
|
|
#include "protocols.h"
|
|
#include "parity.h"
|
|
#include "fpgaloader.h"
|
|
|
|
typedef struct {
|
|
enum {
|
|
DEMOD_UNSYNCD,
|
|
// DEMOD_HALF_SYNCD,
|
|
// DEMOD_MOD_FIRST_HALF,
|
|
// DEMOD_NOMOD_FIRST_HALF,
|
|
DEMOD_MANCHESTER_DATA
|
|
} state;
|
|
uint16_t twoBits;
|
|
uint16_t highCnt;
|
|
uint16_t bitCount;
|
|
uint16_t collisionPos;
|
|
uint16_t syncBit;
|
|
uint8_t parityBits;
|
|
uint8_t parityLen;
|
|
uint16_t shiftReg;
|
|
uint16_t samples;
|
|
uint16_t len;
|
|
uint32_t startTime, endTime;
|
|
uint8_t *output;
|
|
uint8_t *parity;
|
|
} tDemod;
|
|
|
|
typedef enum {
|
|
MOD_NOMOD = 0,
|
|
MOD_SECOND_HALF,
|
|
MOD_FIRST_HALF,
|
|
MOD_BOTH_HALVES
|
|
} Modulation_t;
|
|
|
|
typedef struct {
|
|
enum {
|
|
STATE_UNSYNCD,
|
|
STATE_START_OF_COMMUNICATION,
|
|
STATE_MILLER_X,
|
|
STATE_MILLER_Y,
|
|
STATE_MILLER_Z,
|
|
// DROP_NONE,
|
|
// DROP_FIRST_HALF,
|
|
} state;
|
|
uint16_t shiftReg;
|
|
int16_t bitCount;
|
|
uint16_t len;
|
|
uint16_t byteCntMax;
|
|
uint16_t posCnt;
|
|
uint16_t syncBit;
|
|
uint8_t parityBits;
|
|
uint8_t parityLen;
|
|
uint32_t fourBits;
|
|
uint32_t startTime, endTime;
|
|
uint8_t *output;
|
|
uint8_t *parity;
|
|
} tUart;
|
|
|
|
static uint32_t iso14a_timeout;
|
|
#define MAX_ISO14A_TIMEOUT 524288
|
|
|
|
int rsamples = 0;
|
|
uint8_t trigger = 0;
|
|
// the block number for the ISO14443-4 PCB
|
|
static uint8_t iso14_pcb_blocknum = 0;
|
|
|
|
//
|
|
// ISO14443 timing:
|
|
//
|
|
// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
|
|
#define REQUEST_GUARD_TIME (7000/16 + 1)
|
|
// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
|
|
#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
|
|
// bool LastCommandWasRequest = false;
|
|
|
|
//
|
|
// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
|
|
//
|
|
// When the PM acts as reader and is receiving tag data, it takes
|
|
// 3 ticks delay in the AD converter
|
|
// 16 ticks until the modulation detector completes and sets curbit
|
|
// 8 ticks until bit_to_arm is assigned from curbit
|
|
// 8*16 ticks for the transfer from FPGA to ARM
|
|
// 4*16 ticks until we measure the time
|
|
// - 8*16 ticks because we measure the time of the previous transfer
|
|
#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
|
|
|
|
// When the PM acts as a reader and is sending, it takes
|
|
// 4*16 ticks until we can write data to the sending hold register
|
|
// 8*16 ticks until the SHR is transferred to the Sending Shift Register
|
|
// 8 ticks until the first transfer starts
|
|
// 8 ticks later the FPGA samples the data
|
|
// 1 tick to assign mod_sig_coil
|
|
#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
|
|
|
|
// When the PM acts as tag and is receiving it takes
|
|
// 2 ticks delay in the RF part (for the first falling edge),
|
|
// 3 ticks for the A/D conversion,
|
|
// 8 ticks on average until the start of the SSC transfer,
|
|
// 8 ticks until the SSC samples the first data
|
|
// 7*16 ticks to complete the transfer from FPGA to ARM
|
|
// 8 ticks until the next ssp_clk rising edge
|
|
// 4*16 ticks until we measure the time
|
|
// - 8*16 ticks because we measure the time of the previous transfer
|
|
#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
|
|
|
|
// The FPGA will report its internal sending delay in
|
|
uint16_t FpgaSendQueueDelay;
|
|
// the 5 first bits are the number of bits buffered in mod_sig_buf
|
|
// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
|
|
#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
|
|
|
|
// When the PM acts as tag and is sending, it takes
|
|
// 4*16 + 8 ticks until we can write data to the sending hold register
|
|
// 8*16 ticks until the SHR is transferred to the Sending Shift Register
|
|
// 8 ticks later the FPGA samples the first data
|
|
// + 16 ticks until assigned to mod_sig
|
|
// + 1 tick to assign mod_sig_coil
|
|
// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
|
|
#define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE)
|
|
|
|
// When the PM acts as sniffer and is receiving tag data, it takes
|
|
// 3 ticks A/D conversion
|
|
// 14 ticks to complete the modulation detection
|
|
// 8 ticks (on average) until the result is stored in to_arm
|
|
// + the delays in transferring data - which is the same for
|
|
// sniffing reader and tag data and therefore not relevant
|
|
#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
|
|
|
|
// When the PM acts as sniffer and is receiving reader data, it takes
|
|
// 2 ticks delay in analogue RF receiver (for the falling edge of the
|
|
// start bit, which marks the start of the communication)
|
|
// 3 ticks A/D conversion
|
|
// 8 ticks on average until the data is stored in to_arm.
|
|
// + the delays in transferring data - which is the same for
|
|
// sniffing reader and tag data and therefore not relevant
|
|
#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
|
|
|
|
//variables used for timing purposes:
|
|
//these are in ssp_clk cycles:
|
|
static uint32_t NextTransferTime;
|
|
static uint32_t LastTimeProxToAirStart;
|
|
static uint32_t LastProxToAirDuration;
|
|
|
|
|
|
|
|
// CARD TO READER - manchester
|
|
// Sequence D: 11110000 modulation with subcarrier during first half
|
|
// Sequence E: 00001111 modulation with subcarrier during second half
|
|
// Sequence F: 00000000 no modulation with subcarrier
|
|
// READER TO CARD - miller
|
|
// Sequence X: 00001100 drop after half a period
|
|
// Sequence Y: 00000000 no drop
|
|
// Sequence Z: 11000000 drop at start
|
|
#define SEC_D 0xf0
|
|
#define SEC_E 0x0f
|
|
#define SEC_F 0x00
|
|
#define SEC_X 0x0c
|
|
#define SEC_Y 0x00
|
|
#define SEC_Z 0xc0
|
|
|
|
void iso14a_set_trigger(bool enable) {
|
|
trigger = enable;
|
|
}
|
|
|
|
|
|
void iso14a_set_timeout(uint32_t timeout) {
|
|
// adjust timeout by FPGA delays and 2 additional ssp_frames to detect SOF
|
|
iso14a_timeout = timeout + (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8) + 2;
|
|
if (MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %" PRIu32 " (%dms)", timeout, timeout / 106);
|
|
}
|
|
|
|
|
|
uint32_t iso14a_get_timeout(void) {
|
|
return iso14a_timeout - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8) - 2;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Generate the parity value for a byte sequence
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
|
|
{
|
|
uint16_t paritybit_cnt = 0;
|
|
uint16_t paritybyte_cnt = 0;
|
|
uint8_t parityBits = 0;
|
|
|
|
for (uint16_t i = 0; i < iLen; i++) {
|
|
// Generate the parity bits
|
|
parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
|
|
if (paritybit_cnt == 7) {
|
|
par[paritybyte_cnt] = parityBits; // save 8 Bits parity
|
|
parityBits = 0; // and advance to next Parity Byte
|
|
paritybyte_cnt++;
|
|
paritybit_cnt = 0;
|
|
} else {
|
|
paritybit_cnt++;
|
|
}
|
|
}
|
|
|
|
// save remaining parity bits
|
|
par[paritybyte_cnt] = parityBits;
|
|
|
|
}
|
|
|
|
void AppendCrc14443a(uint8_t* data, int len)
|
|
{
|
|
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
|
|
}
|
|
|
|
static void AppendCrc14443b(uint8_t* data, int len)
|
|
{
|
|
ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
// ISO 14443 Type A - Miller decoder
|
|
//=============================================================================
|
|
// Basics:
|
|
// This decoder is used when the PM3 acts as a tag.
|
|
// The reader will generate "pauses" by temporarily switching of the field.
|
|
// At the PM3 antenna we will therefore measure a modulated antenna voltage.
|
|
// The FPGA does a comparison with a threshold and would deliver e.g.:
|
|
// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
|
|
// The Miller decoder needs to identify the following sequences:
|
|
// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
|
|
// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
|
|
// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
|
|
// Note 1: the bitstream may start at any time. We therefore need to sync.
|
|
// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
|
|
//-----------------------------------------------------------------------------
|
|
static tUart Uart;
|
|
|
|
// Lookup-Table to decide if 4 raw bits are a modulation.
