mirror of
https://github.com/Tautulli/Tautulli.git
synced 2025-01-06 11:09:57 -08:00
2426 lines
100 KiB
Python
2426 lines
100 KiB
Python
"""
|
|
Usage docs: https://docs.pydantic.dev/2.5/concepts/json_schema/
|
|
|
|
The `json_schema` module contains classes and functions to allow the way [JSON Schema](https://json-schema.org/)
|
|
is generated to be customized.
|
|
|
|
In general you shouldn't need to use this module directly; instead, you can
|
|
[`BaseModel.model_json_schema`][pydantic.BaseModel.model_json_schema] and
|
|
[`TypeAdapter.json_schema`][pydantic.TypeAdapter.json_schema].
|
|
"""
|
|
from __future__ import annotations as _annotations
|
|
|
|
import dataclasses
|
|
import inspect
|
|
import math
|
|
import re
|
|
import warnings
|
|
from collections import defaultdict
|
|
from copy import deepcopy
|
|
from dataclasses import is_dataclass
|
|
from enum import Enum
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Callable,
|
|
Counter,
|
|
Dict,
|
|
Hashable,
|
|
Iterable,
|
|
NewType,
|
|
Sequence,
|
|
Tuple,
|
|
TypeVar,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
import pydantic_core
|
|
from pydantic_core import CoreSchema, PydanticOmit, core_schema, to_jsonable_python
|
|
from pydantic_core.core_schema import ComputedField
|
|
from typing_extensions import Annotated, Literal, TypeAlias, assert_never, deprecated, final
|
|
|
|
from pydantic.warnings import PydanticDeprecatedSince26
|
|
|
|
from ._internal import (
|
|
_config,
|
|
_core_metadata,
|
|
_core_utils,
|
|
_decorators,
|
|
_internal_dataclass,
|
|
_mock_val_ser,
|
|
_schema_generation_shared,
|
|
_typing_extra,
|
|
)
|
|
from .annotated_handlers import GetJsonSchemaHandler
|
|
from .config import JsonDict, JsonSchemaExtraCallable, JsonValue
|
|
from .errors import PydanticInvalidForJsonSchema, PydanticUserError
|
|
|
|
if TYPE_CHECKING:
|
|
from . import ConfigDict
|
|
from ._internal._core_utils import CoreSchemaField, CoreSchemaOrField
|
|
from ._internal._dataclasses import PydanticDataclass
|
|
from ._internal._schema_generation_shared import GetJsonSchemaFunction
|
|
from .main import BaseModel
|
|
|
|
|
|
CoreSchemaOrFieldType = Literal[core_schema.CoreSchemaType, core_schema.CoreSchemaFieldType]
|
|
"""
|
|
A type alias for defined schema types that represents a union of
|
|
`core_schema.CoreSchemaType` and
|
|
`core_schema.CoreSchemaFieldType`.
|
|
"""
|
|
|
|
JsonSchemaValue = Dict[str, Any]
|
|
"""
|
|
A type alias for a JSON schema value. This is a dictionary of string keys to arbitrary JSON values.
|
|
"""
|
|
|
|
JsonSchemaMode = Literal['validation', 'serialization']
|
|
"""
|
|
A type alias that represents the mode of a JSON schema; either 'validation' or 'serialization'.
|
|
|
|
For some types, the inputs to validation differ from the outputs of serialization. For example,
|
|
computed fields will only be present when serializing, and should not be provided when
|
|
validating. This flag provides a way to indicate whether you want the JSON schema required
|
|
for validation inputs, or that will be matched by serialization outputs.
|
|
"""
|
|
|
|
_MODE_TITLE_MAPPING: dict[JsonSchemaMode, str] = {'validation': 'Input', 'serialization': 'Output'}
|
|
|
|
|
|
def update_json_schema(schema: JsonSchemaValue, updates: dict[str, Any]) -> JsonSchemaValue:
|
|
"""Update a JSON schema in-place by providing a dictionary of updates.
|
|
|
|
This function sets the provided key-value pairs in the schema and returns the updated schema.
|
|
|
|
Args:
|
|
schema: The JSON schema to update.
|
|
updates: A dictionary of key-value pairs to set in the schema.
|
|
|
|
Returns:
|
|
The updated JSON schema.
|
|
"""
|
|
schema.update(updates)
|
|
return schema
|
|
|
|
|
|
JsonSchemaWarningKind = Literal['skipped-choice', 'non-serializable-default']
|
|
"""
|
|
A type alias representing the kinds of warnings that can be emitted during JSON schema generation.
|
|
|
|
See [`GenerateJsonSchema.render_warning_message`][pydantic.json_schema.GenerateJsonSchema.render_warning_message]
|
|
for more details.
|
|
"""
|
|
|
|
|
|
class PydanticJsonSchemaWarning(UserWarning):
|
|
"""This class is used to emit warnings produced during JSON schema generation.
|
|
See the [`GenerateJsonSchema.emit_warning`][pydantic.json_schema.GenerateJsonSchema.emit_warning] and
|
|
[`GenerateJsonSchema.render_warning_message`][pydantic.json_schema.GenerateJsonSchema.render_warning_message]
|
|
methods for more details; these can be overridden to control warning behavior.
|
|
"""
|
|
|
|
|
|
# ##### JSON Schema Generation #####
|
|
DEFAULT_REF_TEMPLATE = '#/$defs/{model}'
|
|
"""The default format string used to generate reference names."""
|
|
|
|
# There are three types of references relevant to building JSON schemas:
|
|
# 1. core_schema "ref" values; these are not exposed as part of the JSON schema
|
|
# * these might look like the fully qualified path of a model, its id, or something similar
|
|
CoreRef = NewType('CoreRef', str)
|
|
# 2. keys of the "definitions" object that will eventually go into the JSON schema
|
|
# * by default, these look like "MyModel", though may change in the presence of collisions
|
|
# * eventually, we may want to make it easier to modify the way these names are generated
|
|
DefsRef = NewType('DefsRef', str)
|
|
# 3. the values corresponding to the "$ref" key in the schema
|
|
# * By default, these look like "#/$defs/MyModel", as in {"$ref": "#/$defs/MyModel"}
|
|
JsonRef = NewType('JsonRef', str)
|
|
|
|
CoreModeRef = Tuple[CoreRef, JsonSchemaMode]
|
|
JsonSchemaKeyT = TypeVar('JsonSchemaKeyT', bound=Hashable)
|
|
|
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
|
class _DefinitionsRemapping:
|
|
defs_remapping: dict[DefsRef, DefsRef]
|
|
json_remapping: dict[JsonRef, JsonRef]
|
|
|
|
@staticmethod
|
|
def from_prioritized_choices(
|
|
prioritized_choices: dict[DefsRef, list[DefsRef]],
|
|
defs_to_json: dict[DefsRef, JsonRef],
|
|
definitions: dict[DefsRef, JsonSchemaValue],
|
|
) -> _DefinitionsRemapping:
|
|
"""
|
|
This function should produce a remapping that replaces complex DefsRef with the simpler ones from the
|
|
prioritized_choices such that applying the name remapping would result in an equivalent JSON schema.
|
|
"""
|
|
# We need to iteratively simplify the definitions until we reach a fixed point.
|
|
# The reason for this is that outer definitions may reference inner definitions that get simplified
|
|
# into an equivalent reference, and the outer definitions won't be equivalent until we've simplified
|
|
# the inner definitions.
|
|
copied_definitions = deepcopy(definitions)
|
|
definitions_schema = {'$defs': copied_definitions}
|
|
for _iter in range(100): # prevent an infinite loop in the case of a bug, 100 iterations should be enough
|
|
# For every possible remapped DefsRef, collect all schemas that that DefsRef might be used for:
|
|
schemas_for_alternatives: dict[DefsRef, list[JsonSchemaValue]] = defaultdict(list)
|
|
for defs_ref in copied_definitions:
|
|
alternatives = prioritized_choices[defs_ref]
|
|
for alternative in alternatives:
|
|
schemas_for_alternatives[alternative].append(copied_definitions[defs_ref])
|
|
|
|
# Deduplicate the schemas for each alternative; the idea is that we only want to remap to a new DefsRef
|
|
# if it introduces no ambiguity, i.e., there is only one distinct schema for that DefsRef.
|
|
for defs_ref, schemas in schemas_for_alternatives.items():
|
|
schemas_for_alternatives[defs_ref] = _deduplicate_schemas(schemas_for_alternatives[defs_ref])
|
|
|
|
# Build the remapping
|
|
defs_remapping: dict[DefsRef, DefsRef] = {}
|
|
json_remapping: dict[JsonRef, JsonRef] = {}
|
|
for original_defs_ref in definitions:
|
|
alternatives = prioritized_choices[original_defs_ref]
|
|
# Pick the first alternative that has only one schema, since that means there is no collision
|
|
remapped_defs_ref = next(x for x in alternatives if len(schemas_for_alternatives[x]) == 1)
|
|
defs_remapping[original_defs_ref] = remapped_defs_ref
|
|
json_remapping[defs_to_json[original_defs_ref]] = defs_to_json[remapped_defs_ref]
|
|
remapping = _DefinitionsRemapping(defs_remapping, json_remapping)
|
|
new_definitions_schema = remapping.remap_json_schema({'$defs': copied_definitions})
|
|
if definitions_schema == new_definitions_schema:
|
|
# We've reached the fixed point
|
|
return remapping
|
|
definitions_schema = new_definitions_schema
|
|
|
|
raise PydanticInvalidForJsonSchema('Failed to simplify the JSON schema definitions')
|
|
|
|
def remap_defs_ref(self, ref: DefsRef) -> DefsRef:
|
|
return self.defs_remapping.get(ref, ref)
|
|
|
|
def remap_json_ref(self, ref: JsonRef) -> JsonRef:
|
|
return self.json_remapping.get(ref, ref)
|
|
|
|
def remap_json_schema(self, schema: Any) -> Any:
|
|
"""
|
|
Recursively update the JSON schema replacing all $refs
|
|
"""
|
|
if isinstance(schema, str):
|
|
# Note: this may not really be a JsonRef; we rely on having no collisions between JsonRefs and other strings
|
|
return self.remap_json_ref(JsonRef(schema))
|
|
elif isinstance(schema, list):
|
|
return [self.remap_json_schema(item) for item in schema]
|
|
elif isinstance(schema, dict):
|
|
for key, value in schema.items():
|
|
if key == '$ref' and isinstance(value, str):
|
|
schema['$ref'] = self.remap_json_ref(JsonRef(value))
|
|
elif key == '$defs':
|
|
schema['$defs'] = {
|
|
self.remap_defs_ref(DefsRef(key)): self.remap_json_schema(value)
|
|
for key, value in schema['$defs'].items()
|
|
}
|
|
else:
|
|
schema[key] = self.remap_json_schema(value)
|
|
return schema
|
|
|
|
|
|
class GenerateJsonSchema:
|
|
"""Usage docs: https://docs.pydantic.dev/2.6/concepts/json_schema/#customizing-the-json-schema-generation-process
|
|
|
|
A class for generating JSON schemas.
|
|
|
|
This class generates JSON schemas based on configured parameters. The default schema dialect
|
|
is [https://json-schema.org/draft/2020-12/schema](https://json-schema.org/draft/2020-12/schema).
|
|
The class uses `by_alias` to configure how fields with
|
|
multiple names are handled and `ref_template` to format reference names.
|
|
|
|
Attributes:
|
|
schema_dialect: The JSON schema dialect used to generate the schema. See
|
|
[Declaring a Dialect](https://json-schema.org/understanding-json-schema/reference/schema.html#id4)
|
|
in the JSON Schema documentation for more information about dialects.
