proxmark3/armsrc/appmain.c
pwpiwi 7a53739728 fixing some fpga and iclass issues
* make fpga_version_info.c phony and delete it on 'make clean'
* wait for transfer to complete before returning from FpgaSendCommand()
* log correct tag times in iclass simulation
* shorten pulse from TC1 to TC0 in StartCountSspClk()
* shorten ssp_frame pulse in fpga/hi_reader.v
* some reformatting and whitespace fixes
2020-03-31 08:39:16 +02:00

1501 lines
44 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, Mar 2006
// Edits by Gerhard de Koning Gans, Sep 2007 (##)
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// The main application code. This is the first thing called after start.c
// executes.
//-----------------------------------------------------------------------------
#include <stdarg.h>
#include "usb_cdc.h"
#include "proxmark3.h"
#include "apps.h"
#include "fpga.h"
#include "util.h"
#include "printf.h"
#include "string.h"
#include "legicrf.h"
#include "legicrfsim.h"
#include "hitag2.h"
#include "hitagS.h"
#include "iclass.h"
#include "iso14443b.h"
#include "iso15693.h"
#include "lfsampling.h"
#include "BigBuf.h"
#include "mifarecmd.h"
#include "mifareutil.h"
#include "mifaresim.h"
#include "pcf7931.h"
#include "i2c.h"
#include "hfsnoop.h"
#include "fpgaloader.h"
#ifdef WITH_LCD
#include "LCD.h"
#endif
static uint32_t hw_capabilities;
// Craig Young - 14a stand-alone code
#ifdef WITH_ISO14443a
#include "iso14443a.h"
#endif
//=============================================================================
// A buffer where we can queue things up to be sent through the FPGA, for
// any purpose (fake tag, as reader, whatever). We go MSB first, since that
// is the order in which they go out on the wire.
//=============================================================================
#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
uint8_t ToSend[TOSEND_BUFFER_SIZE];
int ToSendMax;
static int ToSendBit;
struct common_area common_area __attribute__((section(".commonarea")));
void ToSendReset(void) {
ToSendMax = -1;
ToSendBit = 8;
}
void ToSendStuffBit(int b) {
if (ToSendBit >= 8) {
ToSendMax++;
ToSend[ToSendMax] = 0;
ToSendBit = 0;
}
if (b) {
ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
}
ToSendBit++;
if (ToSendMax >= sizeof(ToSend)) {
ToSendBit = 0;
DbpString("ToSendStuffBit overflowed!");
}
}
//=============================================================================
// Debug print functions, to go out over USB, to the usual PC-side client.
//=============================================================================
void DbpString(char *str) {
uint8_t len = strlen(str);
cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(uint8_t*)str,len);
}
void Dbprintf(const char *fmt, ...) {
// should probably limit size here; oh well, let's just use a big buffer
char output_string[128];
va_list ap;
va_start(ap, fmt);
kvsprintf(fmt, output_string, 10, ap);
va_end(ap);
DbpString(output_string);
}
// prints HEX & ASCII
void Dbhexdump(int len, uint8_t *d, bool bAsci) {
int l=0,i;
char ascii[9];
while (len>0) {
if (len>8) l=8;
else l=len;
memcpy(ascii,d,l);
ascii[l]=0;
// filter safe ascii
for (i = 0; i < l; i++)
if (ascii[i]<32 || ascii[i]>126) ascii[i] = '.';
if (bAsci) {
Dbprintf("%-8s %*D",ascii, l, d, " ");
} else {
Dbprintf("%*D", l, d, " ");
}
len -= 8;
d += 8;
}
}
//-----------------------------------------------------------------------------
// Read an ADC channel and block till it completes, then return the result
// in ADC units (0 to 1023). Also a routine to average 32 samples and
// return that.