|
|
// We accept the following:
|
|
// 0001 - a 3 tick wide pause
|
|
// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
|
|
// 0111 - a 2 tick wide pause shifted left
|
|
// 1001 - a 2 tick wide pause shifted right
|
|
const bool Mod_Miller_LUT[] = {
|
|
false, true, false, true, false, false, false, true,
|
|
false, true, false, false, false, false, false, false
|
|
};
|
|
#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
|
|
#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
|
|
|
|
static void UartReset() {
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.bitCount = 0;
|
|
Uart.len = 0; // number of decoded data bytes
|
|
Uart.parityLen = 0; // number of decoded parity bytes
|
|
Uart.shiftReg = 0; // shiftreg to hold decoded data bits
|
|
Uart.parityBits = 0; // holds 8 parity bits
|
|
}
|
|
|
|
static void UartInit(uint8_t *data, uint8_t *parity) {
|
|
Uart.output = data;
|
|
Uart.parity = parity;
|
|
Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
|
|
Uart.startTime = 0;
|
|
Uart.endTime = 0;
|
|
UartReset();
|
|
}
|
|
|
|
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
|
|
static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) {
|
|
|
|
Uart.fourBits = (Uart.fourBits << 8) | bit;
|
|
|
|
if (Uart.state == STATE_UNSYNCD) { // not yet synced
|
|
|
|
Uart.syncBit = 9999; // not set
|
|
// The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
|
|
// Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
|
|
// we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
|
|
// (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
|
|
#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
|
|
#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
|
|
if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
|
|
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
|
|
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
|
|
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
|
|
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
|
|
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
|
|
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
|
|
else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
|
|
|
|
if (Uart.syncBit != 9999) { // found a sync bit
|
|
Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
|
|
Uart.startTime -= Uart.syncBit;
|
|
Uart.endTime = Uart.startTime;
|
|
Uart.state = STATE_START_OF_COMMUNICATION;
|
|
LED_B_ON();
|
|
}
|
|
|
|
} else {
|
|
|
|
if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
|
|
if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
|
|
LED_B_OFF();
|
|
UartReset();
|
|
} else { // Modulation in first half = Sequence Z = logic "0"
|
|
if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
|
|
LED_B_OFF();
|
|
UartReset();
|
|
} else {
|
|
Uart.bitCount++;
|
|
Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
|
|
Uart.state = STATE_MILLER_Z;
|
|
Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
|
|
if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
|
|
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
|
|
Uart.parityBits <<= 1; // make room for the parity bit
|
|
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
|
|
Uart.bitCount = 0;
|
|
Uart.shiftReg = 0;
|
|
if((Uart.len&0x0007) == 0) { // every 8 data bytes
|
|
Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
|
|
Uart.parityBits = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
|
|
Uart.bitCount++;
|
|
Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
|
|
Uart.state = STATE_MILLER_X;
|
|
Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
|
|
if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
|
|
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
|
|
Uart.parityBits <<= 1; // make room for the new parity bit
|
|
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
|
|
Uart.bitCount = 0;
|
|
Uart.shiftReg = 0;
|
|
if ((Uart.len&0x0007) == 0) { // every 8 data bytes
|
|
Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
|
|
Uart.parityBits = 0;
|
|
}
|
|
}
|
|
} else { // no modulation in both halves - Sequence Y
|
|
if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
|
|
LED_B_OFF();
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.bitCount--; // last "0" was part of EOC sequence
|
|
Uart.shiftReg <<= 1; // drop it
|
|
if(Uart.bitCount > 0) { // if we decoded some bits
|
|
Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
|
|
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
|
|
Uart.parityBits <<= 1; // add a (void) parity bit
|
|
Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
|
|
Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
|
|
return true;
|
|
} else if (Uart.len & 0x0007) { // there are some parity bits to store
|
|
Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
|
|
Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
|
|
}
|
|
if (Uart.len) {
|
|
return true; // we are finished with decoding the raw data sequence
|
|
} else {
|
|
UartReset(); // Nothing received - start over
|
|
}
|
|
}
|
|
if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
|
|
LED_B_OFF();
|
|
UartReset();
|
|
} else { // a logic "0"
|
|
Uart.bitCount++;
|
|
Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
|
|
Uart.state = STATE_MILLER_Y;
|
|
if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
|
|
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
|
|
Uart.parityBits <<= 1; // make room for the parity bit
|
|
Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
|
|
Uart.bitCount = 0;
|
|
Uart.shiftReg = 0;
|
|
if ((Uart.len&0x0007) == 0) { // every 8 data bytes
|
|
Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
|
|
Uart.parityBits = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
return false; // not finished yet, need more data
|
|
}
|
|
|
|
|
|
|
|
//=============================================================================
|
|
// ISO 14443 Type A - Manchester decoder
|
|
//=============================================================================
|
|
// Basics:
|
|
// This decoder is used when the PM3 acts as a reader.
|
|
// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
|
|
// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
|
|
// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
|
|
// The Manchester decoder needs to identify the following sequences:
|
|
// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
|
|
// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
|
|
// 8 ticks unmodulated: Sequence F = end of communication
|
|
// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
|
|
// Note 1: the bitstream may start at any time. We therefore need to sync.
|
|
// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
|
|
static tDemod Demod;
|
|
|
|
// Lookup-Table to decide if 4 raw bits are a modulation.
|
|
// We accept three or four "1" in any position
|
|
const bool Mod_Manchester_LUT[] = {
|
|
false, false, false, false, false, false, false, true,
|
|
false, false, false, true, false, true, true, true
|
|
};
|
|
|
|
#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
|
|
#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
|
|
|
|
|
|
static void DemodReset() {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
Demod.len = 0; // number of decoded data bytes
|
|
Demod.parityLen = 0;
|
|
Demod.shiftReg = 0; // shiftreg to hold decoded data bits
|
|
Demod.parityBits = 0; //
|
|
Demod.collisionPos = 0; // Position of collision bit
|
|
Demod.twoBits = 0xffff; // buffer for 2 Bits
|
|
Demod.highCnt = 0;
|
|
Demod.startTime = 0;
|
|
Demod.endTime = 0;
|
|
}
|
|
|
|
static void DemodInit(uint8_t *data, uint8_t *parity) {
|
|
Demod.output = data;
|
|
Demod.parity = parity;
|
|
DemodReset();
|
|
}
|
|
|
|
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
|
|
static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) {
|
|
|
|
Demod.twoBits = (Demod.twoBits << 8) | bit;
|
|
|
|
if (Demod.state == DEMOD_UNSYNCD) {
|
|
|
|
if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
|
|
if (Demod.twoBits == 0x0000) {
|
|
Demod.highCnt++;
|
|
} else {
|
|
Demod.highCnt = 0;
|
|
}
|
|
} else {
|
|
Demod.syncBit = 0xFFFF; // not set
|
|
if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
|
|
else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
|
|
else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
|
|
else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
|
|
else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
|
|
else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
|
|
else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
|
|
else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
|
|
if (Demod.syncBit != 0xFFFF) {
|
|
Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
|
|
Demod.startTime -= Demod.syncBit;
|
|
Demod.bitCount = offset; // number of decoded data bits
|
|
Demod.state = DEMOD_MANCHESTER_DATA;
|
|
LED_C_ON();
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
|
|
if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
|
|
if (!Demod.collisionPos) {
|
|
Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
|
|
}
|
|
} // modulation in first half only - Sequence D = 1
|
|
Demod.bitCount++;
|
|
Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
|
|
if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
|
|
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
|
|
Demod.parityBits <<= 1; // make room for the parity bit
|
|
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
if((Demod.len&0x0007) == 0) { // every 8 data bytes
|
|
Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
|
|
Demod.parityBits = 0;
|
|
}
|
|
}
|
|
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
|
|
} else { // no modulation in first half
|
|
if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
|
|
Demod.bitCount++;
|
|
Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
|
|
if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
|
|
Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
|
|
Demod.parityBits <<= 1; // make room for the new parity bit
|
|
Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
if ((Demod.len&0x0007) == 0) { // every 8 data bytes
|
|
Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
|
|
Demod.parityBits = 0;
|
|
}
|
|
}
|
|
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
|
|
} else { // no modulation in both halves - End of communication
|
|
LED_C_OFF();
|
|
if(Demod.bitCount > 0) { // there are some remaining data bits
|
|
Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
|
|
Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
|
|
Demod.parityBits <<= 1; // add a (void) parity bit
|
|
Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
|
|
Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
|
|
return true;
|
|
} else if (Demod.len & 0x0007) { // there are some parity bits to store
|
|
Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
|
|
Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
|
|
}
|
|
if (Demod.len) {
|
|
return true; // we are finished with decoding the raw data sequence
|
|
} else { // nothing received. Start over
|
|
DemodReset();
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
return false; // not finished yet, need more data
|
|
}
|
|
|
|
//=============================================================================
|
|
// Finally, a `sniffer' for ISO 14443 Type A
|
|
// Both sides of communication!
|
|
//=============================================================================
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Record the sequence of commands sent by the reader to the tag, with
|
|
// triggering so that we start recording at the point that the tag is moved
|
|
// near the reader.
|
|
//-----------------------------------------------------------------------------
|
|
void RAMFUNC SnoopIso14443a(uint8_t param) {
|
|
// param:
|
|
// bit 0 - trigger from first card answer
|
|
// bit 1 - trigger from first reader 7-bit request
|
|
|
|
LEDsoff();
|
|
LED_A_ON();
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
|
|
|
|
// Allocate memory from BigBuf for some buffers
|
|
// free all previous allocations first
|
|
BigBuf_free();
|
|
|
|
// The command (reader -> tag) that we're receiving.
|
|
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
|
|
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
|
|
|
|
// The response (tag -> reader) that we're receiving.
|
|
uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
|
|
uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
|
|
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
|
|
|
|
// init trace buffer
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
uint8_t *data = dmaBuf;
|
|
uint8_t previous_data = 0;
|
|
int maxDataLen = 0;
|
|
int dataLen = 0;
|
|
bool TagIsActive = false;
|
|
bool ReaderIsActive = false;
|
|
|
|
// Set up the demodulator for tag -> reader responses.
|
|
DemodInit(receivedResponse, receivedResponsePar);
|
|
|
|
// Set up the demodulator for the reader -> tag commands
|
|
UartInit(receivedCmd, receivedCmdPar);
|
|
|
|
// Setup and start DMA.
|
|
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
|
|
|
|
// We won't start recording the frames that we acquire until we trigger;
|
|
// a good trigger condition to get started is probably when we see a
|
|
// response from the tag.
