mirror of
https://github.com/Proxmark/proxmark3.git
synced 2024-11-21 04:50:14 -08:00
7a53739728
* make fpga_version_info.c phony and delete it on 'make clean' * wait for transfer to complete before returning from FpgaSendCommand() * log correct tag times in iclass simulation * shorten pulse from TC1 to TC0 in StartCountSspClk() * shorten ssp_frame pulse in fpga/hi_reader.v * some reformatting and whitespace fixes
1501 lines
44 KiB
C
1501 lines
44 KiB
C
//-----------------------------------------------------------------------------
|
|
// Jonathan Westhues, Mar 2006
|
|
// Edits by Gerhard de Koning Gans, Sep 2007 (##)
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// The main application code. This is the first thing called after start.c
|
|
// executes.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include "usb_cdc.h"
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "fpga.h"
|
|
#include "util.h"
|
|
#include "printf.h"
|
|
#include "string.h"
|
|
#include "legicrf.h"
|
|
#include "legicrfsim.h"
|
|
#include "hitag2.h"
|
|
#include "hitagS.h"
|
|
#include "iclass.h"
|
|
#include "iso14443b.h"
|
|
#include "iso15693.h"
|
|
#include "lfsampling.h"
|
|
#include "BigBuf.h"
|
|
#include "mifarecmd.h"
|
|
#include "mifareutil.h"
|
|
#include "mifaresim.h"
|
|
#include "pcf7931.h"
|
|
#include "i2c.h"
|
|
#include "hfsnoop.h"
|
|
#include "fpgaloader.h"
|
|
#ifdef WITH_LCD
|
|
#include "LCD.h"
|
|
#endif
|
|
|
|
static uint32_t hw_capabilities;
|
|
|
|
// Craig Young - 14a stand-alone code
|
|
#ifdef WITH_ISO14443a
|
|
#include "iso14443a.h"
|
|
#endif
|
|
|
|
//=============================================================================
|
|
// A buffer where we can queue things up to be sent through the FPGA, for
|
|
// any purpose (fake tag, as reader, whatever). We go MSB first, since that
|
|
// is the order in which they go out on the wire.
|
|
//=============================================================================
|
|
|
|
#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
|
|
uint8_t ToSend[TOSEND_BUFFER_SIZE];
|
|
int ToSendMax;
|
|
static int ToSendBit;
|
|
struct common_area common_area __attribute__((section(".commonarea")));
|
|
|
|
void ToSendReset(void) {
|
|
ToSendMax = -1;
|
|
ToSendBit = 8;
|
|
}
|
|
|
|
void ToSendStuffBit(int b) {
|
|
if (ToSendBit >= 8) {
|
|
ToSendMax++;
|
|
ToSend[ToSendMax] = 0;
|
|
ToSendBit = 0;
|
|
}
|
|
|
|
if (b) {
|
|
ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
|
|
}
|
|
|
|
ToSendBit++;
|
|
|
|
if (ToSendMax >= sizeof(ToSend)) {
|
|
ToSendBit = 0;
|
|
DbpString("ToSendStuffBit overflowed!");
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
// Debug print functions, to go out over USB, to the usual PC-side client.
|
|
//=============================================================================
|
|
|
|
void DbpString(char *str) {
|
|
uint8_t len = strlen(str);
|
|
cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(uint8_t*)str,len);
|
|
}
|
|
|
|
void Dbprintf(const char *fmt, ...) {
|
|
// should probably limit size here; oh well, let's just use a big buffer
|
|
char output_string[128];
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
kvsprintf(fmt, output_string, 10, ap);
|
|
va_end(ap);
|
|
|
|
DbpString(output_string);
|
|
}
|
|
|
|
// prints HEX & ASCII
|
|
void Dbhexdump(int len, uint8_t *d, bool bAsci) {
|
|
int l=0,i;
|
|
char ascii[9];
|
|
|
|
while (len>0) {
|
|
if (len>8) l=8;
|
|
else l=len;
|
|
|
|
memcpy(ascii,d,l);
|
|
ascii[l]=0;
|
|
|
|
// filter safe ascii
|
|
for (i = 0; i < l; i++)
|
|
if (ascii[i]<32 || ascii[i]>126) ascii[i] = '.';
|
|
|
|
if (bAsci) {
|
|
Dbprintf("%-8s %*D",ascii, l, d, " ");
|
|
} else {
|
|
Dbprintf("%*D", l, d, " ");
|
|
}
|
|
|
|
len -= 8;
|
|
d += 8;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read an ADC channel and block till it completes, then return the result
|
|
// in ADC units (0 to 1023). Also a routine to average 32 samples and
|
|
// return that.
|
|
//-----------------------------------------------------------------------------
|
|
static int ReadAdc(int ch) {
|
|
// Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
|
|
// AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
|
|
// of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
|
|
//
|
|
// The maths are:
|
|
// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
|
|
//
|
|
// v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
|
|
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
|
|
AT91C_BASE_ADC->ADC_MR =
|
|
ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
|
|
ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
|
|
ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
|
|
|
|
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
|
|
|
|
while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
|
|
|
|
return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
|
|
}
|
|
|
|
int AvgAdc(int ch) { // was static - merlok{
|
|
int i;
|
|
int a = 0;
|
|
|
|
for(i = 0; i < 32; i++) {
|
|
a += ReadAdc(ch);
|
|
}
|
|
|
|
return (a + 15) >> 5;
|
|
}
|
|
|
|
static int AvgAdc_Voltage_HF(void) {
|
|
int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
|
|
|
|
AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
|
|
// if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
|
|
if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
|
|
AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10;
|
|
if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) {
|
|
return AvgAdc_Voltage_High;
|
|
}
|
|
}
|
|
return AvgAdc_Voltage_Low;
|
|
}
|
|
|
|
static int AvgAdc_Voltage_LF(void) {
|
|
return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
|
|
}
|
|
|
|
void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[]) {
|
|
int i, adcval = 0, peak = 0;
|
|
|
|
/*
|
|
* Sweeps the useful LF range of the proxmark from
|
|
* 46.8kHz (divisor=255) to 600kHz (divisor=19) and
|
|
* read the voltage in the antenna, the result left
|
|
* in the buffer is a graph which should clearly show
|
|
* the resonating frequency of your LF antenna
|
|
* ( hopefully around 95 if it is tuned to 125kHz!)
