mirror of
https://github.com/Tautulli/Tautulli.git
synced 2025-01-06 11:09:57 -08:00
1155 lines
45 KiB
Python
1155 lines
45 KiB
Python
"""Defining fields on models."""
|
|
from __future__ import annotations as _annotations
|
|
|
|
import dataclasses
|
|
import inspect
|
|
import typing
|
|
from copy import copy
|
|
from dataclasses import Field as DataclassField
|
|
from functools import cached_property
|
|
from typing import Any, ClassVar
|
|
from warnings import warn
|
|
|
|
import annotated_types
|
|
import typing_extensions
|
|
from pydantic_core import PydanticUndefined
|
|
from typing_extensions import Literal, Unpack
|
|
|
|
from . import types
|
|
from ._internal import _decorators, _fields, _generics, _internal_dataclass, _repr, _typing_extra, _utils
|
|
from .aliases import AliasChoices, AliasPath
|
|
from .config import JsonDict
|
|
from .errors import PydanticUserError
|
|
from .warnings import PydanticDeprecatedSince20
|
|
|
|
if typing.TYPE_CHECKING:
|
|
from ._internal._repr import ReprArgs
|
|
else:
|
|
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
|
|
# and https://youtrack.jetbrains.com/issue/PY-51428
|
|
DeprecationWarning = PydanticDeprecatedSince20
|
|
|
|
|
|
_Unset: Any = PydanticUndefined
|
|
|
|
|
|
class _FromFieldInfoInputs(typing_extensions.TypedDict, total=False):
|
|
"""This class exists solely to add type checking for the `**kwargs` in `FieldInfo.from_field`."""
|
|
|
|
annotation: type[Any] | None
|
|
default_factory: typing.Callable[[], Any] | None
|
|
alias: str | None
|
|
alias_priority: int | None
|
|
validation_alias: str | AliasPath | AliasChoices | None
|
|
serialization_alias: str | None
|
|
title: str | None
|
|
description: str | None
|
|
examples: list[Any] | None
|
|
exclude: bool | None
|
|
gt: float | None
|
|
ge: float | None
|
|
lt: float | None
|
|
le: float | None
|
|
multiple_of: float | None
|
|
strict: bool | None
|
|
min_length: int | None
|
|
max_length: int | None
|
|
pattern: str | None
|
|
allow_inf_nan: bool | None
|
|
max_digits: int | None
|
|
decimal_places: int | None
|
|
union_mode: Literal['smart', 'left_to_right'] | None
|
|
discriminator: str | types.Discriminator | None
|
|
json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None
|
|
frozen: bool | None
|
|
validate_default: bool | None
|
|
repr: bool
|
|
init: bool | None
|
|
init_var: bool | None
|
|
kw_only: bool | None
|
|
|
|
|
|
class _FieldInfoInputs(_FromFieldInfoInputs, total=False):
|
|
"""This class exists solely to add type checking for the `**kwargs` in `FieldInfo.__init__`."""
|
|
|
|
default: Any
|
|
|
|
|
|
class FieldInfo(_repr.Representation):
|
|
"""This class holds information about a field.
|
|
|
|
`FieldInfo` is used for any field definition regardless of whether the [`Field()`][pydantic.fields.Field]
|
|
function is explicitly used.
|
|
|
|
!!! warning
|
|
You generally shouldn't be creating `FieldInfo` directly, you'll only need to use it when accessing
|
|
[`BaseModel`][pydantic.main.BaseModel] `.model_fields` internals.
|
|
|
|
Attributes:
|
|
annotation: The type annotation of the field.
|
|
default: The default value of the field.
|
|
default_factory: The factory function used to construct the default for the field.
|
|
alias: The alias name of the field.
|
|
alias_priority: The priority of the field's alias.
|
|
validation_alias: The validation alias of the field.
|
|
serialization_alias: The serialization alias of the field.
|
|
title: The title of the field.
|
|
description: The description of the field.
|
|
examples: List of examples of the field.
|
|
exclude: Whether to exclude the field from the model serialization.