|
|
ignored_warning_kinds: Warnings to ignore when generating the schema. `self.render_warning_message` will
|
|
do nothing if its argument `kind` is in `ignored_warning_kinds`;
|
|
this value can be modified on subclasses to easily control which warnings are emitted.
|
|
by_alias: Whether to use field aliases when generating the schema.
|
|
ref_template: The format string used when generating reference names.
|
|
core_to_json_refs: A mapping of core refs to JSON refs.
|
|
core_to_defs_refs: A mapping of core refs to definition refs.
|
|
defs_to_core_refs: A mapping of definition refs to core refs.
|
|
json_to_defs_refs: A mapping of JSON refs to definition refs.
|
|
definitions: Definitions in the schema.
|
|
|
|
Args:
|
|
by_alias: Whether to use field aliases in the generated schemas.
|
|
ref_template: The format string to use when generating reference names.
|
|
|
|
Raises:
|
|
JsonSchemaError: If the instance of the class is inadvertently re-used after generating a schema.
|
|
"""
|
|
|
|
schema_dialect = 'https://json-schema.org/draft/2020-12/schema'
|
|
|
|
# `self.render_warning_message` will do nothing if its argument `kind` is in `ignored_warning_kinds`;
|
|
# this value can be modified on subclasses to easily control which warnings are emitted
|
|
ignored_warning_kinds: set[JsonSchemaWarningKind] = {'skipped-choice'}
|
|
|
|
def __init__(self, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE):
|
|
self.by_alias = by_alias
|
|
self.ref_template = ref_template
|
|
|
|
self.core_to_json_refs: dict[CoreModeRef, JsonRef] = {}
|
|
self.core_to_defs_refs: dict[CoreModeRef, DefsRef] = {}
|
|
self.defs_to_core_refs: dict[DefsRef, CoreModeRef] = {}
|
|
self.json_to_defs_refs: dict[JsonRef, DefsRef] = {}
|
|
|
|
self.definitions: dict[DefsRef, JsonSchemaValue] = {}
|
|
self._config_wrapper_stack = _config.ConfigWrapperStack(_config.ConfigWrapper({}))
|
|
|
|
self._mode: JsonSchemaMode = 'validation'
|
|
|
|
# The following includes a mapping of a fully-unique defs ref choice to a list of preferred
|
|
# alternatives, which are generally simpler, such as only including the class name.
|
|
# At the end of schema generation, we use these to produce a JSON schema with more human-readable
|
|
# definitions, which would also work better in a generated OpenAPI client, etc.
|
|
self._prioritized_defsref_choices: dict[DefsRef, list[DefsRef]] = {}
|
|
self._collision_counter: dict[str, int] = defaultdict(int)
|
|
self._collision_index: dict[str, int] = {}
|
|
|
|
self._schema_type_to_method = self.build_schema_type_to_method()
|
|
|
|
# When we encounter definitions we need to try to build them immediately
|
|
# so that they are available schemas that reference them
|
|
# But it's possible that CoreSchema was never going to be used
|
|
# (e.g. because the CoreSchema that references short circuits is JSON schema generation without needing
|
|
# the reference) so instead of failing altogether if we can't build a definition we
|
|
# store the error raised and re-throw it if we end up needing that def
|
|
self._core_defs_invalid_for_json_schema: dict[DefsRef, PydanticInvalidForJsonSchema] = {}
|
|
|
|
# This changes to True after generating a schema, to prevent issues caused by accidental re-use
|
|
# of a single instance of a schema generator
|
|
self._used = False
|
|
|
|
@property
|
|
def _config(self) -> _config.ConfigWrapper:
|
|
return self._config_wrapper_stack.tail
|
|
|
|
@property
|
|
def mode(self) -> JsonSchemaMode:
|
|
if self._config.json_schema_mode_override is not None:
|
|
return self._config.json_schema_mode_override
|
|
else:
|
|
return self._mode
|
|
|
|
def build_schema_type_to_method(
|
|
self,
|
|
) -> dict[CoreSchemaOrFieldType, Callable[[CoreSchemaOrField], JsonSchemaValue]]:
|
|
"""Builds a dictionary mapping fields to methods for generating JSON schemas.
|
|
|
|
Returns:
|
|
A dictionary containing the mapping of `CoreSchemaOrFieldType` to a handler method.
|
|
|
|
Raises:
|
|
TypeError: If no method has been defined for generating a JSON schema for a given pydantic core schema type.
|
|
"""
|
|
mapping: dict[CoreSchemaOrFieldType, Callable[[CoreSchemaOrField], JsonSchemaValue]] = {}
|
|
core_schema_types: list[CoreSchemaOrFieldType] = _typing_extra.all_literal_values(
|
|
CoreSchemaOrFieldType # type: ignore
|
|
)
|
|
for key in core_schema_types:
|
|
method_name = f"{key.replace('-', '_')}_schema"
|
|
try:
|
|
mapping[key] = getattr(self, method_name)
|
|
except AttributeError as e: # pragma: no cover
|
|
raise TypeError(
|
|
f'No method for generating JsonSchema for core_schema.type={key!r} '
|
|
f'(expected: {type(self).__name__}.{method_name})'
|
|
) from e
|
|
return mapping
|
|
|
|
def generate_definitions(
|
|
self, inputs: Sequence[tuple[JsonSchemaKeyT, JsonSchemaMode, core_schema.CoreSchema]]
|
|
) -> tuple[dict[tuple[JsonSchemaKeyT, JsonSchemaMode], JsonSchemaValue], dict[DefsRef, JsonSchemaValue]]:
|
|
"""Generates JSON schema definitions from a list of core schemas, pairing the generated definitions with a
|
|
mapping that links the input keys to the definition references.
|
|
|
|
Args:
|
|
inputs: A sequence of tuples, where:
|
|
|
|
- The first element is a JSON schema key type.
|
|
- The second element is the JSON mode: either 'validation' or 'serialization'.
|
|
- The third element is a core schema.
|
|
|
|
Returns:
|
|
A tuple where:
|
|
|
|
- The first element is a dictionary whose keys are tuples of JSON schema key type and JSON mode, and
|
|
whose values are the JSON schema corresponding to that pair of inputs. (These schemas may have
|
|
JsonRef references to definitions that are defined in the second returned element.)
|
|
- The second element is a dictionary whose keys are definition references for the JSON schemas
|
|
from the first returned element, and whose values are the actual JSON schema definitions.
|
|
|
|
Raises:
|
|
PydanticUserError: Raised if the JSON schema generator has already been used to generate a JSON schema.
|
|
"""
|
|
if self._used:
|
|
raise PydanticUserError(
|
|
'This JSON schema generator has already been used to generate a JSON schema. '
|
|
f'You must create a new instance of {type(self).__name__} to generate a new JSON schema.',
|
|
code='json-schema-already-used',
|
|
)
|
|
|
|
for key, mode, schema in inputs:
|
|
self._mode = mode
|
|
self.generate_inner(schema)
|
|
|
|
definitions_remapping = self._build_definitions_remapping()
|
|
|
|
json_schemas_map: dict[tuple[JsonSchemaKeyT, JsonSchemaMode], DefsRef] = {}
|
|
for key, mode, schema in inputs:
|
|
self._mode = mode
|
|
json_schema = self.generate_inner(schema)
|
|
json_schemas_map[(key, mode)] = definitions_remapping.remap_json_schema(json_schema)
|
|
|
|
json_schema = {'$defs': self.definitions}
|
|
json_schema = definitions_remapping.remap_json_schema(json_schema)
|
|
self._used = True
|
|
return json_schemas_map, _sort_json_schema(json_schema['$defs']) # type: ignore
|
|
|
|
def generate(self, schema: CoreSchema, mode: JsonSchemaMode = 'validation') -> JsonSchemaValue:
|
|
"""Generates a JSON schema for a specified schema in a specified mode.
|
|
|
|
Args:
|
|
schema: A Pydantic model.
|
|
mode: The mode in which to generate the schema. Defaults to 'validation'.
|
|
|
|
Returns:
|
|
A JSON schema representing the specified schema.
|
|
|
|
Raises:
|
|
PydanticUserError: If the JSON schema generator has already been used to generate a JSON schema.
|
|
"""
|
|
self._mode = mode
|
|
if self._used:
|
|
raise PydanticUserError(
|
|
'This JSON schema generator has already been used to generate a JSON schema. '
|
|
f'You must create a new instance of {type(self).__name__} to generate a new JSON schema.',
|
|
code='json-schema-already-used',
|
|
)
|
|
|
|
json_schema: JsonSchemaValue = self.generate_inner(schema)
|
|
json_ref_counts = self.get_json_ref_counts(json_schema)
|
|
|
|
# Remove the top-level $ref if present; note that the _generate method already ensures there are no sibling keys
|
|
ref = cast(JsonRef, json_schema.get('$ref'))
|
|
while ref is not None: # may need to unpack multiple levels
|
|
ref_json_schema = self.get_schema_from_definitions(ref)
|
|
if json_ref_counts[ref] > 1 or ref_json_schema is None:
|
|
# Keep the ref, but use an allOf to remove the top level $ref
|
|
json_schema = {'allOf': [{'$ref': ref}]}
|
|
else:
|
|
# "Unpack" the ref since this is the only reference
|
|
json_schema = ref_json_schema.copy() # copy to prevent recursive dict reference
|
|
json_ref_counts[ref] -= 1
|
|
ref = cast(JsonRef, json_schema.get('$ref'))
|
|
|
|
self._garbage_collect_definitions(json_schema)
|
|
definitions_remapping = self._build_definitions_remapping()
|
|
|
|
if self.definitions:
|
|
json_schema['$defs'] = self.definitions
|
|
|
|
json_schema = definitions_remapping.remap_json_schema(json_schema)
|
|
|
|
# For now, we will not set the $schema key. However, if desired, this can be easily added by overriding
|
|
# this method and adding the following line after a call to super().generate(schema):
|
|
# json_schema['$schema'] = self.schema_dialect
|
|
|
|
self._used = True
|
|
return _sort_json_schema(json_schema)
|
|
|
|
def generate_inner(self, schema: CoreSchemaOrField) -> JsonSchemaValue: # noqa: C901
|
|
"""Generates a JSON schema for a given core schema.
|
|
|
|
Args:
|
|
schema: The given core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
# If a schema with the same CoreRef has been handled, just return a reference to it
|
|
# Note that this assumes that it will _never_ be the case that the same CoreRef is used
|
|
# on types that should have different JSON schemas
|
|
if 'ref' in schema:
|
|
core_ref = CoreRef(schema['ref']) # type: ignore[typeddict-item]
|
|
core_mode_ref = (core_ref, self.mode)
|
|
if core_mode_ref in self.core_to_defs_refs and self.core_to_defs_refs[core_mode_ref] in self.definitions:
|
|
return {'$ref': self.core_to_json_refs[core_mode_ref]}
|
|
|
|
# Generate the JSON schema, accounting for the json_schema_override and core_schema_override
|
|
metadata_handler = _core_metadata.CoreMetadataHandler(schema)
|
|
|
|
def populate_defs(core_schema: CoreSchema, json_schema: JsonSchemaValue) -> JsonSchemaValue:
|
|
if 'ref' in core_schema:
|
|
core_ref = CoreRef(core_schema['ref']) # type: ignore[typeddict-item]
|
|
defs_ref, ref_json_schema = self.get_cache_defs_ref_schema(core_ref)
|
|
json_ref = JsonRef(ref_json_schema['$ref'])
|
|
self.json_to_defs_refs[json_ref] = defs_ref
|
|
# Replace the schema if it's not a reference to itself
|
|
# What we want to avoid is having the def be just a ref to itself
|
|
# which is what would happen if we blindly assigned any
|
|
if json_schema.get('$ref', None) != json_ref:
|
|
self.definitions[defs_ref] = json_schema
|
|
self._core_defs_invalid_for_json_schema.pop(defs_ref, None)
|
|
json_schema = ref_json_schema
|
|
return json_schema
|
|
|
|
def convert_to_all_of(json_schema: JsonSchemaValue) -> JsonSchemaValue:
|
|
if '$ref' in json_schema and len(json_schema.keys()) > 1:
|
|
# technically you can't have any other keys next to a "$ref"
|
|
# but it's an easy mistake to make and not hard to correct automatically here
|
|
json_schema = json_schema.copy()
|
|
ref = json_schema.pop('$ref')
|
|
json_schema = {'allOf': [{'$ref': ref}], **json_schema}
|
|
return json_schema
|
|
|
|
def handler_func(schema_or_field: CoreSchemaOrField) -> JsonSchemaValue:
|
|
"""Generate a JSON schema based on the input schema.