|
|
*/
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
SpinDelay(50);
|
|
|
|
for (i = 255; i >= 19; i--) {
|
|
WDT_HIT();
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
|
|
SpinDelay(20);
|
|
adcval = AvgAdc_Voltage_LF();
|
|
if (i == 95) *vLf125 = adcval; // voltage at 125Khz
|
|
if (i == 89) *vLf134 = adcval; // voltage at 134Khz
|
|
|
|
LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
|
|
if (LF_Results[i] > peak) {
|
|
*peakv = adcval;
|
|
peak = LF_Results[i];
|
|
*peakf = i;
|
|
//ptr = i;
|
|
}
|
|
}
|
|
|
|
for (i = 18; i >= 0; i--) LF_Results[i] = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
void MeasureAntennaTuningHfOnly(int *vHf) {
|
|
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
|
|
LED_A_ON();
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
|
|
SpinDelay(20);
|
|
*vHf = AvgAdc_Voltage_HF();
|
|
LED_A_OFF();
|
|
return;
|
|
}
|
|
|
|
void MeasureAntennaTuning(int mode) {
|
|
uint8_t LF_Results[256] = {0};
|
|
int peakv = 0, peakf = 0;
|
|
int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
|
|
|
|
LED_B_ON();
|
|
|
|
if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
|
|
// Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
|
|
MeasureAntennaTuningHfOnly(&vHf);
|
|
MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
|
|
} else {
|
|
if (mode & FLAG_TUNE_LF) {
|
|
MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
|
|
}
|
|
if (mode & FLAG_TUNE_HF) {
|
|
MeasureAntennaTuningHfOnly(&vHf);
|
|
}
|
|
}
|
|
|
|
cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_B_OFF();
|
|
return;
|
|
}
|
|
|
|
void MeasureAntennaTuningHf(void) {
|
|
int vHf = 0; // in mV
|
|
|
|
DbpString("Measuring HF antenna, press button to exit");
|
|
|
|
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
|
|
|
|
for (;;) {
|
|
SpinDelay(500);
|
|
vHf = AvgAdc_Voltage_HF();
|
|
|
|
Dbprintf("%d mV",vHf);
|
|
if (BUTTON_PRESS()) break;
|
|
}
|
|
DbpString("cancelled");
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
|
|
}
|
|
|
|
|
|
void ReadMem(int addr) {
|
|
const uint8_t *data = ((uint8_t *)addr);
|
|
|
|
Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
|
|
}
|
|
|
|
/* osimage version information is linked in */
|
|
extern struct version_information version_information;
|
|
/* bootrom version information is pointed to from _bootphase1_version_pointer */
|
|
extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
|
|
|
|
|
|
void set_hw_capabilities(void) {
|
|
if (I2C_is_available()) {
|
|
hw_capabilities |= HAS_SMARTCARD_SLOT;
|
|
}
|
|
|
|
if (false) { // TODO: implement a test
|
|
hw_capabilities |= HAS_EXTRA_FLASH_MEM;
|
|
}
|
|
}
|
|
|
|
|
|
void SendVersion(void) {
|
|
LED_A_ON();
|
|
set_hw_capabilities();
|
|
|
|
char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
|
|
char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
|
|
|
|
/* Try to find the bootrom version information. Expect to find a pointer at
|
|
* symbol _bootphase1_version_pointer, perform slight sanity checks on the
|
|
* pointer, then use it.
|
|
*/
|
|
char *bootrom_version = *(char**)&_bootphase1_version_pointer;
|
|
if (bootrom_version < &_flash_start || bootrom_version >= &_flash_end) {
|
|
strcat(VersionString, "bootrom version information appears invalid\n");
|
|
} else {
|
|
FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
|
|
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
|
|
}
|
|
|
|
FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
|
|
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
|
|
|
|
for (int i = 0; i < fpga_bitstream_num; i++) {
|
|
strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
|
|
strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
|
|
}
|
|
|
|
// test availability of SmartCard slot
|
|
if (I2C_is_available()) {
|
|
strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
|
|
} else {
|
|
strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
|
|
}
|
|
|
|
// Send Chip ID and used flash memory
|
|
uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
|
|
uint32_t compressed_data_section_size = common_area.arg1;
|
|
cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, hw_capabilities, VersionString, strlen(VersionString) + 1);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
|
|
// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
|
|
void printUSBSpeed(void) {
|
|
Dbprintf("USB Speed:");
|
|
Dbprintf(" Sending USB packets to client...");
|
|
|
|
#define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
|
|
uint8_t *test_data = BigBuf_get_addr();
|
|
uint32_t end_time;
|
|
|
|
uint32_t start_time = end_time = GetTickCount();
|
|
uint32_t bytes_transferred = 0;
|
|
|
|
while (end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
|
|
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
|
|
end_time = GetTickCount();
|
|
bytes_transferred += USB_CMD_DATA_SIZE;
|
|
}
|
|
|
|
Dbprintf(" Time elapsed: %dms", end_time - start_time);
|
|
Dbprintf(" Bytes transferred: %d", bytes_transferred);
|
|
Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
|
|
1000 * bytes_transferred / (end_time - start_time));
|
|
|
|
}
|
|
|
|
/**
|
|
* Prints runtime information about the PM3.