|
|
discriminator: Field name or Discriminator for discriminating the type in a tagged union.
|
|
json_schema_extra: A dict or callable to provide extra JSON schema properties.
|
|
frozen: Whether the field is frozen.
|
|
validate_default: Whether to validate the default value of the field.
|
|
repr: Whether to include the field in representation of the model.
|
|
init: Whether the field should be included in the constructor of the dataclass.
|
|
init_var: Whether the field should _only_ be included in the constructor of the dataclass, and not stored.
|
|
kw_only: Whether the field should be a keyword-only argument in the constructor of the dataclass.
|
|
metadata: List of metadata constraints.
|
|
"""
|
|
|
|
annotation: type[Any] | None
|
|
default: Any
|
|
default_factory: typing.Callable[[], Any] | None
|
|
alias: str | None
|
|
alias_priority: int | None
|
|
validation_alias: str | AliasPath | AliasChoices | None
|
|
serialization_alias: str | None
|
|
title: str | None
|
|
description: str | None
|
|
examples: list[Any] | None
|
|
exclude: bool | None
|
|
discriminator: str | types.Discriminator | None
|
|
json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None
|
|
frozen: bool | None
|
|
validate_default: bool | None
|
|
repr: bool
|
|
init: bool | None
|
|
init_var: bool | None
|
|
kw_only: bool | None
|
|
metadata: list[Any]
|
|
|
|
__slots__ = (
|
|
'annotation',
|
|
'default',
|
|
'default_factory',
|
|
'alias',
|
|
'alias_priority',
|
|
'validation_alias',
|
|
'serialization_alias',
|
|
'title',
|
|
'description',
|
|
'examples',
|
|
'exclude',
|
|
'discriminator',
|
|
'json_schema_extra',
|
|
'frozen',
|
|
'validate_default',
|
|
'repr',
|
|
'init',
|
|
'init_var',
|
|
'kw_only',
|
|
'metadata',
|
|
'_attributes_set',
|
|
)
|
|
|
|
# used to convert kwargs to metadata/constraints,
|
|
# None has a special meaning - these items are collected into a `PydanticGeneralMetadata`
|
|
metadata_lookup: ClassVar[dict[str, typing.Callable[[Any], Any] | None]] = {
|
|
'strict': types.Strict,
|
|
'gt': annotated_types.Gt,
|
|
'ge': annotated_types.Ge,
|
|
'lt': annotated_types.Lt,
|
|
'le': annotated_types.Le,
|
|
'multiple_of': annotated_types.MultipleOf,
|
|
'min_length': annotated_types.MinLen,
|
|
'max_length': annotated_types.MaxLen,
|
|
'pattern': None,
|
|
'allow_inf_nan': None,
|
|
'max_digits': None,
|
|
'decimal_places': None,
|
|
'union_mode': None,
|
|
}
|
|
|
|
def __init__(self, **kwargs: Unpack[_FieldInfoInputs]) -> None:
|
|
"""This class should generally not be initialized directly; instead, use the `pydantic.fields.Field` function
|
|
or one of the constructor classmethods.
|
|
|
|
See the signature of `pydantic.fields.Field` for more details about the expected arguments.