|
|
|
|
Args:
|
|
schema_or_field: The core schema to generate a JSON schema from.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
|
|
Raises:
|
|
TypeError: If an unexpected schema type is encountered.
|
|
"""
|
|
# Generate the core-schema-type-specific bits of the schema generation:
|
|
json_schema: JsonSchemaValue | None = None
|
|
if self.mode == 'serialization' and 'serialization' in schema_or_field:
|
|
ser_schema = schema_or_field['serialization'] # type: ignore
|
|
json_schema = self.ser_schema(ser_schema)
|
|
if json_schema is None:
|
|
if _core_utils.is_core_schema(schema_or_field) or _core_utils.is_core_schema_field(schema_or_field):
|
|
generate_for_schema_type = self._schema_type_to_method[schema_or_field['type']]
|
|
json_schema = generate_for_schema_type(schema_or_field)
|
|
else:
|
|
raise TypeError(f'Unexpected schema type: schema={schema_or_field}')
|
|
if _core_utils.is_core_schema(schema_or_field):
|
|
json_schema = populate_defs(schema_or_field, json_schema)
|
|
json_schema = convert_to_all_of(json_schema)
|
|
return json_schema
|
|
|
|
current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, handler_func)
|
|
|
|
for js_modify_function in metadata_handler.metadata.get('pydantic_js_functions', ()):
|
|
|
|
def new_handler_func(
|
|
schema_or_field: CoreSchemaOrField,
|
|
current_handler: GetJsonSchemaHandler = current_handler,
|
|
js_modify_function: GetJsonSchemaFunction = js_modify_function,
|
|
) -> JsonSchemaValue:
|
|
json_schema = js_modify_function(schema_or_field, current_handler)
|
|
if _core_utils.is_core_schema(schema_or_field):
|
|
json_schema = populate_defs(schema_or_field, json_schema)
|
|
original_schema = current_handler.resolve_ref_schema(json_schema)
|
|
ref = json_schema.pop('$ref', None)
|
|
if ref and json_schema:
|
|
original_schema.update(json_schema)
|
|
return original_schema
|
|
|
|
current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, new_handler_func)
|
|
|
|
for js_modify_function in metadata_handler.metadata.get('pydantic_js_annotation_functions', ()):
|
|
|
|
def new_handler_func(
|
|
schema_or_field: CoreSchemaOrField,
|
|
current_handler: GetJsonSchemaHandler = current_handler,
|
|
js_modify_function: GetJsonSchemaFunction = js_modify_function,
|
|
) -> JsonSchemaValue:
|
|
json_schema = js_modify_function(schema_or_field, current_handler)
|
|
if _core_utils.is_core_schema(schema_or_field):
|
|
json_schema = populate_defs(schema_or_field, json_schema)
|
|
json_schema = convert_to_all_of(json_schema)
|
|
return json_schema
|
|
|
|
current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, new_handler_func)
|
|
|
|
json_schema = current_handler(schema)
|
|
if _core_utils.is_core_schema(schema):
|
|
json_schema = populate_defs(schema, json_schema)
|
|
json_schema = convert_to_all_of(json_schema)
|
|
return json_schema
|
|
|
|
# ### Schema generation methods
|
|
def any_schema(self, schema: core_schema.AnySchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches any value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return {}
|
|
|
|
def none_schema(self, schema: core_schema.NoneSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches `None`.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return {'type': 'null'}
|
|
|
|
def bool_schema(self, schema: core_schema.BoolSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a bool value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return {'type': 'boolean'}
|
|
|
|
def int_schema(self, schema: core_schema.IntSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches an int value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
json_schema: dict[str, Any] = {'type': 'integer'}
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.numeric)
|
|
json_schema = {k: v for k, v in json_schema.items() if v not in {math.inf, -math.inf}}
|
|
return json_schema
|
|
|
|
def float_schema(self, schema: core_schema.FloatSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a float value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
json_schema: dict[str, Any] = {'type': 'number'}
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.numeric)
|
|
json_schema = {k: v for k, v in json_schema.items() if v not in {math.inf, -math.inf}}
|
|
return json_schema
|
|
|
|
def decimal_schema(self, schema: core_schema.DecimalSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a decimal value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
json_schema = self.str_schema(core_schema.str_schema())
|
|
if self.mode == 'validation':
|
|
multiple_of = schema.get('multiple_of')
|
|
le = schema.get('le')
|
|
ge = schema.get('ge')
|
|
lt = schema.get('lt')
|
|
gt = schema.get('gt')
|
|
json_schema = {
|
|
'anyOf': [
|
|
self.float_schema(
|
|
core_schema.float_schema(
|
|
allow_inf_nan=schema.get('allow_inf_nan'),
|
|
multiple_of=None if multiple_of is None else float(multiple_of),
|
|
le=None if le is None else float(le),
|
|
ge=None if ge is None else float(ge),
|
|
lt=None if lt is None else float(lt),
|
|
gt=None if gt is None else float(gt),
|
|
)
|
|
),
|
|
json_schema,
|
|
],
|
|
}
|
|
return json_schema
|
|
|
|
def str_schema(self, schema: core_schema.StringSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a string value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
json_schema = {'type': 'string'}
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.string)
|
|
return json_schema
|
|
|
|
def bytes_schema(self, schema: core_schema.BytesSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a bytes value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
json_schema = {'type': 'string', 'format': 'base64url' if self._config.ser_json_bytes == 'base64' else 'binary'}
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.bytes)
|
|
return json_schema
|
|
|
|
def date_schema(self, schema: core_schema.DateSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a date value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
json_schema = {'type': 'string', 'format': 'date'}
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.date)
|
|
return json_schema
|
|
|
|
def time_schema(self, schema: core_schema.TimeSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a time value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return {'type': 'string', 'format': 'time'}
|
|
|
|
def datetime_schema(self, schema: core_schema.DatetimeSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a datetime value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return {'type': 'string', 'format': 'date-time'}
|
|
|
|
def timedelta_schema(self, schema: core_schema.TimedeltaSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a timedelta value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
if self._config.ser_json_timedelta == 'float':
|
|
return {'type': 'number'}
|
|
return {'type': 'string', 'format': 'duration'}
|
|
|
|
def literal_schema(self, schema: core_schema.LiteralSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a literal value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
expected = [v.value if isinstance(v, Enum) else v for v in schema['expected']]
|
|
# jsonify the expected values
|
|
expected = [to_jsonable_python(v) for v in expected]
|
|
|
|
if len(expected) == 1:
|
|
return {'const': expected[0]}
|
|
|
|
types = {type(e) for e in expected}
|
|
if types == {str}:
|
|
return {'enum': expected, 'type': 'string'}
|
|
elif types == {int}:
|
|
return {'enum': expected, 'type': 'integer'}
|
|
elif types == {float}:
|
|
return {'enum': expected, 'type': 'number'}
|
|
elif types == {bool}:
|
|
return {'enum': expected, 'type': 'boolean'}
|
|
elif types == {list}:
|
|
return {'enum': expected, 'type': 'array'}
|
|
# there is not None case because if it's mixed it hits the final `else`
|
|
# if it's a single Literal[None] then it becomes a `const` schema above
|
|
else:
|
|
return {'enum': expected}
|
|
|
|
def is_instance_schema(self, schema: core_schema.IsInstanceSchema) -> JsonSchemaValue:
|
|
"""Handles JSON schema generation for a core schema that checks if a value is an instance of a class.
|
|
|
|
Unless overridden in a subclass, this raises an error.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self.handle_invalid_for_json_schema(schema, f'core_schema.IsInstanceSchema ({schema["cls"]})')
|
|
|
|
def is_subclass_schema(self, schema: core_schema.IsSubclassSchema) -> JsonSchemaValue:
|
|
"""Handles JSON schema generation for a core schema that checks if a value is a subclass of a class.
|
|
|
|
For backwards compatibility with v1, this does not raise an error, but can be overridden to change this.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
# Note: This is for compatibility with V1; you can override if you want different behavior.
|
|
return {}
|
|
|
|
def callable_schema(self, schema: core_schema.CallableSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a callable value.
|
|
|
|
Unless overridden in a subclass, this raises an error.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self.handle_invalid_for_json_schema(schema, 'core_schema.CallableSchema')
|
|
|
|
def list_schema(self, schema: core_schema.ListSchema) -> JsonSchemaValue:
|
|
"""Returns a schema that matches a list schema.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema'])
|
|
json_schema = {'type': 'array', 'items': items_schema}
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
|
|
return json_schema
|
|
|
|
@deprecated('`tuple_positional_schema` is deprecated. Use `tuple_schema` instead.', category=None)
|
|
@final
|
|
def tuple_positional_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue:
|
|
"""Replaced by `tuple_schema`."""
|
|
warnings.warn(
|
|
'`tuple_positional_schema` is deprecated. Use `tuple_schema` instead.',
|
|
PydanticDeprecatedSince26,
|
|
stacklevel=2,
|
|
)
|
|
return self.tuple_schema(schema)
|
|
|
|
@deprecated('`tuple_variable_schema` is deprecated. Use `tuple_schema` instead.', category=None)
|
|
@final
|
|
def tuple_variable_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue:
|
|
"""Replaced by `tuple_schema`."""
|
|
warnings.warn(
|
|
'`tuple_variable_schema` is deprecated. Use `tuple_schema` instead.',
|
|
PydanticDeprecatedSince26,
|
|
stacklevel=2,
|
|
)
|
|
return self.tuple_schema(schema)
|
|
|
|
def tuple_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a tuple schema e.g. `Tuple[int,
|
|
str, bool]` or `Tuple[int, ...]`.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
json_schema: JsonSchemaValue = {'type': 'array'}
|
|
if 'variadic_item_index' in schema:
|
|
variadic_item_index = schema['variadic_item_index']
|
|
if variadic_item_index > 0:
|
|
json_schema['minItems'] = variadic_item_index
|
|
json_schema['prefixItems'] = [
|
|
self.generate_inner(item) for item in schema['items_schema'][:variadic_item_index]
|
|
]
|
|
if variadic_item_index + 1 == len(schema['items_schema']):
|
|
# if the variadic item is the last item, then represent it faithfully
|
|
json_schema['items'] = self.generate_inner(schema['items_schema'][variadic_item_index])
|
|
else:
|
|
# otherwise, 'items' represents the schema for the variadic
|
|
# item plus the suffix, so just allow anything for simplicity
|
|
# for now
|
|
json_schema['items'] = True
|
|
else:
|
|
prefixItems = [self.generate_inner(item) for item in schema['items_schema']]
|
|
if prefixItems:
|
|
json_schema['prefixItems'] = prefixItems
|
|
json_schema['minItems'] = len(prefixItems)
|
|
json_schema['maxItems'] = len(prefixItems)
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
|
|
return json_schema
|
|
|
|
def set_schema(self, schema: core_schema.SetSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a set schema.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self._common_set_schema(schema)
|
|
|
|
def frozenset_schema(self, schema: core_schema.FrozenSetSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a frozenset schema.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self._common_set_schema(schema)
|
|
|
|
def _common_set_schema(self, schema: core_schema.SetSchema | core_schema.FrozenSetSchema) -> JsonSchemaValue:
|
|
items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema'])
|
|
json_schema = {'type': 'array', 'uniqueItems': True, 'items': items_schema}
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
|
|
return json_schema
|
|
|
|
def generator_schema(self, schema: core_schema.GeneratorSchema) -> JsonSchemaValue:
|
|
"""Returns a JSON schema that represents the provided GeneratorSchema.
