proxmark3/armsrc/BigBuf.c
pwpiwi a8561e356b
fix hf mf sim (#812)
* fix parity encryption (thanks to Eloff, http://www.proxmark.org/forum/viewtopic.php?id=6347)
* add support to simulate Mifare Mini, Mifare 2K and Mifare 4K
* change to standard LED handling (A: PM is working, B: reader is sending, C: tag is responding, D: HF field is on)
* NAK on unknown commands
* allow unencrypted HALT
* don't display messages during simulation (or we will miss next reader command)
* use DMA to receive reader command
* switch earlier from send to listen mode
* move ADC initializer to iso14443_setup
* remove remainders of incomplete Mifare 10Byte UID simulation
* show 'short' bytes (7Bits or 8Bits without parity) in 'hf list mf' and 'hf list 14a'
* whitespace
2019-04-19 10:22:10 +02:00

296 lines
7.3 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, Aug 2005
// Gerhard de Koning Gans, April 2008, May 2011
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// BigBuf and functions to allocate/free parts of it.
//-----------------------------------------------------------------------------
#include <stdint.h>
#include "proxmark3.h"
#include "apps.h"
#include "string.h"
#include "util.h"
// BigBuf is the large multi-purpose buffer, typically used to hold A/D samples or traces.
// Also used to hold various smaller buffers and the Mifare Emulator Memory.
/* BigBuf memory layout:
Pointer to highest available memory: BigBuf_hi
high BIGBUF_SIZE
reserved = BigBuf_malloc() subtracts amount from BigBuf_hi,
low 0x00
*/
// declare it as uint32_t to achieve alignment to 4 Byte boundary
static uint32_t BigBuf[BIGBUF_SIZE/sizeof(uint32_t)];
// High memory mark
static uint16_t BigBuf_hi = BIGBUF_SIZE;
// pointer to the emulator memory.
static uint8_t *emulator_memory = NULL;
// trace related variables
static uint32_t traceLen = 0;
static bool tracing = true;
// get the address of BigBuf
uint8_t *BigBuf_get_addr(void)
{
return (uint8_t *)BigBuf;
}
// get the address of the emulator memory. Allocate part of Bigbuf for it, if not yet done
uint8_t *BigBuf_get_EM_addr(void)
{
// not yet allocated
if (emulator_memory == NULL) {
emulator_memory = BigBuf_malloc(CARD_MEMORY_SIZE);
}
return emulator_memory;
}
// clear ALL of BigBuf
void BigBuf_Clear(void)
{
BigBuf_Clear_ext(true);
}
// clear ALL of BigBuf
void BigBuf_Clear_ext(bool verbose)
{
memset(BigBuf, 0, BIGBUF_SIZE);
if (verbose)
Dbprintf("Buffer cleared (%i bytes)", BIGBUF_SIZE);
}
void BigBuf_Clear_EM(void){
memset(BigBuf_get_EM_addr(), 0, CARD_MEMORY_SIZE);
}
void BigBuf_Clear_keep_EM(void)
{
memset(BigBuf, 0, BigBuf_hi);
}
// allocate a chunk of memory from BigBuf. We allocate high memory first. The unallocated memory
// at the beginning of BigBuf is always for traces/samples
uint8_t *BigBuf_malloc(uint16_t chunksize)
{
if (BigBuf_hi - chunksize < 0) {
return NULL; // no memory left
} else {
chunksize = (chunksize + 3) & 0xfffc; // round to next multiple of 4
BigBuf_hi -= chunksize; // aligned to 4 Byte boundary
return (uint8_t *)BigBuf + BigBuf_hi;
}
}
// free ALL allocated chunks. The whole BigBuf is available for traces or samples again.