|
|
"""
|
|
self._attributes_set = {k: v for k, v in kwargs.items() if v is not _Unset}
|
|
kwargs = {k: _DefaultValues.get(k) if v is _Unset else v for k, v in kwargs.items()} # type: ignore
|
|
self.annotation, annotation_metadata = self._extract_metadata(kwargs.get('annotation'))
|
|
|
|
default = kwargs.pop('default', PydanticUndefined)
|
|
if default is Ellipsis:
|
|
self.default = PydanticUndefined
|
|
else:
|
|
self.default = default
|
|
|
|
self.default_factory = kwargs.pop('default_factory', None)
|
|
|
|
if self.default is not PydanticUndefined and self.default_factory is not None:
|
|
raise TypeError('cannot specify both default and default_factory')
|
|
|
|
self.title = kwargs.pop('title', None)
|
|
self.alias = kwargs.pop('alias', None)
|
|
self.validation_alias = kwargs.pop('validation_alias', None)
|
|
self.serialization_alias = kwargs.pop('serialization_alias', None)
|
|
alias_is_set = any(alias is not None for alias in (self.alias, self.validation_alias, self.serialization_alias))
|
|
self.alias_priority = kwargs.pop('alias_priority', None) or 2 if alias_is_set else None
|
|
self.description = kwargs.pop('description', None)
|
|
self.examples = kwargs.pop('examples', None)
|
|
self.exclude = kwargs.pop('exclude', None)
|
|
self.discriminator = kwargs.pop('discriminator', None)
|
|
self.repr = kwargs.pop('repr', True)
|
|
self.json_schema_extra = kwargs.pop('json_schema_extra', None)
|
|
self.validate_default = kwargs.pop('validate_default', None)
|
|
self.frozen = kwargs.pop('frozen', None)
|
|
# currently only used on dataclasses
|
|
self.init = kwargs.pop('init', None)
|
|
self.init_var = kwargs.pop('init_var', None)
|
|
self.kw_only = kwargs.pop('kw_only', None)
|
|
|
|
self.metadata = self._collect_metadata(kwargs) + annotation_metadata # type: ignore
|
|
|
|
@staticmethod
|
|
def from_field(default: Any = PydanticUndefined, **kwargs: Unpack[_FromFieldInfoInputs]) -> FieldInfo:
|
|
"""Create a new `FieldInfo` object with the `Field` function.
|
|
|
|
Args:
|
|
default: The default value for the field. Defaults to Undefined.
|
|
**kwargs: Additional arguments dictionary.
|
|
|
|
Raises:
|
|
TypeError: If 'annotation' is passed as a keyword argument.
|
|
|
|
Returns:
|
|
A new FieldInfo object with the given parameters.
|
|
|
|
Example:
|
|
This is how you can create a field with default value like this:
|
|
|
|
```python
|
|
import pydantic
|
|
|
|
class MyModel(pydantic.BaseModel):
|
|
foo: int = pydantic.Field(4)
|
|
```
|
|
"""
|
|
if 'annotation' in kwargs:
|
|
raise TypeError('"annotation" is not permitted as a Field keyword argument')
|
|
return FieldInfo(default=default, **kwargs)
|
|
|
|
@staticmethod
|
|
def from_annotation(annotation: type[Any]) -> FieldInfo:
|
|
"""Creates a `FieldInfo` instance from a bare annotation.
|
|
|
|
This function is used internally to create a `FieldInfo` from a bare annotation like this:
|
|
|
|
```python
|
|
import pydantic
|
|
|
|
class MyModel(pydantic.BaseModel):
|
|
foo: int # <-- like this
|
|
```
|
|
|
|
We also account for the case where the annotation can be an instance of `Annotated` and where
|
|
one of the (not first) arguments in `Annotated` is an instance of `FieldInfo`, e.g.:
|
|
|
|
```python
|
|
import annotated_types
|
|
from typing_extensions import Annotated
|
|
|
|
import pydantic
|
|
|
|
class MyModel(pydantic.BaseModel):
|
|
foo: Annotated[int, annotated_types.Gt(42)]
|
|
bar: Annotated[int, pydantic.Field(gt=42)]
|
|
```
|
|
|
|
Args:
|
|
annotation: An annotation object.
|
|
|
|
Returns:
|
|
An instance of the field metadata.