//-----------------------------------------------------------------------------
static int ReadAdc(int ch) {
// Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
// AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
// of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
//
// The maths are:
// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
//
// v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
}
int AvgAdc(int ch) { // was static - merlok{
int i;
int a = 0;
for(i = 0; i < 32; i++) {
a += ReadAdc(ch);
}
return (a + 15) >> 5;
}
static int AvgAdc_Voltage_HF(void) {
int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
// if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10;
if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) {
return AvgAdc_Voltage_High;
}
}
return AvgAdc_Voltage_Low;
}
static int AvgAdc_Voltage_LF(void) {
return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
}
void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[]) {
int i, adcval = 0, peak = 0;
/*
* Sweeps the useful LF range of the proxmark from
* 46.8kHz (divisor=255) to 600kHz (divisor=19) and
* read the voltage in the antenna, the result left
* in the buffer is a graph which should clearly show
* the resonating frequency of your LF antenna
* ( hopefully around 95 if it is tuned to 125kHz!)
*/
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
SpinDelay(50);
for (i = 255; i >= 19; i--) {
WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
adcval = AvgAdc_Voltage_LF();
if (i == 95) *vLf125 = adcval; // voltage at 125Khz
if (i == 89) *vLf134 = adcval; // voltage at 134Khz
LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
if (LF_Results[i] > peak) {
*peakv = adcval;
peak = LF_Results[i];
*peakf = i;
//ptr = i;
}
}
for (i = 18; i >= 0; i--) LF_Results[i] = 0;
return;
}
void MeasureAntennaTuningHfOnly(int *vHf) {
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
LED_A_ON();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
SpinDelay(20);
*vHf = AvgAdc_Voltage_HF();
LED_A_OFF();
return;
}
void MeasureAntennaTuning(int mode) {
uint8_t LF_Results[256] = {0};
int peakv = 0, peakf = 0;
int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
LED_B_ON();
if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
// Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
MeasureAntennaTuningHfOnly(&vHf);
MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
} else {
if (mode & FLAG_TUNE_LF) {
MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
}
if (mode & FLAG_TUNE_HF) {
MeasureAntennaTuningHfOnly(&vHf);
}
}
cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_B_OFF();
return;
}
void MeasureAntennaTuningHf(void) {
int vHf = 0; // in mV
DbpString("Measuring HF antenna, press button to exit");
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
for (;;) {
SpinDelay(500);
vHf = AvgAdc_Voltage_HF();
Dbprintf("%d mV",vHf);
if (BUTTON_PRESS()) break;
}
DbpString("cancelled");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
void ReadMem(int addr) {
const uint8_t *data = ((uint8_t *)addr);
Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
}
/* osimage version information is linked in */
extern struct version_information version_information;
/* bootrom version information is pointed to from _bootphase1_version_pointer */
extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
void set_hw_capabilities(void) {
if (I2C_is_available()) {
hw_capabilities |= HAS_SMARTCARD_SLOT;
}
if (false) { // TODO: implement a test
hw_capabilities |= HAS_EXTRA_FLASH_MEM;
}
}
void SendVersion(void) {
LED_A_ON();
set_hw_capabilities();
char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
/* Try to find the bootrom version information. Expect to find a pointer at
* symbol _bootphase1_version_pointer, perform slight sanity checks on the
* pointer, then use it.
*/
char *bootrom_version = *(char**)&_bootphase1_version_pointer;
if (bootrom_version < &_flash_start || bootrom_version >= &_flash_end) {
strcat(VersionString, "bootrom version information appears invalid\n");
} else {
FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
}
FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
for (int i = 0; i < fpga_bitstream_num; i++) {
strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
}
// test availability of SmartCard slot
if (I2C_is_available()) {
strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
} else {
strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
}
// Send Chip ID and used flash memory
uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
uint32_t compressed_data_section_size = common_area.arg1;
cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, hw_capabilities, VersionString, strlen(VersionString) + 1);
LED_A_OFF();
}
// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
void printUSBSpeed(void) {
Dbprintf("USB Speed:");
Dbprintf(" Sending USB packets to client...");
#define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
uint8_t *test_data = BigBuf_get_addr();
uint32_t end_time;
uint32_t start_time = end_time = GetTickCount();
uint32_t bytes_transferred = 0;
while (end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
end_time = GetTickCount();
bytes_transferred += USB_CMD_DATA_SIZE;
}
Dbprintf(" Time elapsed: %dms", end_time - start_time);
Dbprintf(" Bytes transferred: %d", bytes_transferred);
Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
1000 * bytes_transferred / (end_time - start_time));
}
/**
* Prints runtime information about the PM3.