|
|
|
|
Args:
|
|
schema: The schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema'])
|
|
json_schema = {'type': 'array', 'items': items_schema}
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
|
|
return json_schema
|
|
|
|
def dict_schema(self, schema: core_schema.DictSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a dict schema.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
json_schema: JsonSchemaValue = {'type': 'object'}
|
|
|
|
keys_schema = self.generate_inner(schema['keys_schema']).copy() if 'keys_schema' in schema else {}
|
|
keys_pattern = keys_schema.pop('pattern', None)
|
|
|
|
values_schema = self.generate_inner(schema['values_schema']).copy() if 'values_schema' in schema else {}
|
|
values_schema.pop('title', None) # don't give a title to the additionalProperties
|
|
if values_schema or keys_pattern is not None: # don't add additionalProperties if it's empty
|
|
if keys_pattern is None:
|
|
json_schema['additionalProperties'] = values_schema
|
|
else:
|
|
json_schema['patternProperties'] = {keys_pattern: values_schema}
|
|
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.object)
|
|
return json_schema
|
|
|
|
def _function_schema(
|
|
self,
|
|
schema: _core_utils.AnyFunctionSchema,
|
|
) -> JsonSchemaValue:
|
|
if _core_utils.is_function_with_inner_schema(schema):
|
|
# This could be wrong if the function's mode is 'before', but in practice will often be right, and when it
|
|
# isn't, I think it would be hard to automatically infer what the desired schema should be.
|
|
return self.generate_inner(schema['schema'])
|
|
|
|
# function-plain
|
|
return self.handle_invalid_for_json_schema(
|
|
schema, f'core_schema.PlainValidatorFunctionSchema ({schema["function"]})'
|
|
)
|
|
|
|
def function_before_schema(self, schema: core_schema.BeforeValidatorFunctionSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a function-before schema.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self._function_schema(schema)
|
|
|
|
def function_after_schema(self, schema: core_schema.AfterValidatorFunctionSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a function-after schema.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self._function_schema(schema)
|
|
|
|
def function_plain_schema(self, schema: core_schema.PlainValidatorFunctionSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a function-plain schema.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self._function_schema(schema)
|
|
|
|
def function_wrap_schema(self, schema: core_schema.WrapValidatorFunctionSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a function-wrap schema.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self._function_schema(schema)
|
|
|
|
def default_schema(self, schema: core_schema.WithDefaultSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema with a default value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
json_schema = self.generate_inner(schema['schema'])
|
|
|
|
if 'default' not in schema:
|
|
return json_schema
|
|
default = schema['default']
|
|
# Note: if you want to include the value returned by the default_factory,
|
|
# override this method and replace the code above with:
|
|
# if 'default' in schema:
|
|
# default = schema['default']
|
|
# elif 'default_factory' in schema:
|
|
# default = schema['default_factory']()
|
|
# else:
|
|
# return json_schema
|
|
|
|
try:
|
|
encoded_default = self.encode_default(default)
|
|
except pydantic_core.PydanticSerializationError:
|
|
self.emit_warning(
|
|
'non-serializable-default',
|
|
f'Default value {default} is not JSON serializable; excluding default from JSON schema',
|
|
)
|
|
# Return the inner schema, as though there was no default
|
|
return json_schema
|
|
|
|
if '$ref' in json_schema:
|
|
# Since reference schemas do not support child keys, we wrap the reference schema in a single-case allOf:
|
|
return {'allOf': [json_schema], 'default': encoded_default}
|
|
else:
|
|
json_schema['default'] = encoded_default
|
|
return json_schema
|
|
|
|
def nullable_schema(self, schema: core_schema.NullableSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that allows null values.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
null_schema = {'type': 'null'}
|
|
inner_json_schema = self.generate_inner(schema['schema'])
|
|
|
|
if inner_json_schema == null_schema:
|
|
return null_schema
|
|
else:
|
|
# Thanks to the equality check against `null_schema` above, I think 'oneOf' would also be valid here;
|
|
# I'll use 'anyOf' for now, but it could be changed it if it would work better with some external tooling
|
|
return self.get_flattened_anyof([inner_json_schema, null_schema])
|
|
|
|
def union_schema(self, schema: core_schema.UnionSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that allows values matching any of the given schemas.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
generated: list[JsonSchemaValue] = []
|
|
|
|
choices = schema['choices']
|
|
for choice in choices:
|
|
# choice will be a tuple if an explicit label was provided
|
|
choice_schema = choice[0] if isinstance(choice, tuple) else choice
|
|
try:
|
|
generated.append(self.generate_inner(choice_schema))
|
|
except PydanticOmit:
|
|
continue
|
|
except PydanticInvalidForJsonSchema as exc:
|
|
self.emit_warning('skipped-choice', exc.message)
|
|
if len(generated) == 1:
|
|
return generated[0]
|
|
return self.get_flattened_anyof(generated)
|
|
|
|
def tagged_union_schema(self, schema: core_schema.TaggedUnionSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that allows values matching any of the given schemas, where
|
|
the schemas are tagged with a discriminator field that indicates which schema should be used to validate
|
|
the value.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
generated: dict[str, JsonSchemaValue] = {}
|
|
for k, v in schema['choices'].items():
|
|
if isinstance(k, Enum):
|
|
k = k.value
|
|
try:
|
|
# Use str(k) since keys must be strings for json; while not technically correct,
|
|
# it's the closest that can be represented in valid JSON
|
|
generated[str(k)] = self.generate_inner(v).copy()
|
|
except PydanticOmit:
|
|
continue
|
|
except PydanticInvalidForJsonSchema as exc:
|
|
self.emit_warning('skipped-choice', exc.message)
|
|
|
|
one_of_choices = _deduplicate_schemas(generated.values())
|
|
json_schema: JsonSchemaValue = {'oneOf': one_of_choices}
|
|
|
|
# This reflects the v1 behavior; TODO: we should make it possible to exclude OpenAPI stuff from the JSON schema
|
|
openapi_discriminator = self._extract_discriminator(schema, one_of_choices)
|
|
if openapi_discriminator is not None:
|
|
json_schema['discriminator'] = {
|
|
'propertyName': openapi_discriminator,
|
|
'mapping': {k: v.get('$ref', v) for k, v in generated.items()},
|
|
}
|
|
|
|
return json_schema
|
|
|
|
def _extract_discriminator(
|
|
self, schema: core_schema.TaggedUnionSchema, one_of_choices: list[JsonDict]
|
|
) -> str | None:
|
|
"""Extract a compatible OpenAPI discriminator from the schema and one_of choices that end up in the final
|
|
schema."""
|
|
openapi_discriminator: str | None = None
|
|
|
|
if isinstance(schema['discriminator'], str):
|
|
return schema['discriminator']
|
|
|
|
if isinstance(schema['discriminator'], list):
|
|
# If the discriminator is a single item list containing a string, that is equivalent to the string case
|
|
if len(schema['discriminator']) == 1 and isinstance(schema['discriminator'][0], str):
|
|
return schema['discriminator'][0]
|
|
# When an alias is used that is different from the field name, the discriminator will be a list of single
|
|
# str lists, one for the attribute and one for the actual alias. The logic here will work even if there is
|
|
# more than one possible attribute, and looks for whether a single alias choice is present as a documented
|
|
# property on all choices. If so, that property will be used as the OpenAPI discriminator.
|
|
for alias_path in schema['discriminator']:
|
|
if not isinstance(alias_path, list):
|
|
break # this means that the discriminator is not a list of alias paths
|
|
if len(alias_path) != 1:
|
|
continue # this means that the "alias" does not represent a single field
|
|
alias = alias_path[0]
|
|
if not isinstance(alias, str):
|
|
continue # this means that the "alias" does not represent a field
|
|
alias_is_present_on_all_choices = True
|
|
for choice in one_of_choices:
|
|
while '$ref' in choice:
|
|
assert isinstance(choice['$ref'], str)
|
|
choice = self.get_schema_from_definitions(JsonRef(choice['$ref'])) or {}
|
|
properties = choice.get('properties', {})
|
|
if not isinstance(properties, dict) or alias not in properties:
|
|
alias_is_present_on_all_choices = False
|
|
break
|
|
if alias_is_present_on_all_choices:
|
|
openapi_discriminator = alias
|
|
break
|
|
return openapi_discriminator
|
|
|
|
def chain_schema(self, schema: core_schema.ChainSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a core_schema.ChainSchema.
|
|
|
|
When generating a schema for validation, we return the validation JSON schema for the first step in the chain.
|
|
For serialization, we return the serialization JSON schema for the last step in the chain.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
step_index = 0 if self.mode == 'validation' else -1 # use first step for validation, last for serialization
|
|
return self.generate_inner(schema['steps'][step_index])
|
|
|
|
def lax_or_strict_schema(self, schema: core_schema.LaxOrStrictSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that allows values matching either the lax schema or the
|
|
strict schema.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
# TODO: Need to read the default value off of model config or whatever
|
|
use_strict = schema.get('strict', False) # TODO: replace this default False
|
|
# If your JSON schema fails to generate it is probably
|
|
# because one of the following two branches failed.
|
|
if use_strict:
|
|
return self.generate_inner(schema['strict_schema'])
|
|
else:
|
|
return self.generate_inner(schema['lax_schema'])
|
|
|
|
def json_or_python_schema(self, schema: core_schema.JsonOrPythonSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that allows values matching either the JSON schema or the
|
|
Python schema.