|
|
// triggered == false -- to wait first for card
|
|
bool triggered = !(param & 0x03);
|
|
|
|
// And now we loop, receiving samples.
|
|
for (uint32_t rsamples = 0; true; ) {
|
|
|
|
if (BUTTON_PRESS()) {
|
|
DbpString("cancelled by button");
|
|
break;
|
|
}
|
|
|
|
WDT_HIT();
|
|
|
|
int register readBufDataP = data - dmaBuf;
|
|
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
|
|
if (readBufDataP <= dmaBufDataP){
|
|
dataLen = dmaBufDataP - readBufDataP;
|
|
} else {
|
|
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
|
|
}
|
|
// test for length of buffer
|
|
if(dataLen > maxDataLen) {
|
|
maxDataLen = dataLen;
|
|
if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
|
|
Dbprintf("blew circular buffer! dataLen=%d", dataLen);
|
|
break;
|
|
}
|
|
}
|
|
if(dataLen < 1) continue;
|
|
|
|
// primary buffer was stopped( <-- we lost data!
|
|
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
|
|
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
|
|
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
|
|
Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
|
|
}
|
|
// secondary buffer sets as primary, secondary buffer was stopped
|
|
if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
|
|
}
|
|
|
|
if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
|
|
|
|
if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
|
|
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
|
|
if (MillerDecoding(readerdata, (rsamples-1)*4)) {
|
|
// check - if there is a short 7bit request from reader
|
|
if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) {
|
|
triggered = true;
|
|
}
|
|
if(triggered) {
|
|
if (!LogTrace(receivedCmd,
|
|
Uart.len,
|
|
Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
|
|
Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
|
|
Uart.parity,
|
|
true)) break;
|
|
}
|
|
/* And ready to receive another command. */
|
|
UartReset();
|
|
/* And also reset the demod code, which might have been */
|
|
/* false-triggered by the commands from the reader. */
|
|
DemodReset();
|
|
}
|
|
ReaderIsActive = (Uart.state != STATE_UNSYNCD);
|
|
}
|
|
|
|
if (!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
|
|
uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
|
|
if (ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
|
|
if (!LogTrace(receivedResponse,
|
|
Demod.len,
|
|
Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
|
|
Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
|
|
Demod.parity,
|
|
false)) break;
|
|
if ((!triggered) && (param & 0x01)) triggered = true;
|
|
// And ready to receive another response.
|
|
DemodReset();
|
|
// And reset the Miller decoder including itS (now outdated) input buffer
|
|
UartInit(receivedCmd, receivedCmdPar);
|
|
}
|
|
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
|
|
}
|
|
}
|
|
|
|
previous_data = *data;
|
|
rsamples++;
|
|
data++;
|
|
if(data == dmaBuf + DMA_BUFFER_SIZE) {
|
|
data = dmaBuf;
|
|
}
|
|
} // main cycle
|
|
|
|
FpgaDisableSscDma();
|
|
LEDsoff();
|
|
|
|
DbpString("COMMAND FINISHED");
|
|
Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
|
|
Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Prepare tag messages
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) {
|
|
ToSendReset();
|
|
|
|
// Correction bit, might be removed when not needed
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(1); // 1
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
|
|
// Send startbit
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
LastProxToAirDuration = 8 * ToSendMax - 4;
|
|
|
|
for (uint16_t i = 0; i < len; i++) {
|
|
uint8_t b = cmd[i];
|
|
|
|
// Data bits
|
|
for (uint16_t j = 0; j < 8; j++) {
|
|
if(b & 1) {
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
} else {
|
|
ToSend[++ToSendMax] = SEC_E;
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// Get the parity bit
|
|
if (parity[i>>3] & (0x80>>(i&0x0007))) {
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
LastProxToAirDuration = 8 * ToSendMax - 4;
|
|
} else {
|
|
ToSend[++ToSendMax] = SEC_E;
|
|
LastProxToAirDuration = 8 * ToSendMax;
|
|
}
|
|
}
|
|
|
|
// Send stopbit
|
|
ToSend[++ToSendMax] = SEC_F;
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
|
|
static void Code4bitAnswerAsTag(uint8_t cmd) {
|
|
int i;
|
|
|
|
ToSendReset();
|
|
|
|
// Correction bit, might be removed when not needed
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(1); // 1
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
|
|
// Send startbit
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
|
|
uint8_t b = cmd;
|
|
for (i = 0; i < 4; i++) {
|
|
if(b & 1) {
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
LastProxToAirDuration = 8 * ToSendMax - 4;
|
|
} else {
|
|
ToSend[++ToSendMax] = SEC_E;
|
|
LastProxToAirDuration = 8 * ToSendMax;
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// Send stopbit
|
|
ToSend[++ToSendMax] = SEC_F;
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
|
|
static uint8_t *LastReaderTraceTime = NULL;
|
|
|
|
static void EmLogTraceReader(void) {
|
|
// remember last reader trace start to fix timing info later
|
|
LastReaderTraceTime = BigBuf_get_addr() + BigBuf_get_traceLen();
|
|
LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
|
|
}
|
|
|
|
|
|
static void FixLastReaderTraceTime(uint32_t tag_StartTime) {
|
|
uint32_t reader_EndTime = Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG;
|
|
uint32_t reader_StartTime = Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG;
|
|
uint16_t reader_modlen = reader_EndTime - reader_StartTime;
|
|
uint16_t approx_fdt = tag_StartTime - reader_EndTime;
|
|
uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
|
|
reader_StartTime = tag_StartTime - exact_fdt - reader_modlen;
|
|
LastReaderTraceTime[0] = (reader_StartTime >> 0) & 0xff;
|
|
LastReaderTraceTime[1] = (reader_StartTime >> 8) & 0xff;
|
|
LastReaderTraceTime[2] = (reader_StartTime >> 16) & 0xff;
|
|
LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff;
|
|
}
|
|
|
|
|
|
static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) {
|
|
uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG;
|
|
uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG;
|
|
LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false);
|
|
FixLastReaderTraceTime(tag_StartTime);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Wait for commands from reader
|
|
// Stop when button is pressed
|
|
// Or return true when command is captured
|
|
//-----------------------------------------------------------------------------
|
|
static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) {
|
|
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
|
|
|
|
// Now run a `software UART' on the stream of incoming samples.
|
|
UartInit(received, parity);
|
|
|
|
// clear RXRDY:
|
|
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
for (;;) {
|
|
WDT_HIT();
|
|
|
|
if(BUTTON_PRESS()) return false;
|
|
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
if(MillerDecoding(b, 0)) {
|
|
*len = Uart.len;
|
|
EmLogTraceReader();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int EmSend4bit(uint8_t resp);
|
|
static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
|
|
int EmSendCmd(uint8_t *resp, uint16_t respLen);
|
|
int EmSendPrecompiledCmd(tag_response_info_t *response_info);
|
|
|
|
|
|
static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
|
|
// Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
|
|
// This will need the following byte array for a modulation sequence
|
|
// 144 data bits (18 * 8)
|
|
// 18 parity bits
|
|
// 2 Start and stop
|
|
// 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
|
|
// 1 just for the case
|
|
// ----------- +
|
|
// 166 bytes, since every bit that needs to be send costs us a byte
|
|
//
|
|
|
|
|
|
// Prepare the tag modulation bits from the message
|
|
GetParity(response_info->response, response_info->response_n, &(response_info->par));
|
|
CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par));
|
|
|
|
// Make sure we do not exceed the free buffer space
|
|
if (ToSendMax > max_buffer_size) {
|
|
Dbprintf("Out of memory, when modulating bits for tag answer:");
|
|
Dbhexdump(response_info->response_n, response_info->response, false);
|
|
return false;
|
|
}
|
|
|
|
// Copy the byte array, used for this modulation to the buffer position
|
|
memcpy(response_info->modulation, ToSend, ToSendMax);
|
|
|
|
// Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
|
|
response_info->modulation_n = ToSendMax;
|
|
response_info->ProxToAirDuration = LastProxToAirDuration;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
|
|
// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
|
|
// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation
|
|
// -> need 273 bytes buffer
|
|
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
|
|
|
|
bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_t **buffer, size_t *max_buffer_size) {
|
|
|
|
// Retrieve and store the current buffer index
|
|
response_info->modulation = *buffer;
|
|
|
|
// Forward the prepare tag modulation function to the inner function
|
|
if (prepare_tag_modulation(response_info, *max_buffer_size)) {
|
|
// Update the free buffer offset and the remaining buffer size
|
|
*buffer += ToSendMax;
|
|
*max_buffer_size -= ToSendMax;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Main loop of simulated tag: receive commands from reader, decide what
|
|
// response to send, and send it.