**/
void SendStatus(void) {
LED_A_ON();
BigBuf_print_status();
Fpga_print_status();
#ifdef WITH_SMARTCARD
I2C_print_status();
#endif
printConfig(); //LF Sampling config
printUSBSpeed();
Dbprintf("Various");
Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
Dbprintf(" ToSendMax..........%d", ToSendMax);
Dbprintf(" ToSendBit..........%d", ToSendBit);
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
LED_A_OFF();
}
#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
#define OPTS 2
void StandAloneMode() {
DbpString("Stand-alone mode! No PC necessary.");
// Oooh pretty -- notify user we're in elite samy mode now
LED(LED_RED, 200);
LED(LED_ORANGE, 200);
LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
LED(LED_RED, 200);
LED(LED_ORANGE, 200);
LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
LED(LED_RED, 200);
}
#endif
#ifdef WITH_ISO14443a_StandAlone
void StandAloneMode14a() {
StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
int selected = 0;
bool playing = false, GotoRecord = false, GotoClone = false;
bool cardRead[OPTS] = {false};
uint8_t readUID[10] = {0};
uint32_t uid_1st[OPTS]={0};
uint32_t uid_2nd[OPTS]={0};
uint32_t uid_tmp1 = 0;
uint32_t uid_tmp2 = 0;
iso14a_card_select_t hi14a_card[OPTS];
LED(selected + 1, 0);
for (;;) {
usb_poll();
WDT_HIT();
SpinDelay(300);
if (GotoRecord || !cardRead[selected]) {
GotoRecord = false;
LEDsoff();
LED(selected + 1, 0);
LED(LED_RED2, 0);
// record
Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
/* need this delay to prevent catching some weird data */
SpinDelay(500);
/* Code for reading from 14a tag */
uint8_t uid[10] ={0};
uint32_t cuid;
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
for ( ; ; ) {
WDT_HIT();
if (BUTTON_PRESS()) {
if (cardRead[selected]) {
Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
break;
} else if (cardRead[(selected+1)%OPTS]) {
Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
selected = (selected+1)%OPTS;
break;
} else {
Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
SpinDelay(300);
}
}
if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
continue;
else {
Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
memcpy(readUID,uid,10*sizeof(uint8_t));
uint8_t *dst = (uint8_t *)&uid_tmp1;
// Set UID byte order
for (int i = 0; i < 4; i++)
dst[i] = uid[3-i];
dst = (uint8_t *)&uid_tmp2;
for (int i = 0; i < 4; i++)
dst[i] = uid[7-i];
if (uid_1st[(selected+1) % OPTS] == uid_tmp1 && uid_2nd[(selected+1) % OPTS] == uid_tmp2) {
Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
} else {
if (uid_tmp2) {
Dbprintf("Bank[%d] received a 7-byte UID", selected);
uid_1st[selected] = (uid_tmp1)>>8;
uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
} else {
Dbprintf("Bank[%d] received a 4-byte UID", selected);
uid_1st[selected] = uid_tmp1;
uid_2nd[selected] = uid_tmp2;
}
break;
}
}
}
Dbprintf("ATQA = %02X%02X", hi14a_card[selected].atqa[0], hi14a_card[selected].atqa[1]);
Dbprintf("SAK = %02X", hi14a_card[selected].sak);
LEDsoff();
LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
LEDsoff();
LED(selected + 1, 0);
// Next state is replay:
playing = true;
cardRead[selected] = true;
} else if (GotoClone) { /* MF Classic UID clone */
GotoClone=false;
LEDsoff();
LED(selected + 1, 0);
LED(LED_ORANGE, 250);
// record
Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
// wait for button to be released
while(BUTTON_PRESS()) {
// Delay cloning until card is in place
WDT_HIT();
}
Dbprintf("Starting clone. [Bank: %u]", selected);
// need this delay to prevent catching some weird data
SpinDelay(500);
// Begin clone function here:
/* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
memcpy(c.d.asBytes, data, 16);
SendCommand(&c);
Block read is similar:
UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
We need to imitate that call with blockNo 0 to set a uid.