|
|
"""
|
|
final = False
|
|
if _typing_extra.is_finalvar(annotation):
|
|
final = True
|
|
if annotation is not typing_extensions.Final:
|
|
annotation = typing_extensions.get_args(annotation)[0]
|
|
|
|
if _typing_extra.is_annotated(annotation):
|
|
first_arg, *extra_args = typing_extensions.get_args(annotation)
|
|
if _typing_extra.is_finalvar(first_arg):
|
|
final = True
|
|
field_info_annotations = [a for a in extra_args if isinstance(a, FieldInfo)]
|
|
field_info = FieldInfo.merge_field_infos(*field_info_annotations, annotation=first_arg)
|
|
if field_info:
|
|
new_field_info = copy(field_info)
|
|
new_field_info.annotation = first_arg
|
|
new_field_info.frozen = final or field_info.frozen
|
|
metadata: list[Any] = []
|
|
for a in extra_args:
|
|
if not isinstance(a, FieldInfo):
|
|
metadata.append(a)
|
|
else:
|
|
metadata.extend(a.metadata)
|
|
new_field_info.metadata = metadata
|
|
return new_field_info
|
|
|
|
return FieldInfo(annotation=annotation, frozen=final or None)
|
|
|
|
@staticmethod
|
|
def from_annotated_attribute(annotation: type[Any], default: Any) -> FieldInfo:
|
|
"""Create `FieldInfo` from an annotation with a default value.
|
|
|
|
This is used in cases like the following:
|
|
|
|
```python
|
|
import annotated_types
|
|
from typing_extensions import Annotated
|
|
|
|
import pydantic
|
|
|
|
class MyModel(pydantic.BaseModel):
|
|
foo: int = 4 # <-- like this
|
|
bar: Annotated[int, annotated_types.Gt(4)] = 4 # <-- or this
|
|
spam: Annotated[int, pydantic.Field(gt=4)] = 4 # <-- or this
|
|
```
|
|
|
|
Args:
|
|
annotation: The type annotation of the field.
|
|
default: The default value of the field.
|
|
|
|
Returns:
|
|
A field object with the passed values.
|
|
"""
|
|
if annotation is default:
|
|
raise PydanticUserError(
|
|
'Error when building FieldInfo from annotated attribute. '
|
|
"Make sure you don't have any field name clashing with a type annotation ",
|
|
code='unevaluable-type-annotation',
|
|
)
|
|
|
|
final = False
|
|
if _typing_extra.is_finalvar(annotation):
|
|
final = True
|
|
if annotation is not typing_extensions.Final:
|
|
annotation = typing_extensions.get_args(annotation)[0]
|
|
|
|
if isinstance(default, FieldInfo):
|
|
default.annotation, annotation_metadata = FieldInfo._extract_metadata(annotation)
|
|
default.metadata += annotation_metadata
|
|
default = default.merge_field_infos(
|
|
*[x for x in annotation_metadata if isinstance(x, FieldInfo)], default, annotation=default.annotation
|
|
)
|
|
default.frozen = final or default.frozen
|
|
return default
|
|
elif isinstance(default, dataclasses.Field):
|
|
init_var = False
|
|
if annotation is dataclasses.InitVar:
|
|
init_var = True
|
|
annotation = Any
|
|
elif isinstance(annotation, dataclasses.InitVar):
|
|
init_var = True
|
|
annotation = annotation.type
|
|
pydantic_field = FieldInfo._from_dataclass_field(default)
|
|
pydantic_field.annotation, annotation_metadata = FieldInfo._extract_metadata(annotation)
|
|
pydantic_field.metadata += annotation_metadata
|
|
pydantic_field = pydantic_field.merge_field_infos(
|
|
*[x for x in annotation_metadata if isinstance(x, FieldInfo)],
|
|
pydantic_field,
|
|
annotation=pydantic_field.annotation,
|
|
)
|
|
pydantic_field.frozen = final or pydantic_field.frozen
|
|
pydantic_field.init_var = init_var
|
|
pydantic_field.init = getattr(default, 'init', None)
|
|
pydantic_field.kw_only = getattr(default, 'kw_only', None)
|
|
return pydantic_field
|
|
else:
|
|
if _typing_extra.is_annotated(annotation):
|
|
first_arg, *extra_args = typing_extensions.get_args(annotation)
|
|
field_infos = [a for a in extra_args if isinstance(a, FieldInfo)]
|
|
field_info = FieldInfo.merge_field_infos(*field_infos, annotation=first_arg, default=default)
|
|
metadata: list[Any] = []
|
|
for a in extra_args:
|
|
if not isinstance(a, FieldInfo):
|
|
metadata.append(a)
|
|
else:
|
|
metadata.extend(a.metadata)
|
|
field_info.metadata = metadata
|
|
return field_info
|
|
|
|
return FieldInfo(annotation=annotation, default=default, frozen=final or None)
|
|
|
|
@staticmethod
|
|
def merge_field_infos(*field_infos: FieldInfo, **overrides: Any) -> FieldInfo:
|
|
"""Merge `FieldInfo` instances keeping only explicitly set attributes.