|
|
|
|
The JSON schema is used instead of the Python schema. If you want to use the Python schema, you should override
|
|
this method.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self.generate_inner(schema['json_schema'])
|
|
|
|
def typed_dict_schema(self, schema: core_schema.TypedDictSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a typed dict.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
total = schema.get('total', True)
|
|
named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [
|
|
(name, self.field_is_required(field, total), field)
|
|
for name, field in schema['fields'].items()
|
|
if self.field_is_present(field)
|
|
]
|
|
if self.mode == 'serialization':
|
|
named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', [])))
|
|
|
|
config = _get_typed_dict_config(schema)
|
|
with self._config_wrapper_stack.push(config):
|
|
json_schema = self._named_required_fields_schema(named_required_fields)
|
|
|
|
extra = schema.get('extra_behavior')
|
|
if extra is None:
|
|
extra = config.get('extra', 'ignore')
|
|
if extra == 'forbid':
|
|
json_schema['additionalProperties'] = False
|
|
elif extra == 'allow':
|
|
json_schema['additionalProperties'] = True
|
|
|
|
return json_schema
|
|
|
|
@staticmethod
|
|
def _name_required_computed_fields(
|
|
computed_fields: list[ComputedField],
|
|
) -> list[tuple[str, bool, core_schema.ComputedField]]:
|
|
return [(field['property_name'], True, field) for field in computed_fields]
|
|
|
|
def _named_required_fields_schema(
|
|
self, named_required_fields: Sequence[tuple[str, bool, CoreSchemaField]]
|
|
) -> JsonSchemaValue:
|
|
properties: dict[str, JsonSchemaValue] = {}
|
|
required_fields: list[str] = []
|
|
for name, required, field in named_required_fields:
|
|
if self.by_alias:
|
|
name = self._get_alias_name(field, name)
|
|
try:
|
|
field_json_schema = self.generate_inner(field).copy()
|
|
except PydanticOmit:
|
|
continue
|
|
if 'title' not in field_json_schema and self.field_title_should_be_set(field):
|
|
title = self.get_title_from_name(name)
|
|
field_json_schema['title'] = title
|
|
field_json_schema = self.handle_ref_overrides(field_json_schema)
|
|
properties[name] = field_json_schema
|
|
if required:
|
|
required_fields.append(name)
|
|
|
|
json_schema = {'type': 'object', 'properties': properties}
|
|
if required_fields:
|
|
json_schema['required'] = required_fields
|
|
return json_schema
|
|
|
|
def _get_alias_name(self, field: CoreSchemaField, name: str) -> str:
|
|
if field['type'] == 'computed-field':
|
|
alias: Any = field.get('alias', name)
|
|
elif self.mode == 'validation':
|
|
alias = field.get('validation_alias', name)
|
|
else:
|
|
alias = field.get('serialization_alias', name)
|
|
if isinstance(alias, str):
|
|
name = alias
|
|
elif isinstance(alias, list):
|
|
alias = cast('list[str] | str', alias)
|
|
for path in alias:
|
|
if isinstance(path, list) and len(path) == 1 and isinstance(path[0], str):
|
|
# Use the first valid single-item string path; the code that constructs the alias array
|
|
# should ensure the first such item is what belongs in the JSON schema
|
|
name = path[0]
|
|
break
|
|
else:
|
|
assert_never(alias)
|
|
return name
|
|
|
|
def typed_dict_field_schema(self, schema: core_schema.TypedDictField) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a typed dict field.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self.generate_inner(schema['schema'])
|
|
|
|
def dataclass_field_schema(self, schema: core_schema.DataclassField) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a dataclass field.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self.generate_inner(schema['schema'])
|
|
|
|
def model_field_schema(self, schema: core_schema.ModelField) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a model field.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self.generate_inner(schema['schema'])
|
|
|
|
def computed_field_schema(self, schema: core_schema.ComputedField) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a computed field.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self.generate_inner(schema['return_schema'])
|
|
|
|
def model_schema(self, schema: core_schema.ModelSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a model.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
# We do not use schema['model'].model_json_schema() here
|
|
# because it could lead to inconsistent refs handling, etc.
|
|
cls = cast('type[BaseModel]', schema['cls'])
|
|
config = cls.model_config
|
|
title = config.get('title')
|
|
|
|
with self._config_wrapper_stack.push(config):
|
|
json_schema = self.generate_inner(schema['schema'])
|
|
|
|
json_schema_extra = config.get('json_schema_extra')
|
|
if cls.__pydantic_root_model__:
|
|
root_json_schema_extra = cls.model_fields['root'].json_schema_extra
|
|
if json_schema_extra and root_json_schema_extra:
|
|
raise ValueError(
|
|
'"model_config[\'json_schema_extra\']" and "Field.json_schema_extra" on "RootModel.root"'
|
|
' field must not be set simultaneously'
|
|
)
|
|
if root_json_schema_extra:
|
|
json_schema_extra = root_json_schema_extra
|
|
|
|
json_schema = self._update_class_schema(json_schema, title, config.get('extra', None), cls, json_schema_extra)
|
|
|
|
return json_schema
|
|
|
|
def _update_class_schema(
|
|
self,
|
|
json_schema: JsonSchemaValue,
|
|
title: str | None,
|
|
extra: Literal['allow', 'ignore', 'forbid'] | None,
|
|
cls: type[Any],
|
|
json_schema_extra: JsonDict | JsonSchemaExtraCallable | None,
|
|
) -> JsonSchemaValue:
|
|
if '$ref' in json_schema:
|
|
schema_to_update = self.get_schema_from_definitions(JsonRef(json_schema['$ref'])) or json_schema
|
|
else:
|
|
schema_to_update = json_schema
|
|
|
|
if title is not None:
|
|
# referenced_schema['title'] = title
|
|
schema_to_update.setdefault('title', title)
|
|
|
|
if 'additionalProperties' not in schema_to_update:
|
|
if extra == 'allow':
|
|
schema_to_update['additionalProperties'] = True
|
|
elif extra == 'forbid':
|
|
schema_to_update['additionalProperties'] = False
|
|
|
|
if isinstance(json_schema_extra, (staticmethod, classmethod)):
|
|
# In older versions of python, this is necessary to ensure staticmethod/classmethods are callable
|
|
json_schema_extra = json_schema_extra.__get__(cls)
|
|
|
|
if isinstance(json_schema_extra, dict):
|
|
schema_to_update.update(json_schema_extra)
|
|
elif callable(json_schema_extra):
|
|
if len(inspect.signature(json_schema_extra).parameters) > 1:
|
|
json_schema_extra(schema_to_update, cls) # type: ignore
|
|
else:
|
|
json_schema_extra(schema_to_update) # type: ignore
|
|
elif json_schema_extra is not None:
|
|
raise ValueError(
|
|
f"model_config['json_schema_extra']={json_schema_extra} should be a dict, callable, or None"
|
|
)
|
|
|
|
return json_schema
|
|
|
|
def resolve_schema_to_update(self, json_schema: JsonSchemaValue) -> JsonSchemaValue:
|
|
"""Resolve a JsonSchemaValue to the non-ref schema if it is a $ref schema.
|
|
|
|
Args:
|
|
json_schema: The schema to resolve.
|
|
|
|
Returns:
|
|
The resolved schema.
|
|
"""
|
|
if '$ref' in json_schema:
|
|
schema_to_update = self.get_schema_from_definitions(JsonRef(json_schema['$ref']))
|
|
if schema_to_update is None:
|
|
raise RuntimeError(f'Cannot update undefined schema for $ref={json_schema["$ref"]}')
|
|
return self.resolve_schema_to_update(schema_to_update)
|
|
else:
|
|
schema_to_update = json_schema
|
|
return schema_to_update
|
|
|
|
def model_fields_schema(self, schema: core_schema.ModelFieldsSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a model's fields.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [
|
|
(name, self.field_is_required(field, total=True), field)
|
|
for name, field in schema['fields'].items()
|
|
if self.field_is_present(field)
|
|
]
|
|
if self.mode == 'serialization':
|
|
named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', [])))
|
|
json_schema = self._named_required_fields_schema(named_required_fields)
|
|
extras_schema = schema.get('extras_schema', None)
|
|
if extras_schema is not None:
|
|
schema_to_update = self.resolve_schema_to_update(json_schema)
|
|
schema_to_update['additionalProperties'] = self.generate_inner(extras_schema)
|
|
return json_schema
|
|
|
|
def field_is_present(self, field: CoreSchemaField) -> bool:
|
|
"""Whether the field should be included in the generated JSON schema.
|
|
|
|
Args:
|
|
field: The schema for the field itself.
|
|
|
|
Returns:
|
|
`True` if the field should be included in the generated JSON schema, `False` otherwise.
|
|
"""
|
|
if self.mode == 'serialization':
|
|
# If you still want to include the field in the generated JSON schema,
|
|
# override this method and return True
|
|
return not field.get('serialization_exclude')
|
|
elif self.mode == 'validation':
|
|
return True
|
|
else:
|
|
assert_never(self.mode)
|
|
|
|
def field_is_required(
|
|
self,
|
|
field: core_schema.ModelField | core_schema.DataclassField | core_schema.TypedDictField,
|
|
total: bool,
|
|
) -> bool:
|
|
"""Whether the field should be marked as required in the generated JSON schema.
|
|
(Note that this is irrelevant if the field is not present in the JSON schema.).
|
|
|
|
Args:
|
|
field: The schema for the field itself.
|
|
total: Only applies to `TypedDictField`s.
|
|
Indicates if the `TypedDict` this field belongs to is total, in which case any fields that don't
|
|
explicitly specify `required=False` are required.
|
|
|
|
Returns:
|
|
`True` if the field should be marked as required in the generated JSON schema, `False` otherwise.
|
|
"""
|
|
if self.mode == 'serialization' and self._config.json_schema_serialization_defaults_required:
|
|
return not field.get('serialization_exclude')
|
|
else:
|
|
if field['type'] == 'typed-dict-field':
|
|
return field.get('required', total)
|
|
else:
|
|
return field['schema']['type'] != 'default'
|
|
|
|
def dataclass_args_schema(self, schema: core_schema.DataclassArgsSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a dataclass's constructor arguments.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [
|
|
(field['name'], self.field_is_required(field, total=True), field)
|
|
for field in schema['fields']
|
|
if self.field_is_present(field)
|
|
]
|
|
if self.mode == 'serialization':
|
|
named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', [])))
|
|
return self._named_required_fields_schema(named_required_fields)
|
|
|
|
def dataclass_schema(self, schema: core_schema.DataclassSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a dataclass.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
cls = schema['cls']
|
|
config: ConfigDict = getattr(cls, '__pydantic_config__', cast('ConfigDict', {}))
|
|
title = config.get('title') or cls.__name__
|
|
|
|
with self._config_wrapper_stack.push(config):
|
|
json_schema = self.generate_inner(schema['schema']).copy()
|
|
|
|
json_schema_extra = config.get('json_schema_extra')
|
|
json_schema = self._update_class_schema(json_schema, title, config.get('extra', None), cls, json_schema_extra)
|
|
|
|
# Dataclass-specific handling of description
|
|
if is_dataclass(cls) and not hasattr(cls, '__pydantic_validator__'):
|
|
# vanilla dataclass; don't use cls.__doc__ as it will contain the class signature by default
|
|
description = None
|
|
else:
|
|
description = None if cls.__doc__ is None else inspect.cleandoc(cls.__doc__)
|
|
if description:
|
|
json_schema['description'] = description
|
|
|
|
return json_schema
|
|
|
|
def arguments_schema(self, schema: core_schema.ArgumentsSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a function's arguments.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
metadata = _core_metadata.CoreMetadataHandler(schema).metadata
|
|
prefer_positional = metadata.get('pydantic_js_prefer_positional_arguments')
|
|
|
|
arguments = schema['arguments_schema']
|
|
kw_only_arguments = [a for a in arguments if a.get('mode') == 'keyword_only']
|
|
kw_or_p_arguments = [a for a in arguments if a.get('mode') in {'positional_or_keyword', None}]
|
|
p_only_arguments = [a for a in arguments if a.get('mode') == 'positional_only']
|
|
var_args_schema = schema.get('var_args_schema')
|
|
var_kwargs_schema = schema.get('var_kwargs_schema')
|
|
|
|
if prefer_positional:
|
|
positional_possible = not kw_only_arguments and not var_kwargs_schema
|
|
if positional_possible:
|
|
return self.p_arguments_schema(p_only_arguments + kw_or_p_arguments, var_args_schema)
|
|
|
|
keyword_possible = not p_only_arguments and not var_args_schema
|
|
if keyword_possible:
|
|
return self.kw_arguments_schema(kw_or_p_arguments + kw_only_arguments, var_kwargs_schema)
|
|
|
|
if not prefer_positional:
|
|
positional_possible = not kw_only_arguments and not var_kwargs_schema
|
|
if positional_possible:
|
|
return self.p_arguments_schema(p_only_arguments + kw_or_p_arguments, var_args_schema)
|
|
|
|
raise PydanticInvalidForJsonSchema(
|
|
'Unable to generate JSON schema for arguments validator with positional-only and keyword-only arguments'
|
|
)
|
|
|
|
def kw_arguments_schema(
|
|
self, arguments: list[core_schema.ArgumentsParameter], var_kwargs_schema: CoreSchema | None
|
|
) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a function's keyword arguments.