The get and set commands are handled in this file:
// Work with "magic Chinese" card
case CMD_MIFARE_CSETBLOCK:
MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_CGETBLOCK:
MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
mfCSetUID provides example logic for UID set workflow:
-Read block0 from card in field with MifareCGetBlock()
-Configure new values without replacing reserved bytes
memcpy(block0, uid, 4); // Copy UID bytes from byte array
// Mifare UID BCC
block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
Bytes 5-7 are reserved SAK and ATQA for mifare classic
-Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
*/
uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
// arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
MifareCGetBlock(0x3F, 1, 0, oldBlock0);
if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
playing = true;
} else {
Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]);
memcpy(newBlock0, oldBlock0, 16);
// Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
newBlock0[0] = uid_1st[selected] >> 24;
newBlock0[1] = 0xFF & (uid_1st[selected] >> 16);
newBlock0[2] = 0xFF & (uid_1st[selected] >> 8);
newBlock0[3] = 0xFF & (uid_1st[selected]);
newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3];
// arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
MifareCSetBlock(0, 0xFF, 0, newBlock0);
MifareCGetBlock(0x3F, 1, 0, testBlock0);
if (memcmp(testBlock0, newBlock0, 16) == 0) {
DbpString("Cloned successfull!");
cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
playing = false;
GotoRecord = true;
selected = (selected+1) % OPTS;
} else {
Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
playing = true;
}
}
LEDsoff();
LED(selected + 1, 0);
} else if (playing) {
// button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
// Change where to record (or begin playing)
LEDsoff();
LED(selected + 1, 0);
// Begin transmitting
LED(LED_GREEN, 0);
DbpString("Playing");
for ( ; ; ) {
WDT_HIT();
int button_action = BUTTON_HELD(1000);
if (button_action == 0) { // No button action, proceed with sim
uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected], uid_2nd[selected], selected);
if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
DbpString("Mifare Classic");
SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
} else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
DbpString("Mifare Ultralight");
SimulateIso14443aTag(2, uid_1st[selected], uid_2nd[selected], data); // Mifare Ultralight
} else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
DbpString("Mifare DESFire");
SimulateIso14443aTag(3, uid_1st[selected], uid_2nd[selected], data); // Mifare DESFire
} else {
Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data);
}
} else if (button_action == BUTTON_SINGLE_CLICK) {
selected = (selected + 1) % OPTS;
Dbprintf("Done playing. Switching to record mode on bank %d",selected);
GotoRecord = true;
break;
} else if (button_action == BUTTON_HOLD) {
Dbprintf("Playtime over. Begin cloning...");
GotoClone = true;
break;
}
WDT_HIT();
}
/* We pressed a button so ignore it here with a delay */
SpinDelay(300);
LEDsoff();
LED(selected + 1, 0);
}
}
}
#elif WITH_LF_StandAlone
// samy's sniff and repeat routine
void SamyRun() {
StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
int tops[OPTS], high[OPTS], low[OPTS];
int selected = 0;
int playing = 0;
int cardRead = 0;
// Turn on selected LED
LED(selected + 1, 0);
for (;;) {
usb_poll();
WDT_HIT();
// Was our button held down or pressed?
int button_pressed = BUTTON_HELD(1000);
SpinDelay(300);
// Button was held for a second, begin recording
if (button_pressed > 0 && cardRead == 0) {
LEDsoff();
LED(selected + 1, 0);
LED(LED_RED2, 0);
// record
DbpString("Starting recording");
// wait for button to be released
while(BUTTON_PRESS())
WDT_HIT();
/* need this delay to prevent catching some weird data */
SpinDelay(500);
CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0);
if (tops[selected] > 0)
Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
else
Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
LEDsoff();
LED(selected + 1, 0);
// Finished recording
// If we were previously playing, set playing off
// so next button push begins playing what we recorded
playing = 0;
cardRead = 1;
} else if (button_pressed > 0 && cardRead == 1) {
LEDsoff();
LED(selected + 1, 0);
LED(LED_ORANGE, 0);
// record
if (tops[selected] > 0)
Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
else
Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
// wait for button to be released
while(BUTTON_PRESS())
WDT_HIT();
/* need this delay to prevent catching some weird data */
SpinDelay(500);
CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D);
if (tops[selected] > 0)
Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
else
Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
LEDsoff();
LED(selected + 1, 0);
// Finished recording
// If we were previously playing, set playing off
// so next button push begins playing what we recorded
playing = 0;
cardRead = 0;
} else if (button_pressed) {
// Change where to record (or begin playing)
// Next option if we were previously playing
if (playing)
selected = (selected + 1) % OPTS;
playing = !playing;
LEDsoff();
LED(selected + 1, 0);
// Begin transmitting
if (playing) {
LED(LED_GREEN, 0);
DbpString("Playing");
// wait for button to be released
while(BUTTON_PRESS())
WDT_HIT();
if (tops[selected] > 0)
Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
else
Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
DbpString("Done playing");
if (BUTTON_HELD(1000) > 0) {
DbpString("Exiting");
LEDsoff();
return;
}
/* We pressed a button so ignore it here with a delay */
SpinDelay(300);
// when done, we're done playing, move to next option
selected = (selected + 1) % OPTS;
playing = !playing;
LEDsoff();
LED(selected + 1, 0);
} else
while(BUTTON_PRESS())
WDT_HIT();
}
}
}
#endif
/*
OBJECTIVE
Listen and detect an external reader. Determine the best location
for the antenna.