|
|
**/
|
|
void SendStatus(void) {
|
|
LED_A_ON();
|
|
BigBuf_print_status();
|
|
Fpga_print_status();
|
|
#ifdef WITH_SMARTCARD
|
|
I2C_print_status();
|
|
#endif
|
|
printConfig(); //LF Sampling config
|
|
printUSBSpeed();
|
|
Dbprintf("Various");
|
|
Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
|
|
Dbprintf(" ToSendMax..........%d", ToSendMax);
|
|
Dbprintf(" ToSendBit..........%d", ToSendBit);
|
|
|
|
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
|
|
|
|
#define OPTS 2
|
|
|
|
void StandAloneMode() {
|
|
DbpString("Stand-alone mode! No PC necessary.");
|
|
// Oooh pretty -- notify user we're in elite samy mode now
|
|
LED(LED_RED, 200);
|
|
LED(LED_ORANGE, 200);
|
|
LED(LED_GREEN, 200);
|
|
LED(LED_ORANGE, 200);
|
|
LED(LED_RED, 200);
|
|
LED(LED_ORANGE, 200);
|
|
LED(LED_GREEN, 200);
|
|
LED(LED_ORANGE, 200);
|
|
LED(LED_RED, 200);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef WITH_ISO14443a_StandAlone
|
|
void StandAloneMode14a() {
|
|
StandAloneMode();
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
|
|
int selected = 0;
|
|
bool playing = false, GotoRecord = false, GotoClone = false;
|
|
bool cardRead[OPTS] = {false};
|
|
uint8_t readUID[10] = {0};
|
|
uint32_t uid_1st[OPTS]={0};
|
|
uint32_t uid_2nd[OPTS]={0};
|
|
uint32_t uid_tmp1 = 0;
|
|
uint32_t uid_tmp2 = 0;
|
|
iso14a_card_select_t hi14a_card[OPTS];
|
|
|
|
LED(selected + 1, 0);
|
|
|
|
for (;;) {
|
|
usb_poll();
|
|
WDT_HIT();
|
|
SpinDelay(300);
|
|
|
|
if (GotoRecord || !cardRead[selected]) {
|
|
GotoRecord = false;
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
LED(LED_RED2, 0);
|
|
|
|
// record
|
|
Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
|
|
/* need this delay to prevent catching some weird data */
|
|
SpinDelay(500);
|
|
/* Code for reading from 14a tag */
|
|
uint8_t uid[10] ={0};
|
|
uint32_t cuid;
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
|
|
|
|
for ( ; ; ) {
|
|
WDT_HIT();
|
|
if (BUTTON_PRESS()) {
|
|
if (cardRead[selected]) {
|
|
Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
|
|
break;
|
|
} else if (cardRead[(selected+1)%OPTS]) {
|
|
Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
|
|
selected = (selected+1)%OPTS;
|
|
break;
|
|
} else {
|
|
Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
|
|
SpinDelay(300);
|
|
}
|
|
}
|
|
if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
|
|
continue;
|
|
else {
|
|
Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
|
|
memcpy(readUID,uid,10*sizeof(uint8_t));
|
|
uint8_t *dst = (uint8_t *)&uid_tmp1;
|
|
// Set UID byte order
|
|
for (int i = 0; i < 4; i++)
|
|
dst[i] = uid[3-i];
|
|
dst = (uint8_t *)&uid_tmp2;
|
|
for (int i = 0; i < 4; i++)
|
|
dst[i] = uid[7-i];
|
|
if (uid_1st[(selected+1) % OPTS] == uid_tmp1 && uid_2nd[(selected+1) % OPTS] == uid_tmp2) {
|
|
Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
|
|
} else {
|
|
if (uid_tmp2) {
|
|
Dbprintf("Bank[%d] received a 7-byte UID", selected);
|
|
uid_1st[selected] = (uid_tmp1)>>8;
|
|
uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
|
|
} else {
|
|
Dbprintf("Bank[%d] received a 4-byte UID", selected);
|
|
uid_1st[selected] = uid_tmp1;
|
|
uid_2nd[selected] = uid_tmp2;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Dbprintf("ATQA = %02X%02X", hi14a_card[selected].atqa[0], hi14a_card[selected].atqa[1]);
|
|
Dbprintf("SAK = %02X", hi14a_card[selected].sak);
|
|
LEDsoff();
|
|
LED(LED_GREEN, 200);
|
|
LED(LED_ORANGE, 200);
|
|
LED(LED_GREEN, 200);
|
|
LED(LED_ORANGE, 200);
|
|
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
|
|
// Next state is replay:
|
|
playing = true;
|
|
|
|
cardRead[selected] = true;
|
|
} else if (GotoClone) { /* MF Classic UID clone */
|
|
GotoClone=false;
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
LED(LED_ORANGE, 250);
|
|
|
|
|
|
// record
|
|
Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
|
|
|
|
// wait for button to be released
|
|
while(BUTTON_PRESS()) {
|
|
// Delay cloning until card is in place
|
|
WDT_HIT();
|
|
}
|
|
Dbprintf("Starting clone. [Bank: %u]", selected);
|
|
// need this delay to prevent catching some weird data
|
|
SpinDelay(500);
|
|
// Begin clone function here:
|
|
/* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
|
|
UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
|
|
memcpy(c.d.asBytes, data, 16);
|
|
SendCommand(&c);
|
|
|
|
Block read is similar:
|
|
UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
|
|
We need to imitate that call with blockNo 0 to set a uid.