|
|
|
|
Later `FieldInfo` instances override earlier ones.
|
|
|
|
Returns:
|
|
FieldInfo: A merged FieldInfo instance.
|
|
"""
|
|
flattened_field_infos: list[FieldInfo] = []
|
|
for field_info in field_infos:
|
|
flattened_field_infos.extend(x for x in field_info.metadata if isinstance(x, FieldInfo))
|
|
flattened_field_infos.append(field_info)
|
|
field_infos = tuple(flattened_field_infos)
|
|
if len(field_infos) == 1:
|
|
# No merging necessary, but we still need to make a copy and apply the overrides
|
|
field_info = copy(field_infos[0])
|
|
field_info._attributes_set.update(overrides)
|
|
for k, v in overrides.items():
|
|
setattr(field_info, k, v)
|
|
return field_info # type: ignore
|
|
|
|
new_kwargs: dict[str, Any] = {}
|
|
metadata = {}
|
|
for field_info in field_infos:
|
|
new_kwargs.update(field_info._attributes_set)
|
|
for x in field_info.metadata:
|
|
if not isinstance(x, FieldInfo):
|
|
metadata[type(x)] = x
|
|
new_kwargs.update(overrides)
|
|
field_info = FieldInfo(**new_kwargs)
|
|
field_info.metadata = list(metadata.values())
|
|
return field_info
|
|
|
|
@staticmethod
|
|
def _from_dataclass_field(dc_field: DataclassField[Any]) -> FieldInfo:
|
|
"""Return a new `FieldInfo` instance from a `dataclasses.Field` instance.
|
|
|
|
Args:
|
|
dc_field: The `dataclasses.Field` instance to convert.
|
|
|
|
Returns:
|
|
The corresponding `FieldInfo` instance.
|
|
|
|
Raises:
|
|
TypeError: If any of the `FieldInfo` kwargs does not match the `dataclass.Field` kwargs.
|
|
"""
|
|
default = dc_field.default
|
|
if default is dataclasses.MISSING:
|
|
default = PydanticUndefined
|
|
|
|
if dc_field.default_factory is dataclasses.MISSING:
|
|
default_factory: typing.Callable[[], Any] | None = None
|
|
else:
|
|
default_factory = dc_field.default_factory
|
|
|
|
# use the `Field` function so in correct kwargs raise the correct `TypeError`
|
|
dc_field_metadata = {k: v for k, v in dc_field.metadata.items() if k in _FIELD_ARG_NAMES}
|
|
return Field(default=default, default_factory=default_factory, repr=dc_field.repr, **dc_field_metadata)
|
|
|
|
@staticmethod
|
|
def _extract_metadata(annotation: type[Any] | None) -> tuple[type[Any] | None, list[Any]]:
|
|
"""Tries to extract metadata/constraints from an annotation if it uses `Annotated`.
|
|
|
|
Args:
|
|
annotation: The type hint annotation for which metadata has to be extracted.
|
|
|
|
Returns:
|
|
A tuple containing the extracted metadata type and the list of extra arguments.
|
|
"""
|
|
if annotation is not None:
|
|
if _typing_extra.is_annotated(annotation):
|
|
first_arg, *extra_args = typing_extensions.get_args(annotation)
|
|
return first_arg, list(extra_args)
|
|
|
|
return annotation, []
|
|
|
|
@staticmethod
|
|
def _collect_metadata(kwargs: dict[str, Any]) -> list[Any]:
|
|
"""Collect annotations from kwargs.
|
|
|
|
Args:
|
|
kwargs: Keyword arguments passed to the function.