INSTRUCTIONS:
Inside the ListenReaderField() function, there is two mode.
By default, when you call the function, you will enter mode 1.
If you press the PM3 button one time, you will enter mode 2.
If you press the PM3 button a second time, you will exit the function.
DESCRIPTION OF MODE 1:
This mode just listens for an external reader field and lights up green
for HF and/or red for LF. This is the original mode of the detectreader
function.
DESCRIPTION OF MODE 2:
This mode will visually represent, using the LEDs, the actual strength of the
current compared to the maximum current detected. Basically, once you know
what kind of external reader is present, it will help you spot the best location to place
your antenna. You will probably not get some good results if there is a LF and a HF reader
at the same place! :-)
LIGHT SCHEME USED:
*/
static const char LIGHT_SCHEME[] = {
0x0, /* ---- | No field detected */
0x1, /* X--- | 14% of maximum current detected */
0x2, /* -X-- | 29% of maximum current detected */
0x4, /* --X- | 43% of maximum current detected */
0x8, /* ---X | 57% of maximum current detected */
0xC, /* --XX | 71% of maximum current detected */
0xE, /* -XXX | 86% of maximum current detected */
0xF, /* XXXX | 100% of maximum current detected */
};
static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
void ListenReaderField(int limit) {
int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
int mode=1, display_val, display_max, i;
#define LF_ONLY 1
#define HF_ONLY 2
#define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
#define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
#define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
// switch off FPGA - we don't want to measure our own signal
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
lf_av = lf_max = AvgAdc_Voltage_LF();
if (limit != HF_ONLY) {
Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
lf_baseline = lf_av;
}
hf_av = hf_max = AvgAdc_Voltage_HF();
if (limit != LF_ONLY) {
Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
hf_baseline = hf_av;
}
for(;;) {
SpinDelay(500);
if (BUTTON_PRESS()) {
switch (mode) {
case 1:
mode=2;
DbpString("Signal Strength Mode");
break;
case 2:
default:
DbpString("Stopped");
LEDsoff();
return;
break;
}
while (BUTTON_PRESS())
/* wait */;
}
WDT_HIT();
if (limit != HF_ONLY) {
if(mode == 1) {
if (lf_av - lf_baseline > MIN_LF_FIELD)
LED_D_ON();
else
LED_D_OFF();
}
lf_av_new = AvgAdc_Voltage_LF();
// see if there's a significant change
if (ABS((lf_av - lf_av_new) * 100 / (lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
lf_av = lf_av_new;
if (lf_av > lf_max)
lf_max = lf_av;
}
}
if (limit != LF_ONLY) {
if (mode == 1){
if (hf_av - hf_baseline > MIN_HF_FIELD)
LED_B_ON();
else
LED_B_OFF();
}
hf_av_new = AvgAdc_Voltage_HF();
// see if there's a significant change
if (ABS((hf_av - hf_av_new) * 100 / (hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
hf_av = hf_av_new;
if (hf_av > hf_max)
hf_max = hf_av;
}
}
if (mode == 2) {
if (limit == LF_ONLY) {
display_val = lf_av;
display_max = lf_max;
} else if (limit == HF_ONLY) {
display_val = hf_av;
display_max = hf_max;
} else { /* Pick one at random */
if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
display_val = hf_av;
display_max = hf_max;
} else {
display_val = lf_av;
display_max = lf_max;
}
}
for (i = 0; i < LIGHT_LEN; i++) {
if (display_val >= (display_max / LIGHT_LEN * i) && display_val <= (display_max / LIGHT_LEN * (i+1))) {
if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
break;
}
}
}
}
}
void UsbPacketReceived(UsbCommand *c) {
// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
switch(c->cmd) {
#ifdef WITH_LF
case CMD_SET_LF_SAMPLING_CONFIG:
setSamplingConfig(c->d.asBytes);
break;
case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
break;
case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