|
|
//-----------------------------------------------------------------------------
|
|
void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, uint8_t* data) {
|
|
|
|
uint8_t sak;
|
|
|
|
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
|
|
uint8_t response1[2];
|
|
|
|
switch (tagType) {
|
|
case 1: { // MIFARE Classic
|
|
// Says: I am Mifare 1k - original line
|
|
response1[0] = 0x04;
|
|
response1[1] = 0x00;
|
|
sak = 0x08;
|
|
} break;
|
|
case 2: { // MIFARE Ultralight
|
|
// Says: I am a stupid memory tag, no crypto
|
|
response1[0] = 0x04;
|
|
response1[1] = 0x00;
|
|
sak = 0x00;
|
|
} break;
|
|
case 3: { // MIFARE DESFire
|
|
// Says: I am a DESFire tag, ph33r me
|
|
response1[0] = 0x04;
|
|
response1[1] = 0x03;
|
|
sak = 0x20;
|
|
} break;
|
|
case 4: { // ISO/IEC 14443-4
|
|
// Says: I am a javacard (JCOP)
|
|
response1[0] = 0x04;
|
|
response1[1] = 0x00;
|
|
sak = 0x28;
|
|
} break;
|
|
case 5: { // MIFARE TNP3XXX
|
|
// Says: I am a toy
|
|
response1[0] = 0x01;
|
|
response1[1] = 0x0f;
|
|
sak = 0x01;
|
|
} break;
|
|
default: {
|
|
Dbprintf("Error: unkown tagtype (%d)",tagType);
|
|
return;
|
|
} break;
|
|
}
|
|
|
|
// The second response contains the (mandatory) first 24 bits of the UID
|
|
uint8_t response2[5] = {0x00};
|
|
|
|
// Check if the uid uses the (optional) part
|
|
uint8_t response2a[5] = {0x00};
|
|
|
|
if (uid_2nd) {
|
|
response2[0] = 0x88;
|
|
num_to_bytes(uid_1st,3,response2+1);
|
|
num_to_bytes(uid_2nd,4,response2a);
|
|
response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
|
|
|
|
// Configure the ATQA and SAK accordingly
|
|
response1[0] |= 0x40;
|
|
sak |= 0x04;
|
|
} else {
|
|
num_to_bytes(uid_1st,4,response2);
|
|
// Configure the ATQA and SAK accordingly
|
|
response1[0] &= 0xBF;
|
|
sak &= 0xFB;
|
|
}
|
|
|
|
// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
|
|
response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
|
|
|
|
// Prepare the mandatory SAK (for 4 and 7 byte UID)
|
|
uint8_t response3[3] = {0x00};
|
|
response3[0] = sak;
|
|
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
|
|
|
|
// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
|
|
uint8_t response3a[3] = {0x00};
|
|
response3a[0] = sak & 0xFB;
|
|
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
|
|
|
|
uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
|
|
uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
|
|
// Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
|
|
// TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
|
|
// TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
|
|
// TC(1) = 0x02: CID supported, NAD not supported
|
|
ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
|
|
|
|
#define TAG_RESPONSE_COUNT 7
|
|
tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
|
|
{ .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
|
|
{ .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
|
|
{ .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
|
|
{ .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
|
|
{ .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
|
|
{ .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
|
|
{ .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
|
|
};
|
|
|
|
// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
|
|
// Such a response is less time critical, so we can prepare them on the fly
|
|
#define DYNAMIC_RESPONSE_BUFFER_SIZE 64
|
|
#define DYNAMIC_MODULATION_BUFFER_SIZE 512
|
|
uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
|
|
uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
|
|
tag_response_info_t dynamic_response_info = {
|
|
.response = dynamic_response_buffer,
|
|
.response_n = 0,
|
|
.modulation = dynamic_modulation_buffer,
|
|
.modulation_n = 0
|
|
};
|
|
|
|
// We need to listen to the high-frequency, peak-detected path.
|
|
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
|
|
|
|
BigBuf_free_keep_EM();
|
|
|
|
// allocate buffers:
|
|
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
|
|
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
|
|
uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
|
|
size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
|
|
// clear trace
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
// Prepare the responses of the anticollision phase
|
|
// there will be not enough time to do this at the moment the reader sends it REQA
|
|
for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
|
|
prepare_allocated_tag_modulation(&responses[i], &free_buffer_pointer, &free_buffer_size);
|
|
}
|
|
|
|
int len = 0;
|
|
|
|
// To control where we are in the protocol
|
|
int order = 0;
|
|
int lastorder;
|
|
|
|
// Just to allow some checks
|
|
int happened = 0;
|
|
int happened2 = 0;
|
|
int cmdsRecvd = 0;
|
|
|
|
cmdsRecvd = 0;
|
|
tag_response_info_t* p_response;
|
|
|
|
LED_A_ON();
|
|
for (;;) {
|
|
// Clean receive command buffer
|
|
if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
|
|
DbpString("Button press");
|
|
break;
|
|
}
|
|
|
|
p_response = NULL;
|
|
|
|
// Okay, look at the command now.
|
|
lastorder = order;
|
|
if(receivedCmd[0] == 0x26) { // Received a REQUEST
|
|
p_response = &responses[0]; order = 1;
|
|
} else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
|
|
p_response = &responses[0]; order = 6;
|
|
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
|
|
p_response = &responses[1]; order = 2;
|
|
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
|
|
p_response = &responses[2]; order = 20;
|
|
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
|
|
p_response = &responses[3]; order = 3;
|
|
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
|
|
p_response = &responses[4]; order = 30;
|
|
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
|
|
EmSendCmd(data+(4*receivedCmd[1]),16);
|
|
// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
|
|
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
|
|
p_response = NULL;
|
|
} else if(receivedCmd[0] == 0x50) { // Received a HALT
|
|
p_response = NULL;
|
|
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
|
|
p_response = &responses[5]; order = 7;
|
|
} else if(receivedCmd[0] == 0xE0) { // Received a RATS request
|
|
if (tagType == 1 || tagType == 2) { // RATS not supported
|
|
EmSend4bit(CARD_NACK_NA);
|
|
p_response = NULL;
|
|
} else {
|
|
p_response = &responses[6]; order = 70;
|
|
}
|
|
} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
|
|
uint32_t nr = bytes_to_num(receivedCmd,4);
|
|
uint32_t ar = bytes_to_num(receivedCmd+4,4);
|
|
Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
|
|
} else {
|
|
// Check for ISO 14443A-4 compliant commands, look at left nibble
|
|
switch (receivedCmd[0]) {
|
|
|
|
case 0x0B:
|
|
case 0x0A: { // IBlock (command)
|
|
dynamic_response_info.response[0] = receivedCmd[0];
|
|
dynamic_response_info.response[1] = 0x00;
|
|
dynamic_response_info.response[2] = 0x90;
|
|
dynamic_response_info.response[3] = 0x00;
|
|
dynamic_response_info.response_n = 4;
|
|
} break;
|
|
|
|
case 0x1A:
|
|
case 0x1B: { // Chaining command
|
|
dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
|
|
dynamic_response_info.response_n = 2;
|
|
} break;
|
|
|
|
case 0xaa:
|
|
case 0xbb: {
|
|
dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
|
|
dynamic_response_info.response_n = 2;
|
|
} break;
|
|
|
|
case 0xBA: { //
|
|
memcpy(dynamic_response_info.response,"\xAB\x00",2);
|
|
dynamic_response_info.response_n = 2;
|
|
} break;
|
|
|
|
case 0xCA:
|
|
case 0xC2: { // Readers sends deselect command
|
|
memcpy(dynamic_response_info.response,"\xCA\x00",2);
|
|
dynamic_response_info.response_n = 2;
|
|
} break;
|
|
|
|
default: {
|
|
// Never seen this command before
|
|
Dbprintf("Received unknown command (len=%d):",len);
|
|
Dbhexdump(len,receivedCmd,false);
|
|
// Do not respond
|
|
dynamic_response_info.response_n = 0;
|
|
} break;
|
|
}
|
|
|
|
if (dynamic_response_info.response_n > 0) {
|
|
// Copy the CID from the reader query
|
|
dynamic_response_info.response[1] = receivedCmd[1];
|
|
|
|
// Add CRC bytes, always used in ISO 14443A-4 compliant cards
|
|
AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
|
|
dynamic_response_info.response_n += 2;
|
|
|
|
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
|
|
Dbprintf("Error preparing tag response");
|
|
break;
|
|
}
|
|
p_response = &dynamic_response_info;
|
|
}
|
|
}
|
|
|
|
// Count number of wakeups received after a halt
|
|
if(order == 6 && lastorder == 5) { happened++; }
|
|
|
|
// Count number of other messages after a halt
|
|
if(order != 6 && lastorder == 5) { happened2++; }
|
|
|
|
if(cmdsRecvd > 999) {
|
|
DbpString("1000 commands later...");
|
|
break;
|
|
}
|
|
cmdsRecvd++;
|
|
|
|
if (p_response != NULL) {
|
|
EmSendPrecompiledCmd(p_response);
|
|
}
|
|
|
|
if (!get_tracing()) {
|
|
Dbprintf("Trace Full. Simulation stopped.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
|
|
LED_A_OFF();
|
|
BigBuf_free_keep_EM();
|
|
}
|
|
|
|
|
|
// prepare a delayed transfer. This simply shifts ToSend[] by a number
|
|
// of bits specified in the delay parameter.
|
|
static void PrepareDelayedTransfer(uint16_t delay) {
|
|
uint8_t bitmask = 0;
|
|
uint8_t bits_to_shift = 0;
|
|
uint8_t bits_shifted = 0;
|
|
|
|
delay &= 0x07;
|
|
if (delay) {
|
|
for (uint16_t i = 0; i < delay; i++) {
|
|
bitmask |= (0x01 << i);
|
|
}
|
|
ToSend[ToSendMax++] = 0x00;
|
|
for (uint16_t i = 0; i < ToSendMax; i++) {
|
|
bits_to_shift = ToSend[i] & bitmask;
|
|
ToSend[i] = ToSend[i] >> delay;
|
|
ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
|
|
bits_shifted = bits_to_shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// Transmit the command (to the tag) that was placed in ToSend[].
