plexpy/plexpy/datatables.py

306 lines
11 KiB
Python

# This file is part of Tautulli.
#
# Tautulli is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Tautulli is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Tautulli. If not, see <http://www.gnu.org/licenses/>.
from __future__ import unicode_literals
from future.builtins import object
import re
import plexpy
if plexpy.PYTHON2:
import database
import helpers
import logger
else:
from plexpy import database
from plexpy import helpers
from plexpy import logger
class DataTables(object):
"""
Server side processing for Datatables
"""
def __init__(self):
self.ssp_db = database.MonitorDatabase()
def ssp_query(self,
table_name=None,
table_name_union=None,
columns=[],
columns_union=[],
custom_where=[],
custom_where_union=[],
group_by=[],
group_by_union=[],
join_types=[],
join_tables=[],
join_evals=[],
kwargs=None):
if not table_name:
logger.error('Tautulli DataTables :: No table name received.')
return None
# Fetch all our parameters
if kwargs.get('json_data'):
parameters = helpers.process_json_kwargs(json_kwargs=kwargs.get('json_data'))
else:
logger.error('Tautulli DataTables :: Parameters for Datatables must be sent as a serialised json object '
'named json_data.')
return None
extracted_columns = extract_columns(columns=columns)
join = build_join(join_types, join_tables, join_evals)
group = build_grouping(group_by)
c_where, cw_args = build_custom_where(custom_where)
order = build_order(parameters['order'],
extracted_columns['column_named'],
parameters['columns'])
where, w_args = build_where(parameters['search']['value'],
extracted_columns['column_named'],
parameters['columns'])
# Build union parameters
if table_name_union:
extracted_columns_union = extract_columns(columns=columns_union)
group_u = build_grouping(group_by_union)
c_where_u, cwu_args = build_custom_where(custom_where_union)
union = 'UNION SELECT %s FROM %s %s %s' % (extracted_columns_union['column_string'],
table_name_union,
c_where_u,
group_u)
else:
union = ''
cwu_args = []
args = cw_args + cwu_args + w_args
# Build the query
query = 'SELECT * FROM (SELECT %s FROM %s %s %s %s %s) %s %s' \
% (extracted_columns['column_string'], table_name, join, c_where, group, union, where, order)
# logger.debug("Query: %s" % query)
# Execute the query
filtered = self.ssp_db.select(query, args=args)
# Remove NULL rows
filtered = [row for row in filtered if not all(v is None for v in row.values())]
# Build grand totals
totalcount = self.ssp_db.select('SELECT COUNT(id) as total_count from %s' % table_name)[0]['total_count']
# Get draw counter
draw_counter = int(parameters['draw'])
# Paginate results
result = filtered[parameters['start']:(parameters['start'] + parameters['length'])]
output = {'result': result,
'draw': draw_counter,
'filteredCount': len(filtered),
'totalCount': totalcount}
return output
def build_grouping(group_by=[]):
# Build grouping
group = ''
for g in group_by:
group += g + ', '
if group:
group = 'GROUP BY ' + group.rstrip(', ')
return group
def build_join(join_types=[], join_tables=[], join_evals=[]):
# Build join parameters
join = ''
for i, join_type in enumerate(join_types):
if join_type.upper() == 'LEFT OUTER JOIN':
join += 'LEFT OUTER JOIN %s ON %s = %s ' % (join_tables[i], join_evals[i][0], join_evals[i][1])
elif join_type.upper() == 'JOIN' or join_type.upper() == 'INNER JOIN':
join += 'JOIN %s ON %s = %s ' % (join_tables[i], join_evals[i][0], join_evals[i][1])
return join
def build_custom_where(custom_where=[]):
# Build custom where parameters
c_where = ''
args = []
for w in custom_where:
and_or = ' OR ' if w[0].endswith('OR') else ' AND '
w[0] = w[0].rstrip(' OR')
if isinstance(w[1], (list, tuple)) and len(w[1]):
c_where += '('
for w_ in w[1]:
if w_ is None:
c_where += w[0] + ' IS NULL'
elif str(w_).startswith('LIKE '):
c_where += w[0] + ' LIKE ?'
args.append(w_[5:])
elif w[0].endswith('<') or w[0].endswith('>'):
c_where += w[0] + '= ?'