break;
case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
break;
case CMD_HID_DEMOD_FSK:
CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1);
break;
case CMD_HID_SIM_TAG:
CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1);
break;
case CMD_FSK_SIM_TAG:
CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_ASK_SIM_TAG:
CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_PSK_SIM_TAG:
CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_HID_CLONE_TAG:
CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D);
break;
case CMD_PARADOX_CLONE_TAG:
// Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F);
break;
case CMD_IO_DEMOD_FSK:
CmdIOdemodFSK(c->arg[0], 0, 0, 1);
break;
case CMD_IO_CLONE_TAG:
CopyIOtoT55x7(c->arg[0], c->arg[1]);
break;
case CMD_EM410X_DEMOD:
CmdEM410xdemod(c->arg[0], 0, 0, 1);
break;
case CMD_EM410X_WRITE_TAG:
WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_READ_TI_TYPE:
ReadTItag();
break;
case CMD_WRITE_TI_TYPE:
WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
break;
case CMD_SIMULATE_TAG_125K:
LED_A_ON();
SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
LED_A_OFF();
break;
case CMD_LF_SIMULATE_BIDIR:
SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
break;
case CMD_INDALA_CLONE_TAG:
CopyIndala64toT55x7(c->arg[0], c->arg[1]);
break;
case CMD_INDALA_CLONE_TAG_L:
CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
break;
case CMD_T55XX_READ_BLOCK:
T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_T55XX_WRITE_BLOCK:
T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
break;
case CMD_T55XX_WAKEUP:
T55xxWakeUp(c->arg[0]);
break;
case CMD_T55XX_RESET_READ:
T55xxResetRead();
break;
case CMD_PCF7931_READ:
ReadPCF7931();
break;
case CMD_PCF7931_WRITE:
WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_PCF7931_BRUTEFORCE:
BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128);
break;
case CMD_EM4X_READ_WORD:
EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
break;
case CMD_EM4X_WRITE_WORD:
EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_EM4X_PROTECT:
EM4xProtect(c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
break;
case CMD_VIKING_CLONE_TAG:
CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
break;
case CMD_COTAG:
Cotag(c->arg[0]);
break;
#endif
#ifdef WITH_HITAG
case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
SnoopHitag(c->arg[0]);
break;
case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
SimulateHitagTag((bool)c->arg[0], (uint8_t*)c->d.asBytes);
break;
case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
break;
case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
SimulateHitagSTag((bool)c->arg[0],(uint8_t*)c->d.asBytes);
break;
case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
check_challenges_cmd((bool)c->arg[0], (uint8_t*)c->d.asBytes, (uint8_t)c->arg[1]);
break;
case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
break;
case CMD_READ_HITAG_S_BLK:
ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true);
break;
case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
if ((hitag_function)c->arg[0] < 10) {
WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
}
else if ((hitag_function)c->arg[0] >= 10) {
WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
}
break;
#endif
#ifdef WITH_ISO15693
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
AcquireRawAdcSamplesIso15693();
break;
case CMD_SNOOP_ISO_15693:
SnoopIso15693(0, NULL);
break;
case CMD_ISO_15693_COMMAND:
DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
break;
case CMD_ISO_15693_FIND_AFI:
BruteforceIso15693Afi(c->arg[0]);
break;
case CMD_ISO_15693_DEBUG:
SetDebugIso15693(c->arg[0]);
break;
case CMD_READER_ISO_15693:
ReaderIso15693(c->arg[0]);
break;
case CMD_SIMTAG_ISO_15693:
SimTagIso15693(c->arg[0], c->d.asBytes);
break;
case CMD_CSETUID_ISO_15693:
SetTag15693Uid(c->d.asBytes);
break;