|
|
// Parameter timing:
|
|
// if NULL: transfer at next possible time, taking into account
|
|
// request guard time, startup frame guard time and frame delay time
|
|
// if == 0: transfer immediately and return time of transfer
|
|
// if != 0: delay transfer until time specified
|
|
//-------------------------------------------------------------------------------------
|
|
static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) {
|
|
LED_B_ON();
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
|
|
|
uint32_t ThisTransferTime = 0;
|
|
|
|
if (timing) {
|
|
if (*timing == 0) { // Measure time
|
|
*timing = (GetCountSspClk() + 8) & 0xfffffff8;
|
|
} else {
|
|
PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
|
|
}
|
|
if (MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
|
|
while (GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
|
|
LastTimeProxToAirStart = *timing;
|
|
} else {
|
|
ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
|
|
while (GetCountSspClk() < ThisTransferTime);
|
|
LastTimeProxToAirStart = ThisTransferTime;
|
|
}
|
|
|
|
uint16_t c = 0;
|
|
for (;;) {
|
|
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = cmd[c];
|
|
c++;
|
|
if(c >= len) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
|
|
LED_B_OFF();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Prepare reader command (in bits, support short frames) to send to FPGA
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) {
|
|
int i, j;
|
|
int last;
|
|
uint8_t b;
|
|
|
|
ToSendReset();
|
|
|
|
// Start of Communication (Seq. Z)
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
|
|
last = 0;
|
|
|
|
size_t bytecount = nbytes(bits);
|
|
// Generate send structure for the data bits
|
|
for (i = 0; i < bytecount; i++) {
|
|
// Get the current byte to send
|
|
b = cmd[i];
|
|
size_t bitsleft = MIN((bits-(i*8)),8);
|
|
|
|
for (j = 0; j < bitsleft; j++) {
|
|
if (b & 1) {
|
|
// Sequence X
|
|
ToSend[++ToSendMax] = SEC_X;
|
|
LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
|
|
last = 1;
|
|
} else {
|
|
if (last == 0) {
|
|
// Sequence Z
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
|
|
} else {
|
|
// Sequence Y
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
last = 0;
|
|
}
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// Only transmit parity bit if we transmitted a complete byte
|
|
if (j == 8 && parity != NULL) {
|
|
// Get the parity bit
|
|
if (parity[i>>3] & (0x80 >> (i&0x0007))) {
|
|
// Sequence X
|
|
ToSend[++ToSendMax] = SEC_X;
|
|
LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
|
|
last = 1;
|
|
} else {
|
|
if (last == 0) {
|
|
// Sequence Z
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
|
|
} else {
|
|
// Sequence Y
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
last = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// End of Communication: Logic 0 followed by Sequence Y
|
|
if (last == 0) {
|
|
// Sequence Z
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
|
|
} else {
|
|
// Sequence Y
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
last = 0;
|
|
}
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
|
|
// Convert to length of command:
|
|
ToSendMax++;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Wait for commands from reader
|
|
// Stop when button is pressed (return 1) or field was gone (return 2)
|
|
// Or return 0 when command is captured
|
|
//-----------------------------------------------------------------------------
|
|
int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) {
|
|
uint32_t field_off_time = -1;
|
|
uint32_t samples = 0;
|
|
int ret = 0;
|
|
uint8_t b = 0;;
|
|
uint8_t dmaBuf[DMA_BUFFER_SIZE];
|
|
uint8_t *upTo = dmaBuf;
|
|
|
|
*len = 0;
|
|
|
|
// Run a 'software UART' on the stream of incoming samples.
|
|
UartInit(received, parity);
|
|
|
|
// start ADC
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
|
|
|
|
// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
|
|
while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3) - 8 - 3) /* wait */ ;
|
|
|
|
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
|
|
|
|
// clear receive register, measure time of next transfer
|
|
uint32_t temp = AT91C_BASE_SSC->SSC_RHR; (void) temp;
|
|
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
|
|
uint32_t start_time = GetCountSspClk() & 0xfffffff8;
|
|
|
|
// Setup and start DMA.
|
|
FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE);
|
|
|
|
for(;;) {
|
|
uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE-1);
|
|
|
|
if (behindBy == 0) continue;
|
|
|
|
b = *upTo++;
|
|
|
|
if(upTo >= dmaBuf + DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
|
|
upTo = dmaBuf; // start reading the circular buffer from the beginning
|
|
if(behindBy > (9*DMA_BUFFER_SIZE/10)) {
|
|
Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; // DMA Next Counter registers
|
|
}
|
|
|
|
if (BUTTON_PRESS()) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
// check reader's HF field
|
|
if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW)) {
|
|
if ((MAX_ADC_HF_VOLTAGE_LOW * AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_LOW]) >> 10 < MF_MINFIELDV) {
|
|
if (GetTickCount() - field_off_time > 50) {
|
|
ret = 2; // reader has switched off HF field for more than 50ms. Timeout
|
|
break;
|
|
}
|
|
} else {
|
|
field_off_time = GetTickCount(); // HF field is still there. Reset timer
|
|
}
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // restart ADC
|
|
}
|
|
|
|
if (MillerDecoding(b, start_time + samples*8)) {
|
|
*len = Uart.len;
|
|
EmLogTraceReader();
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
samples++;
|
|
}
|
|
|
|
FpgaDisableSscDma();
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen) {
|
|
LED_C_ON();
|
|
|
|
uint8_t b;
|
|
uint16_t i = 0;
|
|
bool correctionNeeded;
|
|
|
|
// Modulate Manchester
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
|
|
|
|
// include correction bit if necessary
|
|
if (Uart.bitCount == 7)
|
|
{
|
|
// Short tags (7 bits) don't have parity, determine the correct value from MSB
|
|
correctionNeeded = Uart.output[0] & 0x40;
|
|
}
|
|
else
|
|
{
|
|
// Look at the last parity bit
|
|
correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7));
|
|
}
|
|
|
|
if (correctionNeeded) {
|
|
// 1236, so correction bit needed
|
|
i = 0;
|
|
} else {
|
|
i = 1;
|
|
}
|
|
|
|
// clear receiving shift register and holding register
|
|
b = AT91C_BASE_SSC->SSC_RHR; (void) b;
|
|
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
|
|
b = AT91C_BASE_SSC->SSC_RHR; (void) b;
|
|
|
|
// wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
|
|
for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
|
|
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
|
|
if (AT91C_BASE_SSC->SSC_RHR) break;
|
|
}
|
|
|
|
LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0);
|
|
|
|
// send cycle
|
|
for (; i < respLen; ) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = resp[i++];
|
|
FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
}
|
|
|
|
if(BUTTON_PRESS()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
LED_C_OFF();
|
|
return 0;
|
|
}
|
|
|
|
|
|
int EmSend4bit(uint8_t resp){
|
|
Code4bitAnswerAsTag(resp);
|
|
int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
|
|
// Log this tag answer and fix timing of previous reader command:
|
|
EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration);
|
|
return res;
|
|
}
|
|
|
|
|
|
static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
|
|
CodeIso14443aAsTagPar(resp, respLen, par);
|
|
int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
|
|
// Log this tag answer and fix timing of previous reader command:
|
|
EmLogTraceTag(resp, respLen, par, LastProxToAirDuration);
|
|
return res;
|
|
}
|
|
|
|
|
|
int EmSendCmd(uint8_t *resp, uint16_t respLen){
|
|
uint8_t par[MAX_PARITY_SIZE];
|
|
GetParity(resp, respLen, par);
|
|
return EmSendCmdExPar(resp, respLen, par);
|
|
}
|
|
|
|
|
|
int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
|
|
return EmSendCmdExPar(resp, respLen, par);
|
|
}
|
|
|
|
|
|
int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
|
|
int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n);
|
|
// Log this tag answer and fix timing of previous reader command:
|
|
EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration);
|
|
return ret;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Wait a certain time for tag response
|
|
// If a response is captured return true
|
|
// If it takes too long return false
|
|
//-----------------------------------------------------------------------------
|
|
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) {
|
|
uint32_t c;
|
|
|
|
// Set FPGA mode to "reader listen mode", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
// Now get the answer from the card
|
|
DemodInit(receivedResponse, receivedResponsePar);
|
|
|
|
// clear RXRDY:
|
|
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
c = 0;
|
|
for (;;) {
|
|
WDT_HIT();
|
|
|
|
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
if (ManchesterDecoding(b, offset, 0)) {
|
|
NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
|
|
return true;
|
|
} else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) {
|
|
|
|
CodeIso14443aBitsAsReaderPar(frame, bits, par);
|
|
|
|
// Send command to tag
|
|
TransmitFor14443a(ToSend, ToSendMax, timing);
|
|
if (trigger)
|
|
LED_A_ON();
|
|
|
|
// Log reader command in trace buffer
|
|
LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
|
|
}
|
|
|
|
|
|
void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) {
|
|
ReaderTransmitBitsPar(frame, len*8, par, timing);
|
|
}
|
|
|
|
|
|
static void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) {
|
|
// Generate parity and redirect
|
|
uint8_t par[MAX_PARITY_SIZE];
|
|
GetParity(frame, len/8, par);
|
|
ReaderTransmitBitsPar(frame, len, par, timing);
|
|
}
|
|
|
|
|
|
void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) {
|
|
// Generate parity and redirect
|
|
uint8_t par[MAX_PARITY_SIZE];
|
|
GetParity(frame, len, par);
|
|
ReaderTransmitBitsPar(frame, len*8, par, timing);
|
|
}
|
|
|
|
|
|
static int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) {
|
|
if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false;
|
|
LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
|
|
return Demod.len;
|
|
}
|
|
|
|
|
|
int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) {
|
|
if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false;
|
|
|
|
LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
|
|
return Demod.len;
|
|
}
|
|
|
|
|
|
static void iso14a_set_ATS_times(uint8_t *ats) {
|
|
|
|
uint8_t tb1;
|
|
uint8_t fwi, sfgi;
|
|
uint32_t fwt, sfgt;
|
|
|
|
if (ats[0] > 1) { // there is a format byte T0
|
|
if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
|
|
if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
|
|
tb1 = ats[3];
|
|
} else {
|
|
tb1 = ats[2];
|
|
}
|
|
fwi = (tb1 & 0xf0) >> 4; // frame waiting time integer (FWI)
|
|
if (fwi != 15) {
|
|
fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
|
|
iso14a_set_timeout(fwt/(8*16));
|
|
}
|
|
sfgi = tb1 & 0x0f; // startup frame guard time integer (SFGI)
|
|
if (sfgi != 0 && sfgi != 15) {
|
|
sfgt = 256 * 16 * (1 << sfgi); // startup frame guard time (SFGT) in 1/fc
|
|
NextTransferTime = MAX(NextTransferTime, Demod.endTime + (sfgt - DELAY_AIR2ARM_AS_READER - DELAY_ARM2AIR_AS_READER)/16);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int GetATQA(uint8_t *resp, uint8_t *resp_par) {
|
|
|
|
#define WUPA_RETRY_TIMEOUT 10 // 10ms
|
|
uint8_t wupa[] = {ISO14443A_CMD_WUPA}; // 0x26 - REQA 0x52 - WAKE-UP
|
|
|
|
uint32_t save_iso14a_timeout = iso14a_get_timeout();
|
|
iso14a_set_timeout(1236/(16*8)+1); // response to WUPA is expected at exactly 1236/fc. No need to wait longer.