args.append(w_)
else:
c_where += w[0] + ' = ?'
args.append(w_)
c_where += ' OR '
c_where = c_where.rstrip(' OR ') + ')' + and_or
else:
if w[1] is None:
c_where += w[0] + ' IS NULL'
elif str(w[1]).startswith('LIKE '):
c_where += w[0] + ' LIKE ?'
args.append(w[1][5:])
elif w[0].endswith('<') or w[0].endswith('>'):
c_where += w[0] + '= ?'
args.append(w[1])
else:
c_where += w[0] + ' = ?'
args.append(w[1])
c_where += and_or
if c_where:
c_where = 'WHERE ' + c_where.rstrip(' AND ').rstrip(' OR ')
return c_where, args
def build_order(order_param=[], columns=[], dt_columns=[]):
# Build ordering
order = ''
for o in order_param:
sort_order = ' COLLATE NOCASE'
if o['dir'] == 'desc':
sort_order += ' DESC'
# We first see if a name was sent though for the column sort.
if dt_columns[int(o['column'])]['data']:
# We have a name, now check if it's a valid column name for our query
# so we don't just inject a random value
if any(d.lower() == dt_columns[int(o['column'])]['data'].lower()
for d in columns):
order += dt_columns[int(o['column'])]['data'] + '%s, ' % sort_order
else:
# if we receive a bogus name, rather not sort at all.
pass
# If no name exists for the column, just use the column index to sort
else:
order += columns[int(o['column'])] + ', '
if order:
order = 'ORDER BY ' + order.rstrip(', ')
return order
def build_where(search_param='', columns=[], dt_columns=[]):
# Build where parameters
where = ''
args = []
if search_param:
for i, s in enumerate(dt_columns):
if s['searchable']:
# We first see if a name was sent though for the column search.
if s['data']:
# We have a name, now check if it's a valid column name for our query
# so we don't just inject a random value
if any(d.lower() == s['data'].lower() for d in columns):
where += s['data'] + ' LIKE ? OR '
args.append('%' + search_param + '%')
else:
# if we receive a bogus name, rather not search at all.
pass
# If no name exists for the column, just use the column index to search
else:
where += columns[i] + ' LIKE ? OR '
args.append('%' + search_param + '%')
if where:
where = 'WHERE ' + where.rstrip(' OR ')
return where, args
# This method extracts column data from our column list
# The first parameter is required, the match_columns parameter is optional and will cause the function to
# only return results if the value also exists in the match_columns 'data' field
def extract_columns(columns=None, match_columns=None):
columns_string = ''
columns_literal = []
columns_named = []
columns_order = []
for column in columns:
# We allow using "as" in column names for more complex sql functions.
# This function breaks up the column to get all it's parts.
as_search = re.compile(' as ', re.IGNORECASE)
if re.search(as_search, column):
column_named = re.split(as_search, column)[1].rpartition('.')[-1]
column_literal = re.split(as_search, column)[0]
column_order = re.split(as_search, column)[1]
if match_columns:
if any(d['data'].lower() == column_named.lower() for d in match_columns):
columns_string += column + ', '
columns_literal.append(column_literal)
columns_named.append(column_named)
columns_order.append(column_order)
else:
columns_string += column + ', '
columns_literal.append(column_literal)
columns_named.append(column_named)
columns_order.append(column_order)
else:
column_named = column.rpartition('.')[-1]
if match_columns:
if any(d['data'].lower() == column_named.lower() for d in match_columns):
columns_string += column + ', '
columns_literal.append(column)
columns_named.append(column_named)
columns_order.append(column)
else:
columns_string += column + ', '
columns_literal.append(column)
columns_named.append(column_named)
columns_order.append(column)
columns_string = columns_string.rstrip(', ')
# We return a dict of the column params
# column_string is a comma seperated list of the exact column variables received.
# column_literal is the text before the "as" if we have an "as". Usually a function.
# column_named is the text after the "as", if we have an "as". Any table prefix is also stripped off.
# We use this to match with columns received from the Datatables request.
# column_order is the text after the "as", if we have an "as". Any table prefix is left intact.
column_data = {'column_string': columns_string,
'column_literal': columns_literal,
'column_named': columns_named,
'column_order': columns_order
}
return column_data