|
|
|
|
Args:
|
|
arguments: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
properties: dict[str, JsonSchemaValue] = {}
|
|
required: list[str] = []
|
|
for argument in arguments:
|
|
name = self.get_argument_name(argument)
|
|
argument_schema = self.generate_inner(argument['schema']).copy()
|
|
argument_schema['title'] = self.get_title_from_name(name)
|
|
properties[name] = argument_schema
|
|
|
|
if argument['schema']['type'] != 'default':
|
|
# This assumes that if the argument has a default value,
|
|
# the inner schema must be of type WithDefaultSchema.
|
|
# I believe this is true, but I am not 100% sure
|
|
required.append(name)
|
|
|
|
json_schema: JsonSchemaValue = {'type': 'object', 'properties': properties}
|
|
if required:
|
|
json_schema['required'] = required
|
|
|
|
if var_kwargs_schema:
|
|
additional_properties_schema = self.generate_inner(var_kwargs_schema)
|
|
if additional_properties_schema:
|
|
json_schema['additionalProperties'] = additional_properties_schema
|
|
else:
|
|
json_schema['additionalProperties'] = False
|
|
return json_schema
|
|
|
|
def p_arguments_schema(
|
|
self, arguments: list[core_schema.ArgumentsParameter], var_args_schema: CoreSchema | None
|
|
) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a function's positional arguments.
|
|
|
|
Args:
|
|
arguments: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
prefix_items: list[JsonSchemaValue] = []
|
|
min_items = 0
|
|
|
|
for argument in arguments:
|
|
name = self.get_argument_name(argument)
|
|
|
|
argument_schema = self.generate_inner(argument['schema']).copy()
|
|
argument_schema['title'] = self.get_title_from_name(name)
|
|
prefix_items.append(argument_schema)
|
|
|
|
if argument['schema']['type'] != 'default':
|
|
# This assumes that if the argument has a default value,
|
|
# the inner schema must be of type WithDefaultSchema.
|
|
# I believe this is true, but I am not 100% sure
|
|
min_items += 1
|
|
|
|
json_schema: JsonSchemaValue = {'type': 'array', 'prefixItems': prefix_items}
|
|
if min_items:
|
|
json_schema['minItems'] = min_items
|
|
|
|
if var_args_schema:
|
|
items_schema = self.generate_inner(var_args_schema)
|
|
if items_schema:
|
|
json_schema['items'] = items_schema
|
|
else:
|
|
json_schema['maxItems'] = len(prefix_items)
|
|
|
|
return json_schema
|
|
|
|
def get_argument_name(self, argument: core_schema.ArgumentsParameter) -> str:
|
|
"""Retrieves the name of an argument.
|
|
|
|
Args:
|
|
argument: The core schema.
|
|
|
|
Returns:
|
|
The name of the argument.
|
|
"""
|
|
name = argument['name']
|
|
if self.by_alias:
|
|
alias = argument.get('alias')
|
|
if isinstance(alias, str):
|
|
name = alias
|
|
else:
|
|
pass # might want to do something else?
|
|
return name
|
|
|
|
def call_schema(self, schema: core_schema.CallSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a function call.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self.generate_inner(schema['arguments_schema'])
|
|
|
|
def custom_error_schema(self, schema: core_schema.CustomErrorSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a custom error.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return self.generate_inner(schema['schema'])
|
|
|
|
def json_schema(self, schema: core_schema.JsonSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a JSON object.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
content_core_schema = schema.get('schema') or core_schema.any_schema()
|
|
content_json_schema = self.generate_inner(content_core_schema)
|
|
if self.mode == 'validation':
|
|
return {'type': 'string', 'contentMediaType': 'application/json', 'contentSchema': content_json_schema}
|
|
else:
|
|
# self.mode == 'serialization'
|
|
return content_json_schema
|
|
|
|
def url_schema(self, schema: core_schema.UrlSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a URL.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
json_schema = {'type': 'string', 'format': 'uri', 'minLength': 1}
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.string)
|
|
return json_schema
|
|
|
|
def multi_host_url_schema(self, schema: core_schema.MultiHostUrlSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a URL that can be used with multiple hosts.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
# Note: 'multi-host-uri' is a custom/pydantic-specific format, not part of the JSON Schema spec
|
|
json_schema = {'type': 'string', 'format': 'multi-host-uri', 'minLength': 1}
|
|
self.update_with_validations(json_schema, schema, self.ValidationsMapping.string)
|
|
return json_schema
|
|
|
|
def uuid_schema(self, schema: core_schema.UuidSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a UUID.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
return {'type': 'string', 'format': 'uuid'}
|
|
|
|
def definitions_schema(self, schema: core_schema.DefinitionsSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that defines a JSON object with definitions.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
for definition in schema['definitions']:
|
|
try:
|
|
self.generate_inner(definition)
|
|
except PydanticInvalidForJsonSchema as e:
|
|
core_ref: CoreRef = CoreRef(definition['ref']) # type: ignore
|
|
self._core_defs_invalid_for_json_schema[self.get_defs_ref((core_ref, self.mode))] = e
|
|
continue
|
|
return self.generate_inner(schema['schema'])
|
|
|
|
def definition_ref_schema(self, schema: core_schema.DefinitionReferenceSchema) -> JsonSchemaValue:
|
|
"""Generates a JSON schema that matches a schema that references a definition.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
core_ref = CoreRef(schema['schema_ref'])
|
|
_, ref_json_schema = self.get_cache_defs_ref_schema(core_ref)
|
|
return ref_json_schema
|
|
|
|
def ser_schema(
|
|
self, schema: core_schema.SerSchema | core_schema.IncExSeqSerSchema | core_schema.IncExDictSerSchema
|
|
) -> JsonSchemaValue | None:
|
|
"""Generates a JSON schema that matches a schema that defines a serialized object.
|
|
|
|
Args:
|
|
schema: The core schema.
|
|
|
|
Returns:
|
|
The generated JSON schema.
|
|
"""
|
|
schema_type = schema['type']
|
|
if schema_type == 'function-plain' or schema_type == 'function-wrap':
|
|
# PlainSerializerFunctionSerSchema or WrapSerializerFunctionSerSchema
|
|
return_schema = schema.get('return_schema')
|
|
if return_schema is not None:
|
|
return self.generate_inner(return_schema)
|
|
elif schema_type == 'format' or schema_type == 'to-string':
|
|
# FormatSerSchema or ToStringSerSchema
|
|
return self.str_schema(core_schema.str_schema())
|
|
elif schema['type'] == 'model':
|
|
# ModelSerSchema
|
|
return self.generate_inner(schema['schema'])
|
|
return None
|
|
|
|
# ### Utility methods
|
|
|
|
def get_title_from_name(self, name: str) -> str:
|
|
"""Retrieves a title from a name.
|
|
|
|
Args:
|
|
name: The name to retrieve a title from.
|
|
|
|
Returns:
|
|
The title.
|
|
"""
|
|
return name.title().replace('_', ' ')
|
|
|
|
def field_title_should_be_set(self, schema: CoreSchemaOrField) -> bool:
|
|
"""Returns true if a field with the given schema should have a title set based on the field name.
|
|
|
|
Intuitively, we want this to return true for schemas that wouldn't otherwise provide their own title
|
|
(e.g., int, float, str), and false for those that would (e.g., BaseModel subclasses).
|
|
|
|
Args:
|
|
schema: The schema to check.
|
|
|
|
Returns:
|
|
`True` if the field should have a title set, `False` otherwise.
|
|
"""
|
|
if _core_utils.is_core_schema_field(schema):
|
|
if schema['type'] == 'computed-field':
|
|
field_schema = schema['return_schema']
|
|
else:
|
|
field_schema = schema['schema']
|
|
return self.field_title_should_be_set(field_schema)
|
|
|
|
elif _core_utils.is_core_schema(schema):
|
|
if schema.get('ref'): # things with refs, such as models and enums, should not have titles set
|
|
return False
|
|
if schema['type'] in {'default', 'nullable', 'definitions'}:
|
|
return self.field_title_should_be_set(schema['schema']) # type: ignore[typeddict-item]
|
|
if _core_utils.is_function_with_inner_schema(schema):
|
|
return self.field_title_should_be_set(schema['schema'])
|
|
if schema['type'] == 'definition-ref':
|
|
# Referenced schemas should not have titles set for the same reason
|
|
# schemas with refs should not
|
|
return False
|
|
return True # anything else should have title set
|
|
|
|
else:
|
|
raise PydanticInvalidForJsonSchema(f'Unexpected schema type: schema={schema}') # pragma: no cover
|
|
|
|
def normalize_name(self, name: str) -> str:
|
|
"""Normalizes a name to be used as a key in a dictionary.
|
|
|
|
Args:
|
|
name: The name to normalize.
|
|
|
|
Returns:
|
|
The normalized name.
|
|
"""
|
|
return re.sub(r'[^a-zA-Z0-9.\-_]', '_', name).replace('.', '__')
|
|
|
|
def get_defs_ref(self, core_mode_ref: CoreModeRef) -> DefsRef:
|
|
"""Override this method to change the way that definitions keys are generated from a core reference.
|
|
|
|
Args:
|
|
core_mode_ref: The core reference.
|
|
|
|
Returns:
|
|
The definitions key.
|
|
"""
|
|
# Split the core ref into "components"; generic origins and arguments are each separate components
|
|
core_ref, mode = core_mode_ref
|
|
components = re.split(r'([\][,])', core_ref)
|
|
# Remove IDs from each component
|
|
components = [x.rsplit(':', 1)[0] for x in components]
|
|
core_ref_no_id = ''.join(components)
|
|
# Remove everything before the last period from each "component"
|
|
components = [re.sub(r'(?:[^.[\]]+\.)+((?:[^.[\]]+))', r'\1', x) for x in components]
|
|
short_ref = ''.join(components)
|
|
|
|
mode_title = _MODE_TITLE_MAPPING[mode]
|
|
|
|
# It is important that the generated defs_ref values be such that at least one choice will not
|
|
# be generated for any other core_ref. Currently, this should be the case because we include
|
|
# the id of the source type in the core_ref
|
|
name = DefsRef(self.normalize_name(short_ref))
|
|
name_mode = DefsRef(self.normalize_name(short_ref) + f'-{mode_title}')
|
|
module_qualname = DefsRef(self.normalize_name(core_ref_no_id))
|
|
module_qualname_mode = DefsRef(f'{module_qualname}-{mode_title}')
|
|
module_qualname_id = DefsRef(self.normalize_name(core_ref))
|
|
occurrence_index = self._collision_index.get(module_qualname_id)
|
|
if occurrence_index is None:
|
|
self._collision_counter[module_qualname] += 1
|
|
occurrence_index = self._collision_index[module_qualname_id] = self._collision_counter[module_qualname]
|
|
|
|
module_qualname_occurrence = DefsRef(f'{module_qualname}__{occurrence_index}')
|
|
module_qualname_occurrence_mode = DefsRef(f'{module_qualname_mode}__{occurrence_index}')
|
|
|
|
self._prioritized_defsref_choices[module_qualname_occurrence_mode] = [
|
|
name,
|
|
name_mode,
|
|
module_qualname,
|
|
module_qualname_mode,
|
|
module_qualname_occurrence,
|
|
module_qualname_occurrence_mode,
|
|
]
|
|
|
|
return module_qualname_occurrence_mode
|
|
|
|
def get_cache_defs_ref_schema(self, core_ref: CoreRef) -> tuple[DefsRef, JsonSchemaValue]:
|
|
"""This method wraps the get_defs_ref method with some cache-lookup/population logic,
|
|
and returns both the produced defs_ref and the JSON schema that will refer to the right definition.