|
|
|
|
uint32_t start_time = GetTickCount();
|
|
int len;
|
|
|
|
// we may need several tries if we did send an unknown command or a wrong authentication before...
|
|
do {
|
|
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
|
|
ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
|
|
// Receive the ATQA
|
|
len = ReaderReceive(resp, resp_par);
|
|
} while (len == 0 && GetTickCount() <= start_time + WUPA_RETRY_TIMEOUT);
|
|
|
|
iso14a_set_timeout(save_iso14a_timeout);
|
|
return len;
|
|
}
|
|
|
|
|
|
// performs iso14443a anticollision (optional) and card select procedure
|
|
// fills the uid and cuid pointer unless NULL
|
|
// fills the card info record unless NULL
|
|
// if anticollision is false, then the UID must be provided in uid_ptr[]
|
|
// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
|
|
// requests ATS unless no_rats is true
|
|
int iso14443a_select_card(uint8_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) {
|
|
uint8_t sel_all[] = { 0x93,0x20 };
|
|
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
|
|
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
|
|
uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
|
|
uint8_t resp_par[MAX_PARITY_SIZE];
|
|
uint8_t uid_resp[4];
|
|
size_t uid_resp_len;
|
|
|
|
uint8_t sak = 0x04; // cascade uid
|
|
int cascade_level = 0;
|
|
int len;
|
|
|
|
// init card struct
|
|
if (p_hi14a_card) {
|
|
p_hi14a_card->uidlen = 0;
|
|
memset(p_hi14a_card->uid, 0, 10);
|
|
p_hi14a_card->ats_len = 0;
|
|
}
|
|
|
|
if (!GetATQA(resp, resp_par)) {
|
|
return 0;
|
|
}
|
|
|
|
if (p_hi14a_card) {
|
|
memcpy(p_hi14a_card->atqa, resp, 2);
|
|
}
|
|
|
|
if (anticollision) {
|
|
// clear uid
|
|
if (uid_ptr) {
|
|
memset(uid_ptr,0,10);
|
|
}
|
|
}
|
|
|
|
// check for proprietary anticollision:
|
|
if ((resp[0] & 0x1F) == 0) {
|
|
return 3;
|
|
}
|
|
|
|
// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
|
|
// which case we need to make a cascade 2 request and select - this is a long UID
|
|
// While the UID is not complete, the 3rd bit (from the right) is set in the SAK.
|
|
for (; sak & 0x04; cascade_level++) {
|
|
// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
|
|
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
|
|
|
|
if (anticollision) {
|
|
// SELECT_ALL
|
|
ReaderTransmit(sel_all, sizeof(sel_all), NULL);
|
|
if (!ReaderReceive(resp, resp_par)) {
|
|
return 0;
|
|
}
|
|
|
|
if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
|
|
memset(uid_resp, 0, 4);
|
|
uint16_t uid_resp_bits = 0;
|
|
uint16_t collision_answer_offset = 0;
|
|
// anti-collision-loop:
|
|
while (Demod.collisionPos) {
|
|
Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
|
|
for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
|
|
uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
|
|
uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
|
|
}
|
|
uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
|
|
uid_resp_bits++;
|
|
// construct anticollosion command:
|
|
sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
|
|
for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
|
|
sel_uid[2+i] = uid_resp[i];
|
|
}
|
|
collision_answer_offset = uid_resp_bits%8;
|
|
ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
|
|
if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) {
|
|
return 0;
|
|
}
|
|
}
|
|
// finally, add the last bits and BCC of the UID
|
|
for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
|
|
uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
|
|
uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
|
|
}
|
|
|
|
} else { // no collision, use the response to SELECT_ALL as current uid
|
|
memcpy(uid_resp, resp, 4);
|
|
}
|
|
} else {
|
|
if (cascade_level < num_cascades - 1) {
|
|
uid_resp[0] = 0x88;
|
|
memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
|
|
} else {
|
|
memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
|
|
}
|
|
}
|
|
uid_resp_len = 4;
|
|
|
|
// calculate crypto UID. Always use last 4 Bytes.
|
|
if(cuid_ptr) {
|
|
*cuid_ptr = bytes_to_num(uid_resp, 4);
|
|
}
|
|
|
|
// Construct SELECT UID command
|
|
sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
|
|
memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
|
|
sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
|
|
AppendCrc14443a(sel_uid, 7); // calculate and add CRC
|
|
ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
|
|
|
|
// Receive the SAK
|
|
if (!ReaderReceive(resp, resp_par)) {
|
|
return 0;
|
|
}
|
|
sak = resp[0];
|
|
|
|
// Test if more parts of the uid are coming
|
|
if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
|
|
// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
|
|
// http://www.nxp.com/documents/application_note/AN10927.pdf
|
|
uid_resp[0] = uid_resp[1];
|
|
uid_resp[1] = uid_resp[2];
|
|
uid_resp[2] = uid_resp[3];
|
|
uid_resp_len = 3;
|
|
}
|
|
|
|
if(uid_ptr && anticollision) {
|
|
memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
|
|
}
|
|
|
|
if(p_hi14a_card) {
|
|
memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
|
|
p_hi14a_card->uidlen += uid_resp_len;
|
|
}
|
|
}
|
|
|
|
if(p_hi14a_card) {
|
|
p_hi14a_card->sak = sak;
|
|
}
|
|
|
|
// PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0)
|
|
if( (sak & 0x20) == 0) return 2;
|
|
|
|
if (!no_rats) {
|
|
// Request for answer to select
|
|
AppendCrc14443a(rats, 2);
|
|
ReaderTransmit(rats, sizeof(rats), NULL);
|
|
|
|
if (!(len = ReaderReceive(resp, resp_par))) {
|
|
return 0;
|
|
}
|
|
|
|
if(p_hi14a_card) {
|
|
memcpy(p_hi14a_card->ats, resp, len);
|
|
p_hi14a_card->ats_len = len;
|
|
}
|
|
|
|
// reset the PCB block number
|
|
iso14_pcb_blocknum = 0;
|
|
|
|
// set default timeout and delay next transfer based on ATS
|
|
iso14a_set_ATS_times(resp);
|
|
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
void iso14443a_setup(uint8_t fpga_minor_mode) {
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
// Set up the synchronous serial port
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
|
|
// connect Demodulated Signal to ADC:
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
// Signal field is on with the appropriate LED
|
|
if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
|
|
|| fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
|
|
LED_D_ON();
|
|
} else {
|
|
LED_D_OFF();
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
|
|
|
|
// Set ADC to read field strength
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
|
|
AT91C_BASE_ADC->ADC_MR =
|
|
ADC_MODE_PRESCALE(63) |
|
|
ADC_MODE_STARTUP_TIME(1) |
|
|
ADC_MODE_SAMPLE_HOLD_TIME(15);
|
|
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_LOW);
|
|
|
|
// Start the timer
|
|
StartCountSspClk();
|
|
|
|
DemodReset();
|
|
UartReset();
|
|
LastTimeProxToAirStart = 0;
|
|
FpgaSendQueueDelay = 0;
|
|
LastProxToAirDuration = 20; // arbitrary small value. Avoid lock in EmGetCmd()
|
|
NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
|
|
iso14a_set_timeout(1060); // 10ms default
|
|
}
|
|
|
|
/* Peter Fillmore 2015
|
|
Added card id field to the function
|
|
info from ISO14443A standard
|
|
b1 = Block Number
|
|
b2 = RFU (always 1)
|
|
b3 = depends on block
|
|
b4 = Card ID following if set to 1
|
|
b5 = depends on block type
|
|
b6 = depends on block type
|
|
b7,b8 = block type.
|
|
Coding of I-BLOCK:
|
|
b8 b7 b6 b5 b4 b3 b2 b1
|
|
0 0 0 x x x 1 x
|
|
b5 = chaining bit
|
|
Coding of R-block:
|
|
b8 b7 b6 b5 b4 b3 b2 b1
|
|
1 0 1 x x 0 1 x
|
|
b5 = ACK/NACK
|
|
Coding of S-block:
|
|
b8 b7 b6 b5 b4 b3 b2 b1
|
|
1 1 x x x 0 1 0
|
|
b5,b6 = 00 - DESELECT
|
|
11 - WTX
|
|
*/
|
|
int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, uint8_t *res) {
|
|
uint8_t parity[MAX_PARITY_SIZE];
|
|
uint8_t real_cmd[cmd_len + 4];
|
|
|
|
if (cmd_len) {
|
|
// ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
|
|
real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00)
|
|
if (send_chaining) {
|
|
real_cmd[0] |= 0x10;
|
|
}
|
|
// put block number into the PCB
|
|
real_cmd[0] |= iso14_pcb_blocknum;
|
|
memcpy(real_cmd + 1, cmd, cmd_len);
|
|
} else {
|
|
// R-block. ACK
|
|
real_cmd[0] = 0xA2; // r-block + ACK
|
|
real_cmd[0] |= iso14_pcb_blocknum;
|
|
}
|
|
AppendCrc14443a(real_cmd, cmd_len + 1);
|
|
|
|
ReaderTransmit(real_cmd, cmd_len + 3, NULL);
|
|
|
|
size_t len = ReaderReceive(data, parity);
|
|
uint8_t *data_bytes = (uint8_t *) data;
|
|
|
|
if (!len) {
|
|
return 0; //DATA LINK ERROR
|
|
} else {
|
|
// S-Block WTX
|
|
while (len && ((data_bytes[0] & 0xF2) == 0xF2)) {
|
|
uint32_t save_iso14a_timeout = iso14a_get_timeout();
|
|
// temporarily increase timeout
|
|
iso14a_set_timeout(MAX((data_bytes[1] & 0x3f) * save_iso14a_timeout, MAX_ISO14A_TIMEOUT));
|
|
// Transmit WTX back
|
|
// byte1 - WTXM [1..59]. command FWT=FWT*WTXM
|
|
data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b
|
|
// now need to fix CRC.