|
|
|
|
The get and set commands are handled in this file:
|
|
// Work with "magic Chinese" card
|
|
case CMD_MIFARE_CSETBLOCK:
|
|
MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_CGETBLOCK:
|
|
MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
|
|
mfCSetUID provides example logic for UID set workflow:
|
|
-Read block0 from card in field with MifareCGetBlock()
|
|
-Configure new values without replacing reserved bytes
|
|
memcpy(block0, uid, 4); // Copy UID bytes from byte array
|
|
// Mifare UID BCC
|
|
block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
|
|
Bytes 5-7 are reserved SAK and ATQA for mifare classic
|
|
-Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
|
|
*/
|
|
uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
|
|
// arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
|
|
MifareCGetBlock(0x3F, 1, 0, oldBlock0);
|
|
if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
|
|
Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
|
|
playing = true;
|
|
} else {
|
|
Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]);
|
|
memcpy(newBlock0, oldBlock0, 16);
|
|
// Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
|
|
|
|
newBlock0[0] = uid_1st[selected] >> 24;
|
|
newBlock0[1] = 0xFF & (uid_1st[selected] >> 16);
|
|
newBlock0[2] = 0xFF & (uid_1st[selected] >> 8);
|
|
newBlock0[3] = 0xFF & (uid_1st[selected]);
|
|
newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3];
|
|
// arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
|
|
MifareCSetBlock(0, 0xFF, 0, newBlock0);
|
|
MifareCGetBlock(0x3F, 1, 0, testBlock0);
|
|
if (memcmp(testBlock0, newBlock0, 16) == 0) {
|
|
DbpString("Cloned successfull!");
|
|
cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
|
|
playing = false;
|
|
GotoRecord = true;
|
|
selected = (selected+1) % OPTS;
|
|
} else {
|
|
Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
|
|
playing = true;
|
|
}
|
|
}
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
|
|
} else if (playing) {
|
|
// button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
|
|
// Change where to record (or begin playing)
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
|
|
// Begin transmitting
|
|
LED(LED_GREEN, 0);
|
|
DbpString("Playing");
|
|
for ( ; ; ) {
|
|
WDT_HIT();
|
|
int button_action = BUTTON_HELD(1000);
|
|
if (button_action == 0) { // No button action, proceed with sim
|
|
uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
|
|
Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected], uid_2nd[selected], selected);
|
|
if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
|
|
DbpString("Mifare Classic");
|
|
SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
|
|
} else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
|
|
DbpString("Mifare Ultralight");
|
|
SimulateIso14443aTag(2, uid_1st[selected], uid_2nd[selected], data); // Mifare Ultralight
|
|
} else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
|
|
DbpString("Mifare DESFire");
|
|
SimulateIso14443aTag(3, uid_1st[selected], uid_2nd[selected], data); // Mifare DESFire
|
|
} else {
|
|
Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
|
|
SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data);
|
|
}
|
|
} else if (button_action == BUTTON_SINGLE_CLICK) {
|
|
selected = (selected + 1) % OPTS;
|
|
Dbprintf("Done playing. Switching to record mode on bank %d",selected);
|
|
GotoRecord = true;
|
|
break;
|
|
} else if (button_action == BUTTON_HOLD) {
|
|
Dbprintf("Playtime over. Begin cloning...");
|
|
GotoClone = true;
|
|
break;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
/* We pressed a button so ignore it here with a delay */
|
|
SpinDelay(300);
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
#elif WITH_LF_StandAlone
|
|
|
|
// samy's sniff and repeat routine
|
|
void SamyRun() {
|
|
StandAloneMode();
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
|
|
int tops[OPTS], high[OPTS], low[OPTS];
|
|
int selected = 0;
|
|
int playing = 0;
|
|
int cardRead = 0;
|
|
|
|
// Turn on selected LED
|
|
LED(selected + 1, 0);
|
|
|
|
for (;;) {
|
|
usb_poll();
|
|
WDT_HIT();
|
|
|
|
// Was our button held down or pressed?