|
|
|
|
Args:
|
|
core_ref: The core reference to get the definitions reference for.
|
|
|
|
Returns:
|
|
A tuple of the definitions reference and the JSON schema that will refer to it.
|
|
"""
|
|
core_mode_ref = (core_ref, self.mode)
|
|
maybe_defs_ref = self.core_to_defs_refs.get(core_mode_ref)
|
|
if maybe_defs_ref is not None:
|
|
json_ref = self.core_to_json_refs[core_mode_ref]
|
|
return maybe_defs_ref, {'$ref': json_ref}
|
|
|
|
defs_ref = self.get_defs_ref(core_mode_ref)
|
|
|
|
# populate the ref translation mappings
|
|
self.core_to_defs_refs[core_mode_ref] = defs_ref
|
|
self.defs_to_core_refs[defs_ref] = core_mode_ref
|
|
|
|
json_ref = JsonRef(self.ref_template.format(model=defs_ref))
|
|
self.core_to_json_refs[core_mode_ref] = json_ref
|
|
self.json_to_defs_refs[json_ref] = defs_ref
|
|
ref_json_schema = {'$ref': json_ref}
|
|
return defs_ref, ref_json_schema
|
|
|
|
def handle_ref_overrides(self, json_schema: JsonSchemaValue) -> JsonSchemaValue:
|
|
"""It is not valid for a schema with a top-level $ref to have sibling keys.
|
|
|
|
During our own schema generation, we treat sibling keys as overrides to the referenced schema,
|
|
but this is not how the official JSON schema spec works.
|
|
|
|
Because of this, we first remove any sibling keys that are redundant with the referenced schema, then if
|
|
any remain, we transform the schema from a top-level '$ref' to use allOf to move the $ref out of the top level.
|
|
(See bottom of https://swagger.io/docs/specification/using-ref/ for a reference about this behavior)
|
|
"""
|
|
if '$ref' in json_schema:
|
|
# prevent modifications to the input; this copy may be safe to drop if there is significant overhead
|
|
json_schema = json_schema.copy()
|
|
|
|
referenced_json_schema = self.get_schema_from_definitions(JsonRef(json_schema['$ref']))
|
|
if referenced_json_schema is None:
|
|
# This can happen when building schemas for models with not-yet-defined references.
|
|
# It may be a good idea to do a recursive pass at the end of the generation to remove
|
|
# any redundant override keys.
|
|
if len(json_schema) > 1:
|
|
# Make it an allOf to at least resolve the sibling keys issue
|
|
json_schema = json_schema.copy()
|
|
json_schema.setdefault('allOf', [])
|
|
json_schema['allOf'].append({'$ref': json_schema['$ref']})
|
|
del json_schema['$ref']
|
|
|
|
return json_schema
|
|
for k, v in list(json_schema.items()):
|
|
if k == '$ref':
|
|
continue
|
|
if k in referenced_json_schema and referenced_json_schema[k] == v:
|
|
del json_schema[k] # redundant key
|
|
if len(json_schema) > 1:
|
|
# There is a remaining "override" key, so we need to move $ref out of the top level
|
|
json_ref = JsonRef(json_schema['$ref'])
|
|
del json_schema['$ref']
|
|
assert 'allOf' not in json_schema # this should never happen, but just in case
|
|
json_schema['allOf'] = [{'$ref': json_ref}]
|
|
|
|
return json_schema
|
|
|
|
def get_schema_from_definitions(self, json_ref: JsonRef) -> JsonSchemaValue | None:
|
|
def_ref = self.json_to_defs_refs[json_ref]
|
|
if def_ref in self._core_defs_invalid_for_json_schema:
|
|
raise self._core_defs_invalid_for_json_schema[def_ref]
|
|
return self.definitions.get(def_ref, None)
|
|
|
|
def encode_default(self, dft: Any) -> Any:
|
|
"""Encode a default value to a JSON-serializable value.
|
|
|
|
This is used to encode default values for fields in the generated JSON schema.
|
|
|
|
Args:
|
|
dft: The default value to encode.
|
|
|
|
Returns:
|
|
The encoded default value.
|
|
"""
|
|
config = self._config
|
|
return pydantic_core.to_jsonable_python(
|
|
dft,
|
|
timedelta_mode=config.ser_json_timedelta,
|
|
bytes_mode=config.ser_json_bytes,
|
|
)
|
|
|
|
def update_with_validations(
|
|
self, json_schema: JsonSchemaValue, core_schema: CoreSchema, mapping: dict[str, str]
|
|
) -> None:
|
|
"""Update the json_schema with the corresponding validations specified in the core_schema,
|
|
using the provided mapping to translate keys in core_schema to the appropriate keys for a JSON schema.
|
|
|
|
Args:
|
|
json_schema: The JSON schema to update.
|
|
core_schema: The core schema to get the validations from.
|
|
mapping: A mapping from core_schema attribute names to the corresponding JSON schema attribute names.
|
|
"""
|
|
for core_key, json_schema_key in mapping.items():
|
|
if core_key in core_schema:
|
|
json_schema[json_schema_key] = core_schema[core_key]
|
|
|
|
class ValidationsMapping:
|
|
"""This class just contains mappings from core_schema attribute names to the corresponding
|
|
JSON schema attribute names. While I suspect it is unlikely to be necessary, you can in
|
|
principle override this class in a subclass of GenerateJsonSchema (by inheriting from
|
|
GenerateJsonSchema.ValidationsMapping) to change these mappings.
|
|
"""
|
|
|
|
numeric = {
|
|
'multiple_of': 'multipleOf',
|
|
'le': 'maximum',
|
|
'ge': 'minimum',
|
|
'lt': 'exclusiveMaximum',
|
|
'gt': 'exclusiveMinimum',
|
|
}
|
|
bytes = {
|
|
'min_length': 'minLength',
|
|
'max_length': 'maxLength',
|
|
}
|
|
string = {
|
|
'min_length': 'minLength',
|
|
'max_length': 'maxLength',
|
|
'pattern': 'pattern',
|
|
}
|
|
array = {
|
|
'min_length': 'minItems',
|
|
'max_length': 'maxItems',
|
|
}
|
|
object = {
|
|
'min_length': 'minProperties',
|
|
'max_length': 'maxProperties',
|
|
}
|
|
date = {
|
|
'le': 'maximum',
|
|
'ge': 'minimum',
|
|
'lt': 'exclusiveMaximum',
|
|
'gt': 'exclusiveMinimum',
|
|
}
|
|
|
|
def get_flattened_anyof(self, schemas: list[JsonSchemaValue]) -> JsonSchemaValue:
|
|
members = []
|
|
for schema in schemas:
|
|
if len(schema) == 1 and 'anyOf' in schema:
|
|
members.extend(schema['anyOf'])
|
|
else:
|
|
members.append(schema)
|
|
members = _deduplicate_schemas(members)
|
|
if len(members) == 1:
|
|
return members[0]
|
|
return {'anyOf': members}
|
|
|
|
def get_json_ref_counts(self, json_schema: JsonSchemaValue) -> dict[JsonRef, int]:
|
|
"""Get all values corresponding to the key '$ref' anywhere in the json_schema."""
|
|
json_refs: dict[JsonRef, int] = Counter()
|
|
|
|
def _add_json_refs(schema: Any) -> None:
|
|
if isinstance(schema, dict):
|
|
if '$ref' in schema:
|
|
json_ref = JsonRef(schema['$ref'])
|
|
if not isinstance(json_ref, str):
|
|
return # in this case, '$ref' might have been the name of a property
|
|
already_visited = json_ref in json_refs
|
|
json_refs[json_ref] += 1
|
|
if already_visited:
|
|
return # prevent recursion on a definition that was already visited
|
|
defs_ref = self.json_to_defs_refs[json_ref]
|
|
if defs_ref in self._core_defs_invalid_for_json_schema:
|
|
raise self._core_defs_invalid_for_json_schema[defs_ref]
|
|
_add_json_refs(self.definitions[defs_ref])
|
|
|
|
for v in schema.values():
|
|
_add_json_refs(v)
|
|
elif isinstance(schema, list):
|
|
for v in schema:
|
|
_add_json_refs(v)
|
|
|
|
_add_json_refs(json_schema)
|
|
return json_refs
|
|
|
|
def handle_invalid_for_json_schema(self, schema: CoreSchemaOrField, error_info: str) -> JsonSchemaValue:
|
|
raise PydanticInvalidForJsonSchema(f'Cannot generate a JsonSchema for {error_info}')
|
|
|
|
def emit_warning(self, kind: JsonSchemaWarningKind, detail: str) -> None:
|
|
"""This method simply emits PydanticJsonSchemaWarnings based on handling in the `warning_message` method."""
|
|
message = self.render_warning_message(kind, detail)
|
|
if message is not None:
|
|
warnings.warn(message, PydanticJsonSchemaWarning)
|
|
|
|
def render_warning_message(self, kind: JsonSchemaWarningKind, detail: str) -> str | None:
|
|
"""This method is responsible for ignoring warnings as desired, and for formatting the warning messages.
|
|
|
|
You can override the value of `ignored_warning_kinds` in a subclass of GenerateJsonSchema
|
|
to modify what warnings are generated. If you want more control, you can override this method;
|
|
just return None in situations where you don't want warnings to be emitted.
|
|
|
|
Args:
|
|
kind: The kind of warning to render. It can be one of the following:
|
|
|
|
- 'skipped-choice': A choice field was skipped because it had no valid choices.
|
|
- 'non-serializable-default': A default value was skipped because it was not JSON-serializable.
|
|
detail: A string with additional details about the warning.
|
|
|
|
Returns:
|
|
The formatted warning message, or `None` if no warning should be emitted.
|
|
"""
|
|
if kind in self.ignored_warning_kinds:
|
|
return None
|
|
return f'{detail} [{kind}]'
|
|
|
|
def _build_definitions_remapping(self) -> _DefinitionsRemapping:
|
|
defs_to_json: dict[DefsRef, JsonRef] = {}
|
|
for defs_refs in self._prioritized_defsref_choices.values():
|
|
for defs_ref in defs_refs:
|
|
json_ref = JsonRef(self.ref_template.format(model=defs_ref))
|
|
defs_to_json[defs_ref] = json_ref
|
|
|
|
return _DefinitionsRemapping.from_prioritized_choices(
|
|
self._prioritized_defsref_choices, defs_to_json, self.definitions
|
|
)
|
|
|
|
def _garbage_collect_definitions(self, schema: JsonSchemaValue) -> None:
|
|
visited_defs_refs: set[DefsRef] = set()
|
|
unvisited_json_refs = _get_all_json_refs(schema)
|
|
while unvisited_json_refs:
|
|
next_json_ref = unvisited_json_refs.pop()
|
|
next_defs_ref = self.json_to_defs_refs[next_json_ref]
|
|
if next_defs_ref in visited_defs_refs:
|
|
continue
|
|
visited_defs_refs.add(next_defs_ref)
|
|
unvisited_json_refs.update(_get_all_json_refs(self.definitions[next_defs_ref]))
|
|
|
|
self.definitions = {k: v for k, v in self.definitions.items() if k in visited_defs_refs}
|
|
|
|
|
|
# ##### Start JSON Schema Generation Functions #####
|
|
|
|
|
|
def model_json_schema(
|
|
cls: type[BaseModel] | type[PydanticDataclass],
|
|
by_alias: bool = True,
|
|
ref_template: str = DEFAULT_REF_TEMPLATE,
|
|
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
|
|
mode: JsonSchemaMode = 'validation',
|
|
) -> dict[str, Any]:
|
|
"""Utility function to generate a JSON Schema for a model.