|
|
AppendCrc14443a(data_bytes, len - 2);
|
|
// transmit S-Block
|
|
ReaderTransmit(data_bytes, len, NULL);
|
|
// retrieve the result again (with increased timeout)
|
|
len = ReaderReceive(data, parity);
|
|
data_bytes = data;
|
|
// restore timeout
|
|
iso14a_set_timeout(save_iso14a_timeout);
|
|
}
|
|
|
|
// if we received an I- or R(ACK)-Block with a block number equal to the
|
|
// current block number, toggle the current block number
|
|
if (len >= 3 // PCB+CRC = 3 bytes
|
|
&& ((data_bytes[0] & 0xC0) == 0 // I-Block
|
|
|| (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
|
|
&& (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
|
|
{
|
|
iso14_pcb_blocknum ^= 1;
|
|
}
|
|
|
|
// if we received I-block with chaining we need to send ACK and receive another block of data
|
|
if (res)
|
|
*res = data_bytes[0];
|
|
|
|
// crc check
|
|
if (len >= 3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) {
|
|
return -1;
|
|
}
|
|
|
|
}
|
|
|
|
if (len) {
|
|
// cut frame byte
|
|
len -= 1;
|
|
// memmove(data_bytes, data_bytes + 1, len);
|
|
for (int i = 0; i < len; i++)
|
|
data_bytes[i] = data_bytes[i + 1];
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read an ISO 14443a tag. Send out commands and store answers.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void ReaderIso14443a(UsbCommand *c) {
|
|
|
|
iso14a_command_t param = c->arg[0];
|
|
uint8_t *cmd = c->d.asBytes;
|
|
size_t len = c->arg[1] & 0xffff;
|
|
size_t lenbits = c->arg[1] >> 16;
|
|
uint32_t timeout = c->arg[2];
|
|
uint32_t arg0 = 0;
|
|
uint8_t buf[USB_CMD_DATA_SIZE] = {0};
|
|
uint8_t par[MAX_PARITY_SIZE];
|
|
bool cantSELECT = false;
|
|
|
|
set_tracing(true);
|
|
|
|
if (param & ISO14A_CLEAR_TRACE) {
|
|
clear_trace();
|
|
}
|
|
|
|
if (param & ISO14A_REQUEST_TRIGGER) {
|
|
iso14a_set_trigger(true);
|
|
}
|
|
|
|
if (param & ISO14A_CONNECT) {
|
|
LED_A_ON();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
if(!(param & ISO14A_NO_SELECT)) {
|
|
iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
|
|
arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS);
|
|
|
|
// if we cant select then we cant send data
|
|
if (arg0 != 1 && arg0 != 2) {
|
|
// 1 - all is OK with ATS, 2 - without ATS
|
|
cantSELECT = true;
|
|
}
|
|
FpgaDisableTracing();
|
|
LED_B_ON();
|
|
cmd_send(CMD_NACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
|
|
LED_B_OFF();
|
|
}
|
|
}
|
|
|
|
if (param & ISO14A_SET_TIMEOUT) {
|
|
iso14a_set_timeout(timeout);
|
|
}
|
|
|
|
if (param & ISO14A_APDU && !cantSELECT) {
|
|
uint8_t res;
|
|
arg0 = iso14_apdu(cmd, len, (param & ISO14A_SEND_CHAINING), buf, &res);
|
|
FpgaDisableTracing();
|
|
LED_B_ON();
|
|
cmd_send(CMD_ACK, arg0, res, 0, buf, sizeof(buf));
|
|
LED_B_OFF();
|
|
}
|
|
|
|
if (param & ISO14A_RAW && !cantSELECT) {
|
|
if (param & ISO14A_APPEND_CRC) {
|
|
if(param & ISO14A_TOPAZMODE) {
|
|
AppendCrc14443b(cmd,len);
|
|
} else {
|
|
AppendCrc14443a(cmd,len);
|
|
}
|
|
len += 2;
|
|
if (lenbits) lenbits += 16;
|
|
}
|
|
if (lenbits > 0) { // want to send a specific number of bits (e.g. short commands)
|
|
if (param & ISO14A_TOPAZMODE) {
|
|
int bits_to_send = lenbits;
|
|
uint16_t i = 0;
|
|
ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
|
|
bits_to_send -= 7;
|
|
while (bits_to_send > 0) {
|
|
ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
|
|
bits_to_send -= 8;
|
|
}
|
|
} else {
|
|
GetParity(cmd, lenbits/8, par);
|
|
ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
|
|
}
|
|
} else { // want to send complete bytes only
|
|
if (param & ISO14A_TOPAZMODE) {
|
|
uint16_t i = 0;
|
|
ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
|
|
while (i < len) {
|
|
ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
|
|
}
|
|
} else {
|
|
ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
|
|
}
|
|
}
|
|
arg0 = ReaderReceive(buf, par);
|
|
FpgaDisableTracing();
|
|
|
|
LED_B_ON();
|
|
cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf));
|
|
LED_B_OFF();
|
|
}
|
|
|
|
if (param & ISO14A_REQUEST_TRIGGER) {
|
|
iso14a_set_trigger(false);
|
|
}
|
|
|
|
if (param & ISO14A_NO_DISCONNECT) {
|
|
return;
|
|
}
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
}
|
|
|
|
|
|
// Determine the distance between two nonces.
|
|
// Assume that the difference is small, but we don't know which is first.
|
|
// Therefore try in alternating directions.
|
|
static int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
|
|
|
|
uint16_t i;
|
|
uint32_t nttmp1, nttmp2;
|
|
|
|
if (nt1 == nt2) return 0;
|
|
|
|
nttmp1 = nt1;
|
|
nttmp2 = nt2;
|
|
|
|
for (i = 1; i < 32768; i++) {
|
|
nttmp1 = prng_successor(nttmp1, 1);
|
|
if (nttmp1 == nt2) return i;
|
|
nttmp2 = prng_successor(nttmp2, 1);
|
|
if (nttmp2 == nt1) return -i;
|
|
}
|
|
|
|
return(-99999); // either nt1 or nt2 are invalid nonces
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Recover several bits of the cypher stream. This implements (first stages of)
|
|
// the algorithm described in "The Dark Side of Security by Obscurity and
|
|
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
|
|
// (article by Nicolas T. Courtois, 2009)
|
|
//-----------------------------------------------------------------------------
|
|
void ReaderMifare(bool first_try)
|
|
{
|
|
// Mifare AUTH
|
|
uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
|
|
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
|
static uint8_t mf_nr_ar3;
|
|
|
|
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
|
|
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
|
|
|
|
// free eventually allocated BigBuf memory. We want all for tracing.