|
|
|
|
Returns:
|
|
A list of metadata objects - a combination of `annotated_types.BaseMetadata` and
|
|
`PydanticMetadata`.
|
|
"""
|
|
metadata: list[Any] = []
|
|
general_metadata = {}
|
|
for key, value in list(kwargs.items()):
|
|
try:
|
|
marker = FieldInfo.metadata_lookup[key]
|
|
except KeyError:
|
|
continue
|
|
|
|
del kwargs[key]
|
|
if value is not None:
|
|
if marker is None:
|
|
general_metadata[key] = value
|
|
else:
|
|
metadata.append(marker(value))
|
|
if general_metadata:
|
|
metadata.append(_fields.pydantic_general_metadata(**general_metadata))
|
|
return metadata
|
|
|
|
def get_default(self, *, call_default_factory: bool = False) -> Any:
|
|
"""Get the default value.
|
|
|
|
We expose an option for whether to call the default_factory (if present), as calling it may
|
|
result in side effects that we want to avoid. However, there are times when it really should
|
|
be called (namely, when instantiating a model via `model_construct`).
|
|
|
|
Args:
|
|
call_default_factory: Whether to call the default_factory or not. Defaults to `False`.
|
|
|
|
Returns:
|
|
The default value, calling the default factory if requested or `None` if not set.
|
|
"""
|
|
if self.default_factory is None:
|
|
return _utils.smart_deepcopy(self.default)
|
|
elif call_default_factory:
|
|
return self.default_factory()
|
|
else:
|
|
return None
|
|
|
|
def is_required(self) -> bool:
|
|
"""Check if the field is required (i.e., does not have a default value or factory).
|
|
|
|
Returns:
|
|
`True` if the field is required, `False` otherwise.
|
|
"""
|
|
return self.default is PydanticUndefined and self.default_factory is None
|
|
|
|
def rebuild_annotation(self) -> Any:
|
|
"""Attempts to rebuild the original annotation for use in function signatures.
|
|
|
|
If metadata is present, it adds it to the original annotation using
|
|
`Annotated`. Otherwise, it returns the original annotation as-is.
|
|
|
|
Note that because the metadata has been flattened, the original annotation
|
|
may not be reconstructed exactly as originally provided, e.g. if the original
|
|
type had unrecognized annotations, or was annotated with a call to `pydantic.Field`.
|
|
|
|
Returns:
|
|
The rebuilt annotation.
|
|
"""
|
|
if not self.metadata:
|
|
return self.annotation
|
|
else:
|
|
# Annotated arguments must be a tuple
|
|
return typing_extensions.Annotated[(self.annotation, *self.metadata)] # type: ignore
|
|
|
|
def apply_typevars_map(self, typevars_map: dict[Any, Any] | None, types_namespace: dict[str, Any] | None) -> None:
|
|
"""Apply a `typevars_map` to the annotation.
|
|
|
|
This method is used when analyzing parametrized generic types to replace typevars with their concrete types.
|
|
|
|
This method applies the `typevars_map` to the annotation in place.
|
|
|
|
Args:
|
|
typevars_map: A dictionary mapping type variables to their concrete types.
|
|
types_namespace (dict | None): A dictionary containing related types to the annotated type.
|
|
|
|
See Also:
|
|
pydantic._internal._generics.replace_types is used for replacing the typevars with
|
|
their concrete types.
|
|
"""
|
|
annotation = _typing_extra.eval_type_lenient(self.annotation, types_namespace)
|
|
self.annotation = _generics.replace_types(annotation, typevars_map)
|
|
|
|
def __repr_args__(self) -> ReprArgs:
|
|
yield 'annotation', _repr.PlainRepr(_repr.display_as_type(self.annotation))
|
|
yield 'required', self.is_required()
|
|
|
|
for s in self.__slots__:
|
|
if s == '_attributes_set':
|
|
continue
|
|
if s == 'annotation':
|
|
continue
|
|
elif s == 'metadata' and not self.metadata:
|
|
continue
|
|
elif s == 'repr' and self.repr is True:
|
|
continue
|
|
if s == 'frozen' and self.frozen is False:
|
|
continue
|
|
if s == 'validation_alias' and self.validation_alias == self.alias:
|
|
continue
|
|
if s == 'serialization_alias' and self.serialization_alias == self.alias:
|
|
continue
|
|
if s == 'default_factory' and self.default_factory is not None:
|
|
yield 'default_factory', _repr.PlainRepr(_repr.display_as_type(self.default_factory))
|
|
else:
|
|
value = getattr(self, s)
|
|
if value is not None and value is not PydanticUndefined:
|
|
yield s, value
|
|
|
|
|
|
class _EmptyKwargs(typing_extensions.TypedDict):
|
|
"""This class exists solely to ensure that type checking warns about passing `**extra` in `Field`."""