|
|
|
|
Args:
|
|
cls: The model class to generate a JSON Schema for.
|
|
by_alias: If `True` (the default), fields will be serialized according to their alias.
|
|
If `False`, fields will be serialized according to their attribute name.
|
|
ref_template: The template to use for generating JSON Schema references.
|
|
schema_generator: The class to use for generating the JSON Schema.
|
|
mode: The mode to use for generating the JSON Schema. It can be one of the following:
|
|
|
|
- 'validation': Generate a JSON Schema for validating data.
|
|
- 'serialization': Generate a JSON Schema for serializing data.
|
|
|
|
Returns:
|
|
The generated JSON Schema.
|
|
"""
|
|
schema_generator_instance = schema_generator(by_alias=by_alias, ref_template=ref_template)
|
|
if isinstance(cls.__pydantic_validator__, _mock_val_ser.MockValSer):
|
|
cls.__pydantic_validator__.rebuild()
|
|
assert '__pydantic_core_schema__' in cls.__dict__, 'this is a bug! please report it'
|
|
return schema_generator_instance.generate(cls.__pydantic_core_schema__, mode=mode)
|
|
|
|
|
|
def models_json_schema(
|
|
models: Sequence[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode]],
|
|
*,
|
|
by_alias: bool = True,
|
|
title: str | None = None,
|
|
description: str | None = None,
|
|
ref_template: str = DEFAULT_REF_TEMPLATE,
|
|
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
|
|
) -> tuple[dict[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode], JsonSchemaValue], JsonSchemaValue]:
|
|
"""Utility function to generate a JSON Schema for multiple models.
|
|
|
|
Args:
|
|
models: A sequence of tuples of the form (model, mode).
|
|
by_alias: Whether field aliases should be used as keys in the generated JSON Schema.
|
|
title: The title of the generated JSON Schema.
|
|
description: The description of the generated JSON Schema.
|
|
ref_template: The reference template to use for generating JSON Schema references.
|
|
schema_generator: The schema generator to use for generating the JSON Schema.
|
|
|
|
Returns:
|
|
A tuple where:
|
|
- The first element is a dictionary whose keys are tuples of JSON schema key type and JSON mode, and
|
|
whose values are the JSON schema corresponding to that pair of inputs. (These schemas may have
|
|
JsonRef references to definitions that are defined in the second returned element.)
|
|
- The second element is a JSON schema containing all definitions referenced in the first returned
|
|
element, along with the optional title and description keys.
|
|
"""
|
|
for cls, _ in models:
|
|
if isinstance(cls.__pydantic_validator__, _mock_val_ser.MockValSer):
|
|
cls.__pydantic_validator__.rebuild()
|
|
|
|
instance = schema_generator(by_alias=by_alias, ref_template=ref_template)
|
|
inputs = [(m, mode, m.__pydantic_core_schema__) for m, mode in models]
|
|
json_schemas_map, definitions = instance.generate_definitions(inputs)
|
|
|
|
json_schema: dict[str, Any] = {}
|
|
if definitions:
|
|
json_schema['$defs'] = definitions
|
|
if title:
|
|
json_schema['title'] = title
|
|
if description:
|
|
json_schema['description'] = description
|
|
|
|
return json_schemas_map, json_schema
|
|
|
|
|
|
# ##### End JSON Schema Generation Functions #####
|
|
|
|
|
|
_HashableJsonValue: TypeAlias = Union[
|
|
int, float, str, bool, None, Tuple['_HashableJsonValue', ...], Tuple[Tuple[str, '_HashableJsonValue'], ...]
|
|
]
|
|
|
|
|
|
def _deduplicate_schemas(schemas: Iterable[JsonDict]) -> list[JsonDict]:
|
|
return list({_make_json_hashable(schema): schema for schema in schemas}.values())
|
|
|
|
|
|
def _make_json_hashable(value: JsonValue) -> _HashableJsonValue:
|
|
if isinstance(value, dict):
|
|
return tuple(sorted((k, _make_json_hashable(v)) for k, v in value.items()))
|
|
elif isinstance(value, list):
|
|
return tuple(_make_json_hashable(v) for v in value)
|
|
else:
|
|
return value
|
|
|
|
|
|
def _sort_json_schema(value: JsonSchemaValue, parent_key: str | None = None) -> JsonSchemaValue:
|
|
if isinstance(value, dict):
|
|
sorted_dict: dict[str, JsonSchemaValue] = {}
|
|
keys = value.keys()
|
|
if (parent_key != 'properties') and (parent_key != 'default'):
|
|
keys = sorted(keys)
|
|
for key in keys:
|
|
sorted_dict[key] = _sort_json_schema(value[key], parent_key=key)
|
|
return sorted_dict
|
|
elif isinstance(value, list):
|
|
sorted_list: list[JsonSchemaValue] = []
|
|
for item in value: # type: ignore
|
|
sorted_list.append(_sort_json_schema(item, parent_key))
|
|
return sorted_list # type: ignore
|
|
else:
|
|
return value
|
|
|
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
|
class WithJsonSchema:
|
|
"""Usage docs: https://docs.pydantic.dev/2.6/concepts/json_schema/#withjsonschema-annotation
|
|
|
|
Add this as an annotation on a field to override the (base) JSON schema that would be generated for that field.
|
|
This provides a way to set a JSON schema for types that would otherwise raise errors when producing a JSON schema,
|
|
such as Callable, or types that have an is-instance core schema, without needing to go so far as creating a
|
|
custom subclass of pydantic.json_schema.GenerateJsonSchema.
|
|
Note that any _modifications_ to the schema that would normally be made (such as setting the title for model fields)
|
|
will still be performed.
|
|
|
|
If `mode` is set this will only apply to that schema generation mode, allowing you
|
|
to set different json schemas for validation and serialization.
|
|
"""
|
|
|
|
json_schema: JsonSchemaValue | None
|
|
mode: Literal['validation', 'serialization'] | None = None
|
|
|
|
def __get_pydantic_json_schema__(
|
|
self, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
|
|
) -> JsonSchemaValue:
|
|
mode = self.mode or handler.mode
|
|
if mode != handler.mode:
|
|
return handler(core_schema)
|
|
if self.json_schema is None:
|
|
# This exception is handled in pydantic.json_schema.GenerateJsonSchema._named_required_fields_schema
|
|
raise PydanticOmit
|
|
else:
|
|
return self.json_schema
|
|
|
|
def __hash__(self) -> int:
|
|
return hash(type(self.mode))
|
|
|
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
|
class Examples:
|
|
"""Add examples to a JSON schema.
|
|
|
|
Examples should be a map of example names (strings)
|
|
to example values (any valid JSON).
|
|
|
|
If `mode` is set this will only apply to that schema generation mode,
|
|
allowing you to add different examples for validation and serialization.
|
|
"""
|
|
|
|
examples: dict[str, Any]
|
|
mode: Literal['validation', 'serialization'] | None = None
|
|
|
|
def __get_pydantic_json_schema__(
|
|
self, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
|
|
) -> JsonSchemaValue:
|
|
mode = self.mode or handler.mode
|
|
json_schema = handler(core_schema)
|
|
if mode != handler.mode:
|
|
return json_schema
|
|
examples = json_schema.get('examples', {})
|
|
examples.update(to_jsonable_python(self.examples))
|
|
json_schema['examples'] = examples
|
|
return json_schema
|
|
|
|
def __hash__(self) -> int:
|
|
return hash(type(self.mode))
|
|
|
|
|
|
def _get_all_json_refs(item: Any) -> set[JsonRef]:
|
|
"""Get all the definitions references from a JSON schema."""
|
|
refs: set[JsonRef] = set()
|
|
if isinstance(item, dict):
|
|
for key, value in item.items():
|
|
if key == '$ref' and isinstance(value, str):
|
|
# the isinstance check ensures that '$ref' isn't the name of a property, etc.
|
|
refs.add(JsonRef(value))
|
|
elif isinstance(value, dict):
|
|
refs.update(_get_all_json_refs(value))
|
|
elif isinstance(value, list):
|
|
for item in value:
|
|
refs.update(_get_all_json_refs(item))
|
|
elif isinstance(item, list):
|
|
for item in item:
|
|
refs.update(_get_all_json_refs(item))
|
|
return refs
|
|
|
|
|
|
AnyType = TypeVar('AnyType')
|
|
|
|
if TYPE_CHECKING:
|
|
SkipJsonSchema = Annotated[AnyType, ...]
|
|
else:
|
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
|
class SkipJsonSchema:
|
|
"""Usage docs: https://docs.pydantic.dev/2.6/concepts/json_schema/#skipjsonschema-annotation
|
|
|
|
Add this as an annotation on a field to skip generating a JSON schema for that field.
|
|
|
|
Example:
|
|
```py
|
|
from typing import Union
|
|
|
|
from pydantic import BaseModel
|
|
from pydantic.json_schema import SkipJsonSchema
|
|
|
|
from pprint import pprint
|
|
|
|
|
|
class Model(BaseModel):
|
|
a: Union[int, None] = None # (1)!
|
|
b: Union[int, SkipJsonSchema[None]] = None # (2)!
|
|
c: SkipJsonSchema[Union[int, None]] = None # (3)!
|
|
|
|
|
|
pprint(Model.model_json_schema())
|
|
'''
|
|
{
|
|
'properties': {
|
|
'a': {
|
|
'anyOf': [
|
|
{'type': 'integer'},
|
|
{'type': 'null'}
|
|
],
|
|
'default': None,
|
|
'title': 'A'
|
|
},
|
|
'b': {
|
|
'default': None,
|
|
'title': 'B',
|
|
'type': 'integer'
|
|
}
|
|
},
|
|
'title': 'Model',
|
|
'type': 'object'
|
|
}
|
|
'''
|
|
```
|
|
|
|
1. The integer and null types are both included in the schema for `a`.
|
|
2. The integer type is the only type included in the schema for `b`.
|
|
3. The entirety of the `c` field is omitted from the schema.
|
|
"""
|
|
|
|
def __class_getitem__(cls, item: AnyType) -> AnyType:
|
|
return Annotated[item, cls()]
|
|
|
|
def __get_pydantic_json_schema__(
|
|
self, core_schema: CoreSchema, handler: GetJsonSchemaHandler
|
|
) -> JsonSchemaValue:
|
|
raise PydanticOmit
|
|
|
|
def __hash__(self) -> int:
|
|
return hash(type(self))
|
|
|
|
|
|
def _get_typed_dict_config(schema: core_schema.TypedDictSchema) -> ConfigDict:
|
|
metadata = _core_metadata.CoreMetadataHandler(schema).metadata
|
|
cls = metadata.get('pydantic_typed_dict_cls')
|
|
if cls is not None:
|
|
try:
|
|
return _decorators.get_attribute_from_bases(cls, '__pydantic_config__')
|
|
except AttributeError:
|
|
pass
|
|
return {}
|