#endif
#ifdef WITH_LEGICRF
case CMD_SIMULATE_TAG_LEGIC_RF:
LegicRfSimulate(c->arg[0]);
break;
case CMD_WRITER_LEGIC_RF:
LegicRfWriter(c->arg[1], c->arg[0]);
break;
case CMD_READER_LEGIC_RF:
LegicRfReader(c->arg[0], c->arg[1]);
break;
#endif
#ifdef WITH_ISO14443b
case CMD_READ_SRI512_TAG:
ReadSTMemoryIso14443b(0x0F);
break;
case CMD_READ_SRIX4K_TAG:
ReadSTMemoryIso14443b(0x7F);
break;
case CMD_SNOOP_ISO_14443B:
SnoopIso14443b();
break;
case CMD_SIMULATE_TAG_ISO_14443B:
SimulateIso14443bTag();
break;
case CMD_ISO_14443B_COMMAND:
SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
break;
#endif
#ifdef WITH_ISO14443a
case CMD_SNOOP_ISO_14443a:
SnoopIso14443a(c->arg[0]);
break;
case CMD_READER_ISO_14443a:
ReaderIso14443a(c);
break;
case CMD_SIMULATE_TAG_ISO_14443a:
SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
break;
case CMD_EPA_PACE_COLLECT_NONCE:
EPA_PACE_Collect_Nonce(c);
break;
case CMD_EPA_PACE_REPLAY:
EPA_PACE_Replay(c);
break;
case CMD_READER_MIFARE:
ReaderMifare(c->arg[0]);
break;
case CMD_MIFARE_READBL:
MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFAREU_READBL:
MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
break;
case CMD_MIFAREUC_AUTH:
MifareUC_Auth(c->arg[0],c->d.asBytes);
break;
case CMD_MIFAREU_READCARD:
MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFAREUC_SETPWD:
MifareUSetPwd(c->arg[0], c->d.asBytes);
break;
case CMD_MIFARE_READSC:
MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_WRITEBL:
MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_PERSONALIZE_UID:
MifarePersonalizeUID(c->arg[0], c->arg[1], c->d.asBytes);
break;
//case CMD_MIFAREU_WRITEBL_COMPAT:
//MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
//break;
case CMD_MIFAREU_WRITEBL:
MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
break;
case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_NESTED:
MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_CHKKEYS:
MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_SIMULATE_MIFARE_CARD:
MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
// emulator
case CMD_MIFARE_SET_DBGMODE:
MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_EML_MEMCLR:
MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_EML_MEMSET:
MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_EML_MEMGET:
MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_EML_CARDLOAD:
MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
// Work with "magic Chinese" card
case CMD_MIFARE_CWIPE:
MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_CSETBLOCK:
MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_CGETBLOCK:
MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_CIDENT:
MifareCIdent();
break;
// mifare sniffer
case CMD_MIFARE_SNIFFER:
SniffMifare(c->arg[0]);
break;
#endif
#ifdef WITH_ICLASS
// Makes use of ISO14443a FPGA Firmware
case CMD_SNOOP_ICLASS:
SnoopIClass(c->arg[0], c->d.asBytes);
break;
case CMD_SIMULATE_TAG_ICLASS:
SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_READER_ICLASS:
ReaderIClass(c->arg[0]);
break;
case CMD_ICLASS_EML_MEMSET:
emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
break;
case CMD_ICLASS_WRITEBLOCK:
iClass_WriteBlock(c->arg[0], c->d.asBytes);
break;
case CMD_ICLASS_READBLOCK:
iClass_ReadBlk(c->arg[0]);
break;
case CMD_ICLASS_CHECK:
iClass_Check(c->d.asBytes);
break;
case CMD_ICLASS_READCHECK:
iClass_Readcheck(c->arg[0], c->arg[1]);
break;
case CMD_ICLASS_DUMP:
iClass_Dump(c->arg[0], c->arg[1]);
break;
case CMD_ICLASS_CLONE:
iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
break;
#endif
#ifdef WITH_HFSNOOP
case CMD_HF_SNIFFER:
HfSnoop(c->arg[0], c->arg[1]);
break;
case CMD_HF_PLOT:
HfPlot();
break;
#endif
#ifdef WITH_SMARTCARD
case CMD_SMART_ATR: {
SmartCardAtr();
break;
}
case CMD_SMART_SETCLOCK:{
SmartCardSetClock(c->arg[0]);
break;
}
case CMD_SMART_RAW: {
SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