|
|
int button_pressed = BUTTON_HELD(1000);
|
|
SpinDelay(300);
|
|
|
|
// Button was held for a second, begin recording
|
|
if (button_pressed > 0 && cardRead == 0) {
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
LED(LED_RED2, 0);
|
|
|
|
// record
|
|
DbpString("Starting recording");
|
|
|
|
// wait for button to be released
|
|
while(BUTTON_PRESS())
|
|
WDT_HIT();
|
|
|
|
/* need this delay to prevent catching some weird data */
|
|
SpinDelay(500);
|
|
|
|
CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0);
|
|
if (tops[selected] > 0)
|
|
Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
|
|
else
|
|
Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
|
|
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
// Finished recording
|
|
|
|
// If we were previously playing, set playing off
|
|
// so next button push begins playing what we recorded
|
|
playing = 0;
|
|
|
|
cardRead = 1;
|
|
|
|
} else if (button_pressed > 0 && cardRead == 1) {
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
LED(LED_ORANGE, 0);
|
|
|
|
// record
|
|
if (tops[selected] > 0)
|
|
Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
|
|
else
|
|
Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
|
|
|
|
// wait for button to be released
|
|
while(BUTTON_PRESS())
|
|
WDT_HIT();
|
|
|
|
/* need this delay to prevent catching some weird data */
|
|
SpinDelay(500);
|
|
|
|
CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D);
|
|
if (tops[selected] > 0)
|
|
Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
|
|
else
|
|
Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
|
|
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
// Finished recording
|
|
|
|
// If we were previously playing, set playing off
|
|
// so next button push begins playing what we recorded
|
|
playing = 0;
|
|
|
|
cardRead = 0;
|
|
|
|
} else if (button_pressed) {
|
|
|
|
// Change where to record (or begin playing)
|
|
// Next option if we were previously playing
|
|
if (playing)
|
|
selected = (selected + 1) % OPTS;
|
|
playing = !playing;
|
|
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
|
|
// Begin transmitting
|
|
if (playing) {
|
|
LED(LED_GREEN, 0);
|
|
DbpString("Playing");
|
|
// wait for button to be released
|
|
while(BUTTON_PRESS())
|
|
WDT_HIT();
|
|
if (tops[selected] > 0)
|
|
Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
|
|
else
|
|
Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
|
|
|
|
CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
|
|
DbpString("Done playing");
|
|
if (BUTTON_HELD(1000) > 0) {
|
|
DbpString("Exiting");
|
|
LEDsoff();
|
|
return;
|
|
}
|
|
|
|
/* We pressed a button so ignore it here with a delay */
|
|
SpinDelay(300);
|
|
|
|
// when done, we're done playing, move to next option
|
|
selected = (selected + 1) % OPTS;
|
|
playing = !playing;
|
|
LEDsoff();
|
|
LED(selected + 1, 0);
|
|
} else
|
|
while(BUTTON_PRESS())
|
|
WDT_HIT();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
OBJECTIVE
|
|
Listen and detect an external reader. Determine the best location
|
|
for the antenna.
|
|
|
|
INSTRUCTIONS:
|
|
Inside the ListenReaderField() function, there is two mode.
|
|
By default, when you call the function, you will enter mode 1.
|
|
If you press the PM3 button one time, you will enter mode 2.
|
|
If you press the PM3 button a second time, you will exit the function.
|
|
|
|
DESCRIPTION OF MODE 1:
|
|
This mode just listens for an external reader field and lights up green
|
|
for HF and/or red for LF. This is the original mode of the detectreader
|
|
function.
|
|
|
|
DESCRIPTION OF MODE 2:
|
|
This mode will visually represent, using the LEDs, the actual strength of the
|
|
current compared to the maximum current detected. Basically, once you know
|
|
what kind of external reader is present, it will help you spot the best location to place
|
|
your antenna. You will probably not get some good results if there is a LF and a HF reader
|
|
at the same place! :-)
|
|
|
|
LIGHT SCHEME USED:
|
|
*/
|
|
static const char LIGHT_SCHEME[] = {
|
|
0x0, /* ---- | No field detected */
|
|
0x1, /* X--- | 14% of maximum current detected */
|
|
0x2, /* -X-- | 29% of maximum current detected */
|
|
0x4, /* --X- | 43% of maximum current detected */
|
|
0x8, /* ---X | 57% of maximum current detected */
|
|
0xC, /* --XX | 71% of maximum current detected */
|
|
0xE, /* -XXX | 86% of maximum current detected */
|
|
0xF, /* XXXX | 100% of maximum current detected */
|
|
};
|
|
|
|
static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
|
|
|
|
void ListenReaderField(int limit) {
|
|
int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
|
|
int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
|
|
int mode=1, display_val, display_max, i;
|
|
|
|
#define LF_ONLY 1
|
|
#define HF_ONLY 2
|
|
#define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
|
|
#define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
|
|
#define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
|
|
|
|
|
|
// switch off FPGA - we don't want to measure our own signal
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
|
|
LEDsoff();
|
|
|
|
lf_av = lf_max = AvgAdc_Voltage_LF();
|
|
|
|
if (limit != HF_ONLY) {
|
|
Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
|
|
lf_baseline = lf_av;
|
|
}
|
|
|
|
hf_av = hf_max = AvgAdc_Voltage_HF();
|
|
|
|
if (limit != LF_ONLY) {
|
|
Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
|
|
hf_baseline = hf_av;
|
|
}
|
|
|
|
for(;;) {
|
|
SpinDelay(500);
|
|
if (BUTTON_PRESS()) {