|
|
|
|
|
|
_DefaultValues = dict(
|
|
default=...,
|
|
default_factory=None,
|
|
alias=None,
|
|
alias_priority=None,
|
|
validation_alias=None,
|
|
serialization_alias=None,
|
|
title=None,
|
|
description=None,
|
|
examples=None,
|
|
exclude=None,
|
|
discriminator=None,
|
|
json_schema_extra=None,
|
|
frozen=None,
|
|
validate_default=None,
|
|
repr=True,
|
|
init=None,
|
|
init_var=None,
|
|
kw_only=None,
|
|
pattern=None,
|
|
strict=None,
|
|
gt=None,
|
|
ge=None,
|
|
lt=None,
|
|
le=None,
|
|
multiple_of=None,
|
|
allow_inf_nan=None,
|
|
max_digits=None,
|
|
decimal_places=None,
|
|
min_length=None,
|
|
max_length=None,
|
|
)
|
|
|
|
|
|
def Field( # noqa: C901
|
|
default: Any = PydanticUndefined,
|
|
*,
|
|
default_factory: typing.Callable[[], Any] | None = _Unset,
|
|
alias: str | None = _Unset,
|
|
alias_priority: int | None = _Unset,
|
|
validation_alias: str | AliasPath | AliasChoices | None = _Unset,
|
|
serialization_alias: str | None = _Unset,
|
|
title: str | None = _Unset,
|
|
description: str | None = _Unset,
|
|
examples: list[Any] | None = _Unset,
|
|
exclude: bool | None = _Unset,
|
|
discriminator: str | types.Discriminator | None = _Unset,
|
|
json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None = _Unset,
|
|
frozen: bool | None = _Unset,
|
|
validate_default: bool | None = _Unset,
|
|
repr: bool = _Unset,
|
|
init: bool | None = _Unset,
|
|
init_var: bool | None = _Unset,
|
|
kw_only: bool | None = _Unset,
|
|
pattern: str | None = _Unset,
|
|
strict: bool | None = _Unset,
|
|
gt: float | None = _Unset,
|
|
ge: float | None = _Unset,
|
|
lt: float | None = _Unset,
|
|
le: float | None = _Unset,
|
|
multiple_of: float | None = _Unset,
|
|
allow_inf_nan: bool | None = _Unset,
|
|
max_digits: int | None = _Unset,
|
|
decimal_places: int | None = _Unset,
|
|
min_length: int | None = _Unset,
|
|
max_length: int | None = _Unset,
|
|
union_mode: Literal['smart', 'left_to_right'] = _Unset,
|
|
**extra: Unpack[_EmptyKwargs],
|
|
) -> Any:
|
|
"""Usage docs: https://docs.pydantic.dev/2.6/concepts/fields
|
|
|
|
Create a field for objects that can be configured.
|
|
|
|
Used to provide extra information about a field, either for the model schema or complex validation. Some arguments
|
|
apply only to number fields (`int`, `float`, `Decimal`) and some apply only to `str`.
|
|
|
|
Note:
|
|
- Any `_Unset` objects will be replaced by the corresponding value defined in the `_DefaultValues` dictionary. If a key for the `_Unset` object is not found in the `_DefaultValues` dictionary, it will default to `None`
|
|
|
|
Args:
|
|
default: Default value if the field is not set.
|
|
default_factory: A callable to generate the default value, such as :func:`~datetime.utcnow`.