break;
}
case CMD_SMART_UPLOAD: {
// upload file from client
uint8_t *mem = BigBuf_get_addr();
memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
cmd_send(CMD_ACK,1,0,0,0,0);
break;
}
case CMD_SMART_UPGRADE: {
SmartCardUpgrade(c->arg[0]);
break;
}
#endif
case CMD_BUFF_CLEAR:
BigBuf_Clear();
break;
case CMD_MEASURE_ANTENNA_TUNING:
MeasureAntennaTuning(c->arg[0]);
break;
case CMD_MEASURE_ANTENNA_TUNING_HF:
MeasureAntennaTuningHf();
break;
case CMD_LISTEN_READER_FIELD:
ListenReaderField(c->arg[0]);
break;
case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
LED_A_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
LED_D_OFF(); // LED D indicates field ON or OFF
LED_A_OFF();
break;
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
LED_B_ON();
uint8_t *BigBuf = BigBuf_get_addr();
for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
}
// Trigger a finish downloading signal with an ACK frame
cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
LED_B_OFF();
break;
case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
// iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
// to be able to use this one for uploading data to device
// arg1 = 0 upload for LF usage
// 1 upload for HF usage
if (c->arg[1] == 0)
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
else
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
uint8_t *b = BigBuf_get_addr();
memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
cmd_send(CMD_ACK,0,0,0,0,0);
break;
}
case CMD_READ_MEM:
ReadMem(c->arg[0]);
break;
case CMD_SET_LF_DIVISOR:
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
break;
case CMD_SET_ADC_MUX:
switch(c->arg[0]) {
case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
}
break;
case CMD_VERSION:
SendVersion();
break;
case CMD_STATUS:
SendStatus();
break;
case CMD_PING:
cmd_send(CMD_ACK,0,0,0,0,0);
break;
#ifdef WITH_LCD
case CMD_LCD_RESET:
LCDReset();
break;
case CMD_LCD:
LCDSend(c->arg[0]);
break;
#endif
case CMD_SETUP_WRITE:
case CMD_FINISH_WRITE:
case CMD_HARDWARE_RESET:
usb_disable();
SpinDelay(1000);
SpinDelay(1000);
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
for(;;) {
// We're going to reset, and the bootrom will take control.
}
break;
case CMD_START_FLASH:
if(common_area.flags.bootrom_present) {
common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
}
usb_disable();
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
for(;;);
break;
case CMD_DEVICE_INFO: {
uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
cmd_send_old(CMD_DEVICE_INFO,dev_info,0,0,0,0);
break;
}
default:
Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
break;
}
}
void __attribute__((noreturn)) AppMain(void) {
SpinDelay(100);
clear_trace();
if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
/* Initialize common area */
memset(&common_area, 0, sizeof(common_area));
common_area.magic = COMMON_AREA_MAGIC;
common_area.version = 1;
}
common_area.flags.osimage_present = 1;
LEDsoff();
// Init USB device
usb_enable();
// The FPGA gets its clock from us from PCK0 output, so set that up.
AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
// Reset SPI
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; // required twice on some AT91SAM Revisions (see Errata in AT91SAM datasheet)
// Reset SSC
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
// Load the FPGA image, which we have stored in our flash (HF version by default)
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
StartTickCount();
#ifdef WITH_LCD
LCDInit();
#endif
UsbCommand rx;
for(;;) {
WDT_HIT();
if (cmd_receive(&rx)) {
UsbPacketReceived(&rx);
} else {
#if defined(WITH_LF_StandAlone) && !defined(WITH_ISO14443a_StandAlone)
if (BUTTON_HELD(1000) > 0)
SamyRun();
#endif
#if defined(WITH_ISO14443a) && defined(WITH_ISO14443a_StandAlone)
if (BUTTON_HELD(1000) > 0)
StandAloneMode14a();
#endif
}
}
}