void BigBuf_free(void)
{
BigBuf_hi = BIGBUF_SIZE;
emulator_memory = NULL;
}
// free allocated chunks EXCEPT the emulator memory
void BigBuf_free_keep_EM(void)
{
if (emulator_memory != NULL) {
BigBuf_hi = emulator_memory - (uint8_t *)BigBuf;
} else {
BigBuf_hi = BIGBUF_SIZE;
}
}
void BigBuf_print_status(void)
{
Dbprintf("Memory");
Dbprintf(" BIGBUF_SIZE.............%d", BIGBUF_SIZE);
Dbprintf(" Available memory........%d", BigBuf_hi);
Dbprintf("Tracing");
Dbprintf(" tracing ................%d", tracing);
Dbprintf(" traceLen ...............%d", traceLen);
}
// return the maximum trace length (i.e. the unallocated size of BigBuf)
uint16_t BigBuf_max_traceLen(void)
{
return BigBuf_hi;
}
void clear_trace() {
traceLen = 0;
}
void set_tracing(bool enable) {
tracing = enable;
}
bool get_tracing(void) {
return tracing;
}
/**
* Get the number of bytes traced
* @return
*/
uint16_t BigBuf_get_traceLen(void)
{
return traceLen;
}
/**
This is a function to store traces. All protocols can use this generic tracer-function.
The traces produced by calling this function can be fetched on the client-side
by 'hf list raw', alternatively 'hf list <proto>' for protocol-specific
annotation of commands/responses.
**/
bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
{
if (!tracing) return false;
uint8_t *trace = BigBuf_get_addr();
uint32_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
uint32_t duration = timestamp_end - timestamp_start;
// Return when trace is full
uint16_t max_traceLen = BigBuf_max_traceLen();
if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
tracing = false; // don't trace any more
return false;
}
// Traceformat:
// 32 bits timestamp (little endian)
// 16 bits duration (little endian)
// 16 bits data length (little endian, Highest Bit used as readerToTag flag)
// y Bytes data
// x Bytes parity (one byte per 8 bytes data)
// timestamp (start)
trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
// duration
trace[traceLen++] = ((duration >> 0) & 0xff);
trace[traceLen++] = ((duration >> 8) & 0xff);
// data length
trace[traceLen++] = ((iLen >> 0) & 0xff);
trace[traceLen++] = ((iLen >> 8) & 0xff);
// readerToTag flag
if (!readerToTag) {
trace[traceLen - 1] |= 0x80;
}
// data bytes
if (btBytes != NULL && iLen != 0) {
for (int i = 0; i < iLen; i++) {
trace[traceLen++] = *btBytes++;
}
}
// parity bytes
if (num_paritybytes != 0) {
if (parity != NULL) {
for (int i = 0; i < num_paritybytes; i++) {
trace[traceLen++] = *parity++;
}
} else {
for (int i = 0; i < num_paritybytes; i++) {
trace[traceLen++] = 0x00;
}
}
}
return true;
}
int LogTraceHitag(const uint8_t * btBytes, int iBits, int iSamples, uint32_t dwParity, int readerToTag)
{
/**
Todo, rewrite the logger to use the generic functionality instead. It should be noted, however,
that this logger takes number of bits as argument, not number of bytes.
**/
if (!tracing) return false;
uint8_t *trace = BigBuf_get_addr();
uint16_t iLen = nbytes(iBits);
// Return when trace is full
if (traceLen + sizeof(rsamples) + sizeof(dwParity) + sizeof(iBits) + iLen > BigBuf_max_traceLen()) {
return false;
}
//Hitag traces appear to use this traceformat:
// 32 bits timestamp (little endian,Highest Bit used as readerToTag flag)
// 32 bits parity
// 8 bits size (number of bits in the trace entry, not number of bytes)
// y Bytes data
rsamples += iSamples;
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = ((rsamples >> 24) & 0xff);
if (!readerToTag) {
trace[traceLen - 1] |= 0x80;
}
trace[traceLen++] = ((dwParity >> 0) & 0xff);
trace[traceLen++] = ((dwParity >> 8) & 0xff);
trace[traceLen++] = ((dwParity >> 16) & 0xff);
trace[traceLen++] = ((dwParity >> 24) & 0xff);
trace[traceLen++] = iBits;
for (int i = 0; i < iLen; i++) {
trace[traceLen++] = *btBytes++;
}
return true;
}
// Emulator memory
uint8_t emlSet(uint8_t *data, uint32_t offset, uint32_t length){
uint8_t* mem = BigBuf_get_EM_addr();
if (offset+length < CARD_MEMORY_SIZE) {
memcpy(mem+offset, data, length);
return 0;
} else {
Dbprintf("Error, trying to set memory outside of bounds! %d > %d", (offset+length), CARD_MEMORY_SIZE);
return 1;
}
}