|
|
BigBuf_free();
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
uint8_t nt_diff = 0;
|
|
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
|
|
static uint8_t par_low = 0;
|
|
bool led_on = true;
|
|
uint8_t uid[10] ={0};
|
|
uint32_t cuid;
|
|
|
|
uint32_t nt = 0;
|
|
uint32_t previous_nt = 0;
|
|
static uint32_t nt_attacked = 0;
|
|
uint8_t par_list[8] = {0x00};
|
|
uint8_t ks_list[8] = {0x00};
|
|
|
|
#define PRNG_SEQUENCE_LENGTH (1 << 16);
|
|
uint32_t sync_time = GetCountSspClk() & 0xfffffff8;
|
|
static int32_t sync_cycles;
|
|
int catch_up_cycles = 0;
|
|
int last_catch_up = 0;
|
|
uint16_t elapsed_prng_sequences;
|
|
uint16_t consecutive_resyncs = 0;
|
|
int isOK = 0;
|
|
|
|
if (first_try) {
|
|
mf_nr_ar3 = 0;
|
|
par[0] = par_low = 0;
|
|
sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
|
|
nt_attacked = 0;
|
|
}
|
|
else {
|
|
// we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
|
|
mf_nr_ar3++;
|
|
mf_nr_ar[3] = mf_nr_ar3;
|
|
par[0] = par_low;
|
|
}
|
|
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
|
|
|
|
#define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
|
|
#define MAX_SYNC_TRIES 32
|
|
#define SYNC_TIME_BUFFER 16 // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle
|
|
#define NUM_DEBUG_INFOS 8 // per strategy
|
|
#define MAX_STRATEGY 3
|
|
uint16_t unexpected_random = 0;
|
|
uint16_t sync_tries = 0;
|
|
int16_t debug_info_nr = -1;
|
|
uint16_t strategy = 0;
|
|
int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
|
|
uint32_t select_time;
|
|
uint32_t halt_time;
|
|
|
|
for (uint16_t i = 0; true; i++) {
|
|
|
|
LED_C_ON();
|
|
WDT_HIT();
|
|
|
|
// Test if the action was cancelled
|
|
if(BUTTON_PRESS()) {
|
|
isOK = -1;
|
|
break;
|
|
}
|
|
|
|
if (strategy == 2) {
|
|
// test with additional hlt command
|
|
halt_time = 0;
|
|
int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
|
|
if (len && MF_DBGLEVEL >= 3) {
|
|
Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
|
|
}
|
|
}
|
|
|
|
if (strategy == 3) {
|
|
// test with FPGA power off/on
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
|
|
SpinDelay(100);
|
|
}
|
|
|
|
if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
|
|
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
|
|
continue;
|
|
}
|
|
select_time = GetCountSspClk();
|
|
|
|
elapsed_prng_sequences = 1;
|
|
if (debug_info_nr == -1) {
|
|
sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
|
|
catch_up_cycles = 0;
|
|
|
|
// if we missed the sync time already or are about to miss it, advance to the next nonce repeat
|
|
while(sync_time < GetCountSspClk() + SYNC_TIME_BUFFER) {
|
|
elapsed_prng_sequences++;
|
|
sync_time = (sync_time & 0xfffffff8) + sync_cycles;
|
|
}
|
|
|
|
// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
|
|
ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
|
|
} else {
|
|
// collect some information on tag nonces for debugging:
|
|
#define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
|
|
if (strategy == 0) {
|
|
// nonce distances at fixed time after card select:
|
|
sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
|
|
} else if (strategy == 1) {
|
|
// nonce distances at fixed time between authentications:
|
|
sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
|
|
} else if (strategy == 2) {
|
|
// nonce distances at fixed time after halt:
|
|
sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
|
|
} else {
|
|
// nonce_distances at fixed time after power on
|
|
sync_time = DEBUG_FIXED_SYNC_CYCLES;
|
|
}
|
|
ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
|
|
}
|
|
|
|
// Receive the (4 Byte) "random" nonce
|
|
if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
|
|
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
|
|
continue;
|
|
}
|
|
|
|
previous_nt = nt;
|
|
nt = bytes_to_num(receivedAnswer, 4);
|
|
|
|
// Transmit reader nonce with fake par
|
|
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
|
|
|
|
if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
|
|
int nt_distance = dist_nt(previous_nt, nt);
|
|
if (nt_distance == 0) {
|
|
nt_attacked = nt;
|
|
} else {
|
|
if (nt_distance == -99999) { // invalid nonce received
|
|
unexpected_random++;
|
|
if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
|
|
isOK = -3; // Card has an unpredictable PRNG. Give up
|
|
break;
|
|
} else {
|
|
continue; // continue trying...
|
|
}
|
|
}
|
|
if (++sync_tries > MAX_SYNC_TRIES) {
|
|
if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
|
|
isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
|
|
break;
|
|
} else { // continue for a while, just to collect some debug info
|
|
debug_info[strategy][debug_info_nr] = nt_distance;
|
|
debug_info_nr++;
|
|
if (debug_info_nr == NUM_DEBUG_INFOS) {
|
|
strategy++;
|
|
debug_info_nr = 0;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
|
|
if (sync_cycles <= 0) {
|
|
sync_cycles += PRNG_SEQUENCE_LENGTH;
|
|
}
|
|
if (MF_DBGLEVEL >= 3) {
|
|
Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
|
|
catch_up_cycles = -dist_nt(nt_attacked, nt);
|
|
if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
|
|
catch_up_cycles = 0;
|
|
continue;
|
|
}
|
|
catch_up_cycles /= elapsed_prng_sequences;
|
|
if (catch_up_cycles == last_catch_up) {
|
|
consecutive_resyncs++;
|
|
}
|
|
else {
|
|
last_catch_up = catch_up_cycles;
|
|
consecutive_resyncs = 0;
|
|
}
|
|
if (consecutive_resyncs < 3) {
|
|
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
|
|
}
|
|
else {
|
|
sync_cycles = sync_cycles + catch_up_cycles;
|
|
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
|
|
last_catch_up = 0;
|
|
catch_up_cycles = 0;
|
|
consecutive_resyncs = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
consecutive_resyncs = 0;
|
|
|
|
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
|
|
if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
|
|
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
|
|
|
|
if (nt_diff == 0) {
|
|
par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
|
|
}
|
|
|
|
led_on = !led_on;
|
|
if(led_on) LED_B_ON(); else LED_B_OFF();
|
|
|
|
par_list[nt_diff] = SwapBits(par[0], 8);
|
|
ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
|
|
|
|
// Test if the information is complete
|
|
if (nt_diff == 0x07) {
|
|
isOK = 1;
|
|
break;
|
|
}
|
|
|
|
nt_diff = (nt_diff + 1) & 0x07;
|
|
mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
|
|
par[0] = par_low;
|
|
} else {
|
|
if (nt_diff == 0 && first_try)
|
|
{
|
|
par[0]++;
|
|
if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
|
|
isOK = -2;
|
|
break;
|
|
}
|
|
} else {
|
|
par[0] = ((par[0] & 0x1F) + 1) | par_low;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
mf_nr_ar[3] &= 0x1F;
|
|
|
|
if (isOK == -4) {
|
|
if (MF_DBGLEVEL >= 3) {
|
|
for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
|
|
for (uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
|
|
Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FpgaDisableTracing();
|
|
|
|
uint8_t buf[32];
|
|
memcpy(buf + 0, uid, 4);
|
|
num_to_bytes(nt, 4, buf + 4);
|
|
memcpy(buf + 8, par_list, 8);
|
|
memcpy(buf + 16, ks_list, 8);
|
|
memcpy(buf + 24, mf_nr_ar, 8);
|
|
|
|
cmd_send(CMD_ACK, isOK, 0, 0, buf, 32);
|
|
|
|
// Thats it...
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
|
|
set_tracing(false);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MIFARE sniffer.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void RAMFUNC SniffMifare(uint8_t param) {
|
|
// param:
|
|
// bit 0 - trigger from first card answer
|
|
// bit 1 - trigger from first reader 7-bit request
|
|
|
|
// C(red) A(yellow) B(green)
|
|
LEDsoff();
|
|
LED_A_ON();
|
|
|
|
// init trace buffer
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
// The command (reader -> tag) that we're receiving.
|
|
// The length of a received command will in most cases be no more than 18 bytes.
|
|
// So 32 should be enough!
|
|
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
|
|
uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
|
|
// The response (tag -> reader) that we're receiving.
|
|
uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
|
|
uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
|
|
|
|
// free eventually allocated BigBuf memory
|
|
BigBuf_free();
|
|
// allocate the DMA buffer, used to stream samples from the FPGA
|
|
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
|
|
uint8_t *data = dmaBuf;
|
|
uint8_t previous_data = 0;
|
|
int maxDataLen = 0;
|
|
int dataLen = 0;
|
|
bool ReaderIsActive = false;
|
|
bool TagIsActive = false;
|
|
|
|
// Set up the demodulator for tag -> reader responses.
|
|
DemodInit(receivedResponse, receivedResponsePar);
|
|
|
|
// Set up the demodulator for the reader -> tag commands
|
|
UartInit(receivedCmd, receivedCmdPar);
|
|
|
|
// Setup for the DMA.
|
|
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
|
|
|
|
// init sniffer
|
|
MfSniffInit();
|
|
|
|
// And now we loop, receiving samples.
|
|
for (uint32_t sniffCounter = 0; true; ) {
|
|
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("Canceled by button.");
|
|
break;
|
|
}
|
|
|
|
WDT_HIT();
|
|
|
|
if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
|
|
// check if a transaction is completed (timeout after 2000ms).
|
|
// if yes, stop the DMA transfer and send what we have so far to the client
|
|
if (MfSniffSend(2000)) {
|
|
// Reset everything - we missed some sniffed data anyway while the DMA was stopped
|
|
sniffCounter = 0;
|
|
data = dmaBuf;
|
|
maxDataLen = 0;
|
|
ReaderIsActive = false;
|
|
TagIsActive = false;
|
|
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
|
|
}
|
|
}
|
|
|
|
int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
|
|
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
|
|
if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
|
|
dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
|
|
} else {
|
|
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
|
|
}
|
|
// test for length of buffer
|
|
if(dataLen > maxDataLen) { // we are more behind than ever...
|
|
maxDataLen = dataLen;
|
|
if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
|
|
Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
|
|
break;
|
|
}
|
|
}
|
|
if(dataLen < 1) continue;
|
|
|
|
// primary buffer was stopped ( <-- we lost data!
|
|
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
|
|
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
|
|
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
|
|
Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
|
|
}
|
|
// secondary buffer sets as primary, secondary buffer was stopped
|
|
if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
|
|
}
|
|
|
|
if (sniffCounter & 0x01) {
|
|
|
|
if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
|
|
uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
|
|
if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
|
|
|
|
if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break;
|
|
|
|
/* And ready to receive another command. */
|
|
UartInit(receivedCmd, receivedCmdPar);
|
|
|
|
/* And also reset the demod code */
|
|
DemodReset();
|
|
}
|
|
ReaderIsActive = (Uart.state != STATE_UNSYNCD);
|
|
}
|
|
|
|
if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
|
|
uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
|
|
if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
|
|
|
|
if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break;
|
|
|
|
// And ready to receive another response.
|
|
DemodReset();
|
|
// And reset the Miller decoder including its (now outdated) input buffer
|
|
UartInit(receivedCmd, receivedCmdPar);
|
|
}
|
|
TagIsActive = (Demod.state != DEMOD_UNSYNCD);
|
|
}
|
|
}
|
|
|
|
previous_data = *data;
|
|
sniffCounter++;
|
|
data++;
|
|
if(data == dmaBuf + DMA_BUFFER_SIZE) {
|
|
data = dmaBuf;
|
|
}
|
|
|
|
} // main cycle
|
|
|
|
FpgaDisableTracing();
|
|
FpgaDisableSscDma();
|
|
LEDsoff();
|
|
|
|
DbpString("COMMAND FINISHED.");
|
|
|
|
MfSniffEnd();
|
|
|
|
Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
|
|
}
|