|
|
switch (mode) {
|
|
case 1:
|
|
mode=2;
|
|
DbpString("Signal Strength Mode");
|
|
break;
|
|
case 2:
|
|
default:
|
|
DbpString("Stopped");
|
|
LEDsoff();
|
|
return;
|
|
break;
|
|
}
|
|
while (BUTTON_PRESS())
|
|
/* wait */;
|
|
}
|
|
WDT_HIT();
|
|
|
|
if (limit != HF_ONLY) {
|
|
if(mode == 1) {
|
|
if (lf_av - lf_baseline > MIN_LF_FIELD)
|
|
LED_D_ON();
|
|
else
|
|
LED_D_OFF();
|
|
}
|
|
|
|
lf_av_new = AvgAdc_Voltage_LF();
|
|
// see if there's a significant change
|
|
if (ABS((lf_av - lf_av_new) * 100 / (lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
|
|
Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
|
|
lf_av = lf_av_new;
|
|
if (lf_av > lf_max)
|
|
lf_max = lf_av;
|
|
}
|
|
}
|
|
|
|
if (limit != LF_ONLY) {
|
|
if (mode == 1){
|
|
if (hf_av - hf_baseline > MIN_HF_FIELD)
|
|
LED_B_ON();
|
|
else
|
|
LED_B_OFF();
|
|
}
|
|
|
|
hf_av_new = AvgAdc_Voltage_HF();
|
|
|
|
// see if there's a significant change
|
|
if (ABS((hf_av - hf_av_new) * 100 / (hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
|
|
Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
|
|
hf_av = hf_av_new;
|
|
if (hf_av > hf_max)
|
|
hf_max = hf_av;
|
|
}
|
|
}
|
|
|
|
if (mode == 2) {
|
|
if (limit == LF_ONLY) {
|
|
display_val = lf_av;
|
|
display_max = lf_max;
|
|
} else if (limit == HF_ONLY) {
|
|
display_val = hf_av;
|
|
display_max = hf_max;
|
|
} else { /* Pick one at random */
|
|
if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
|
|
display_val = hf_av;
|
|
display_max = hf_max;
|
|
} else {
|
|
display_val = lf_av;
|
|
display_max = lf_max;
|
|
}
|
|
}
|
|
for (i = 0; i < LIGHT_LEN; i++) {
|
|
if (display_val >= (display_max / LIGHT_LEN * i) && display_val <= (display_max / LIGHT_LEN * (i+1))) {
|
|
if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
|
|
if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
|
|
if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
|
|
if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void UsbPacketReceived(UsbCommand *c) {
|
|
|
|
// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
|
|
|
|
switch(c->cmd) {
|
|
#ifdef WITH_LF
|
|
case CMD_SET_LF_SAMPLING_CONFIG:
|
|
setSamplingConfig(c->d.asBytes);
|
|
break;
|
|
case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
|
|
cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
|
|
break;
|
|
case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
|
|
ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
|
|
break;
|
|
case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
|
|
cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
|
|
break;
|
|
case CMD_HID_DEMOD_FSK:
|
|
CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1);
|
|
break;
|
|
case CMD_HID_SIM_TAG:
|
|
CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1);
|
|
break;
|
|
case CMD_FSK_SIM_TAG:
|
|
CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_ASK_SIM_TAG:
|
|
CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_PSK_SIM_TAG:
|
|
CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_HID_CLONE_TAG:
|
|
CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D);
|
|
break;
|
|
case CMD_PARADOX_CLONE_TAG:
|
|
// Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
|
|
CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F);
|
|
break;
|
|
case CMD_IO_DEMOD_FSK:
|
|
CmdIOdemodFSK(c->arg[0], 0, 0, 1);
|
|
break;
|
|
case CMD_IO_CLONE_TAG:
|
|
CopyIOtoT55x7(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_EM410X_DEMOD:
|
|
CmdEM410xdemod(c->arg[0], 0, 0, 1);
|
|
break;
|
|
case CMD_EM410X_WRITE_TAG:
|
|
WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_READ_TI_TYPE:
|
|
ReadTItag();
|
|
break;
|
|
case CMD_WRITE_TI_TYPE:
|
|
WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
|
|
break;
|
|
case CMD_SIMULATE_TAG_125K:
|
|
LED_A_ON();
|
|
SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
|
|
LED_A_OFF();
|
|
break;
|
|
case CMD_LF_SIMULATE_BIDIR:
|
|
SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_INDALA_CLONE_TAG:
|
|
CopyIndala64toT55x7(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_INDALA_CLONE_TAG_L:
|
|
CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
|
|
break;
|
|
case CMD_T55XX_READ_BLOCK:
|
|
T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_T55XX_WRITE_BLOCK:
|
|
T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
|
|
break;
|
|
case CMD_T55XX_WAKEUP:
|
|
T55xxWakeUp(c->arg[0]);
|
|
break;
|
|
case CMD_T55XX_RESET_READ:
|
|
T55xxResetRead();
|
|
break;
|
|
case CMD_PCF7931_READ:
|
|
ReadPCF7931();
|
|
break;
|
|
case CMD_PCF7931_WRITE:
|
|
WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_PCF7931_BRUTEFORCE:
|
|
BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128);
|
|
break;
|
|
case CMD_EM4X_READ_WORD:
|
|
EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
|
|
break;
|
|
case CMD_EM4X_WRITE_WORD:
|
|
EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_EM4X_PROTECT:
|
|
EM4xProtect(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
|
|
CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
|
|
break;
|
|
case CMD_VIKING_CLONE_TAG:
|
|
CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_COTAG:
|
|
Cotag(c->arg[0]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_HITAG
|
|
case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
|
|
SnoopHitag(c->arg[0]);
|
|
break;
|
|
case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
|
|
SimulateHitagTag((bool)c->arg[0], (uint8_t*)c->d.asBytes);
|
|
break;
|
|
case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
|
|
ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
|
|
break;
|
|
case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
|
|
SimulateHitagSTag((bool)c->arg[0],(uint8_t*)c->d.asBytes);
|
|
break;
|
|
case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
|
|
check_challenges_cmd((bool)c->arg[0], (uint8_t*)c->d.asBytes, (uint8_t)c->arg[1]);
|
|
break;
|
|
case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
|
|
ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
|
|
break;
|
|
case CMD_READ_HITAG_S_BLK:
|
|
ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true);
|
|
break;
|
|
case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
|
|
if ((hitag_function)c->arg[0] < 10) {
|
|
WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
|
|
}
|
|
else if ((hitag_function)c->arg[0] >= 10) {
|
|
WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO15693
|
|
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
|
|
AcquireRawAdcSamplesIso15693();
|
|
break;
|
|
|
|
case CMD_SNOOP_ISO_15693:
|
|
SnoopIso15693(0, NULL);
|
|
break;
|
|
|
|
case CMD_ISO_15693_COMMAND:
|
|
DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
|
|
break;
|
|
|
|
case CMD_ISO_15693_FIND_AFI:
|
|
BruteforceIso15693Afi(c->arg[0]);
|
|
break;
|
|
|
|
case CMD_ISO_15693_DEBUG:
|
|
SetDebugIso15693(c->arg[0]);
|
|
break;
|
|
|
|
case CMD_READER_ISO_15693:
|
|
ReaderIso15693(c->arg[0]);
|
|
break;
|
|
|
|
case CMD_SIMTAG_ISO_15693:
|
|
SimTagIso15693(c->arg[0], c->d.asBytes);
|
|
break;
|
|
|
|
case CMD_CSETUID_ISO_15693:
|
|
SetTag15693Uid(c->d.asBytes);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_LEGICRF
|
|
case CMD_SIMULATE_TAG_LEGIC_RF:
|
|
LegicRfSimulate(c->arg[0]);
|
|
break;
|
|
|
|
case CMD_WRITER_LEGIC_RF:
|
|
LegicRfWriter(c->arg[1], c->arg[0]);
|
|
break;
|
|
|
|
case CMD_READER_LEGIC_RF:
|
|
LegicRfReader(c->arg[0], c->arg[1]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443b
|
|
case CMD_READ_SRI512_TAG:
|
|
ReadSTMemoryIso14443b(0x0F);
|
|
break;
|
|
case CMD_READ_SRIX4K_TAG:
|
|
ReadSTMemoryIso14443b(0x7F);
|
|
break;
|
|
case CMD_SNOOP_ISO_14443B:
|
|
SnoopIso14443b();
|
|
break;
|
|
case CMD_SIMULATE_TAG_ISO_14443B:
|
|
SimulateIso14443bTag();
|
|
break;
|
|
case CMD_ISO_14443B_COMMAND:
|
|
SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443a
|
|
case CMD_SNOOP_ISO_14443a:
|
|
SnoopIso14443a(c->arg[0]);
|
|
break;
|
|
case CMD_READER_ISO_14443a:
|
|
ReaderIso14443a(c);
|
|
break;
|
|
case CMD_SIMULATE_TAG_ISO_14443a:
|
|
SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
|
|
break;
|
|
|
|
case CMD_EPA_PACE_COLLECT_NONCE:
|
|
EPA_PACE_Collect_Nonce(c);
|
|
break;
|
|
case CMD_EPA_PACE_REPLAY:
|
|
EPA_PACE_Replay(c);
|
|
break;
|
|
|
|
case CMD_READER_MIFARE:
|
|
ReaderMifare(c->arg[0]);
|
|
break;
|
|
case CMD_MIFARE_READBL:
|
|
MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFAREU_READBL:
|
|
MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFAREUC_AUTH:
|
|
MifareUC_Auth(c->arg[0],c->d.asBytes);
|
|
break;
|
|
case CMD_MIFAREU_READCARD:
|
|
MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFAREUC_SETPWD:
|
|
MifareUSetPwd(c->arg[0], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_READSC:
|
|
MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_WRITEBL:
|
|
MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_PERSONALIZE_UID:
|
|
MifarePersonalizeUID(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
//case CMD_MIFAREU_WRITEBL_COMPAT:
|
|
//MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
|
|
//break;
|
|
case CMD_MIFAREU_WRITEBL:
|
|
MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
|
|
MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_NESTED:
|
|
MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_CHKKEYS:
|
|
MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_SIMULATE_MIFARE_CARD:
|
|
MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
|
|
// emulator
|
|
case CMD_MIFARE_SET_DBGMODE:
|
|
MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_EML_MEMCLR:
|
|
MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_EML_MEMSET:
|
|
MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_EML_MEMGET:
|
|
MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_EML_CARDLOAD:
|
|
MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
|
|
// Work with "magic Chinese" card
|
|
case CMD_MIFARE_CWIPE:
|
|
MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_CSETBLOCK:
|
|
MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_CGETBLOCK:
|
|
MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_CIDENT:
|
|
MifareCIdent();
|
|
break;
|
|
|
|
// mifare sniffer
|
|
case CMD_MIFARE_SNIFFER:
|
|
SniffMifare(c->arg[0]);
|
|
break;
|
|
|
|
#endif
|
|
|
|
#ifdef WITH_ICLASS
|
|
// Makes use of ISO14443a FPGA Firmware
|
|
case CMD_SNOOP_ICLASS:
|
|
SnoopIClass(c->arg[0], c->d.asBytes);
|
|
break;
|
|
case CMD_SIMULATE_TAG_ICLASS:
|
|
SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_READER_ICLASS:
|
|
ReaderIClass(c->arg[0]);
|
|
break;
|
|
case CMD_ICLASS_EML_MEMSET:
|
|
emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_ICLASS_WRITEBLOCK:
|
|
iClass_WriteBlock(c->arg[0], c->d.asBytes);
|
|
break;
|
|
case CMD_ICLASS_READBLOCK:
|
|
iClass_ReadBlk(c->arg[0]);
|
|
break;
|
|
case CMD_ICLASS_CHECK:
|
|
iClass_Check(c->d.asBytes);
|
|
break;
|
|
case CMD_ICLASS_READCHECK:
|
|
iClass_Readcheck(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_ICLASS_DUMP:
|
|
iClass_Dump(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_ICLASS_CLONE:
|
|
iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_HFSNOOP
|
|
case CMD_HF_SNIFFER:
|
|
HfSnoop(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_HF_PLOT:
|
|
HfPlot();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_SMARTCARD
|
|
case CMD_SMART_ATR: {
|
|
SmartCardAtr();
|
|
break;
|
|
}
|
|
case CMD_SMART_SETCLOCK:{
|
|
SmartCardSetClock(c->arg[0]);
|
|
break;
|
|
}
|
|
case CMD_SMART_RAW: {
|
|
SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
}
|
|
case CMD_SMART_UPLOAD: {
|
|
// upload file from client
|
|
uint8_t *mem = BigBuf_get_addr();
|
|
memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
|
|
cmd_send(CMD_ACK,1,0,0,0,0);
|
|
break;
|
|
}
|
|
case CMD_SMART_UPGRADE: {
|
|
SmartCardUpgrade(c->arg[0]);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
case CMD_BUFF_CLEAR:
|
|
BigBuf_Clear();
|
|
break;
|
|
|
|
case CMD_MEASURE_ANTENNA_TUNING:
|
|
MeasureAntennaTuning(c->arg[0]);
|
|
break;
|
|
|
|
case CMD_MEASURE_ANTENNA_TUNING_HF:
|
|
MeasureAntennaTuningHf();
|
|
break;
|
|
|
|
case CMD_LISTEN_READER_FIELD:
|
|
ListenReaderField(c->arg[0]);
|
|
break;
|
|
|
|
case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
|
|
LED_A_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
LED_D_OFF(); // LED D indicates field ON or OFF
|
|
LED_A_OFF();
|
|
break;
|
|
|
|
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
|
|
LED_B_ON();
|
|
uint8_t *BigBuf = BigBuf_get_addr();
|
|
for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
|
|
size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
|
|
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
|
|
}
|
|
// Trigger a finish downloading signal with an ACK frame
|
|
cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
|
|
LED_B_OFF();
|
|
break;
|
|
|
|
case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
|
|
// iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
|
|
// to be able to use this one for uploading data to device
|
|
// arg1 = 0 upload for LF usage
|
|
// 1 upload for HF usage
|
|
if (c->arg[1] == 0)
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
else
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
|
|
uint8_t *b = BigBuf_get_addr();
|
|
memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
break;
|
|
}
|
|
case CMD_READ_MEM:
|
|
ReadMem(c->arg[0]);
|
|
break;
|
|
|
|
case CMD_SET_LF_DIVISOR:
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
|
|
break;
|
|
|
|
case CMD_SET_ADC_MUX:
|
|
switch(c->arg[0]) {
|
|
case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
|
|
case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
|
|
case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
|
|
case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
|
|
}
|
|
break;
|
|
|
|
case CMD_VERSION:
|
|
SendVersion();
|
|
break;
|
|
case CMD_STATUS:
|
|
SendStatus();
|
|
break;
|
|
case CMD_PING:
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
break;
|
|
#ifdef WITH_LCD
|
|
case CMD_LCD_RESET:
|
|
LCDReset();
|
|
break;
|
|
case CMD_LCD:
|
|
LCDSend(c->arg[0]);
|
|
break;
|
|
#endif
|
|
case CMD_SETUP_WRITE:
|
|
case CMD_FINISH_WRITE:
|
|
case CMD_HARDWARE_RESET:
|
|
usb_disable();
|
|
SpinDelay(1000);
|
|
SpinDelay(1000);
|
|
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
|
|
for(;;) {
|
|
// We're going to reset, and the bootrom will take control.
|
|
}
|
|
break;
|
|
|
|
case CMD_START_FLASH:
|
|
if(common_area.flags.bootrom_present) {
|
|
common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
|
|
}
|
|
usb_disable();
|
|
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
|
|
for(;;);
|
|
break;
|
|
|
|
case CMD_DEVICE_INFO: {
|
|
uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
|
|
if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
|
|
cmd_send_old(CMD_DEVICE_INFO,dev_info,0,0,0,0);
|
|
break;
|
|
}
|
|
default:
|
|
Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void __attribute__((noreturn)) AppMain(void) {
|
|
|
|
SpinDelay(100);
|
|
clear_trace();
|
|
if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
|
|
/* Initialize common area */
|
|
memset(&common_area, 0, sizeof(common_area));
|
|
common_area.magic = COMMON_AREA_MAGIC;
|
|
common_area.version = 1;
|
|
}
|
|
common_area.flags.osimage_present = 1;
|
|
|
|
LEDsoff();
|
|
|
|
// Init USB device
|
|
usb_enable();
|
|
|
|
// The FPGA gets its clock from us from PCK0 output, so set that up.
|
|
AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
|
|
AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
|
|
// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
|
|
AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
|
|
AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
|
|
|
|
// Reset SPI
|
|
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
|
|
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; // required twice on some AT91SAM Revisions (see Errata in AT91SAM datasheet)
|
|
// Reset SSC
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
|
|
|
|
// Load the FPGA image, which we have stored in our flash (HF version by default)
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
|
|
StartTickCount();
|
|
|
|
#ifdef WITH_LCD
|
|
LCDInit();
|
|
#endif
|
|
|
|
UsbCommand rx;
|
|
|
|
for(;;) {
|
|
WDT_HIT();
|
|
if (cmd_receive(&rx)) {
|
|
UsbPacketReceived(&rx);
|
|
} else {
|
|
#if defined(WITH_LF_StandAlone) && !defined(WITH_ISO14443a_StandAlone)
|
|
if (BUTTON_HELD(1000) > 0)
|
|
SamyRun();
|
|
#endif
|
|
#if defined(WITH_ISO14443a) && defined(WITH_ISO14443a_StandAlone)
|
|
if (BUTTON_HELD(1000) > 0)
|
|
StandAloneMode14a();
|
|
#endif
|
|
}
|
|
}
|
|
}
|