|
|
alias: The name to use for the attribute when validating or serializing by alias.
|
|
This is often used for things like converting between snake and camel case.
|
|
alias_priority: Priority of the alias. This affects whether an alias generator is used.
|
|
validation_alias: Like `alias`, but only affects validation, not serialization.
|
|
serialization_alias: Like `alias`, but only affects serialization, not validation.
|
|
title: Human-readable title.
|
|
description: Human-readable description.
|
|
examples: Example values for this field.
|
|
exclude: Whether to exclude the field from the model serialization.
|
|
discriminator: Field name or Discriminator for discriminating the type in a tagged union.
|
|
json_schema_extra: A dict or callable to provide extra JSON schema properties.
|
|
frozen: Whether the field is frozen. If true, attempts to change the value on an instance will raise an error.
|
|
validate_default: If `True`, apply validation to the default value every time you create an instance.
|
|
Otherwise, for performance reasons, the default value of the field is trusted and not validated.
|
|
repr: A boolean indicating whether to include the field in the `__repr__` output.
|
|
init: Whether the field should be included in the constructor of the dataclass.
|
|
(Only applies to dataclasses.)
|
|
init_var: Whether the field should _only_ be included in the constructor of the dataclass.
|
|
(Only applies to dataclasses.)
|
|
kw_only: Whether the field should be a keyword-only argument in the constructor of the dataclass.
|
|
(Only applies to dataclasses.)
|
|
strict: If `True`, strict validation is applied to the field.
|
|
See [Strict Mode](../concepts/strict_mode.md) for details.
|
|
gt: Greater than. If set, value must be greater than this. Only applicable to numbers.
|
|
ge: Greater than or equal. If set, value must be greater than or equal to this. Only applicable to numbers.
|
|
lt: Less than. If set, value must be less than this. Only applicable to numbers.
|
|
le: Less than or equal. If set, value must be less than or equal to this. Only applicable to numbers.
|
|
multiple_of: Value must be a multiple of this. Only applicable to numbers.
|
|
min_length: Minimum length for strings.
|
|
max_length: Maximum length for strings.
|
|
pattern: Pattern for strings (a regular expression).
|
|
allow_inf_nan: Allow `inf`, `-inf`, `nan`. Only applicable to numbers.
|
|
max_digits: Maximum number of allow digits for strings.
|
|
decimal_places: Maximum number of decimal places allowed for numbers.
|
|
union_mode: The strategy to apply when validating a union. Can be `smart` (the default), or `left_to_right`.
|
|
See [Union Mode](standard_library_types.md#union-mode) for details.
|
|
extra: (Deprecated) Extra fields that will be included in the JSON schema.
|
|
|
|
!!! warning Deprecated
|
|
The `extra` kwargs is deprecated. Use `json_schema_extra` instead.
|
|
|
|
Returns:
|
|
A new [`FieldInfo`][pydantic.fields.FieldInfo]. The return annotation is `Any` so `Field` can be used on
|
|
type-annotated fields without causing a type error.
|
|
"""
|
|
# Check deprecated and removed params from V1. This logic should eventually be removed.
|
|
const = extra.pop('const', None) # type: ignore
|
|
if const is not None:
|
|
raise PydanticUserError('`const` is removed, use `Literal` instead', code='removed-kwargs')
|
|
|
|
min_items = extra.pop('min_items', None) # type: ignore
|
|
if min_items is not None:
|
|
warn('`min_items` is deprecated and will be removed, use `min_length` instead', DeprecationWarning)
|
|
if min_length in (None, _Unset):
|
|
min_length = min_items # type: ignore
|
|
|
|
max_items = extra.pop('max_items', None) # type: ignore
|
|
if max_items is not None:
|
|
warn('`max_items` is deprecated and will be removed, use `max_length` instead', DeprecationWarning)
|
|
if max_length in (None, _Unset):
|
|
max_length = max_items # type: ignore
|
|
|
|
unique_items = extra.pop('unique_items', None) # type: ignore
|
|
if unique_items is not None:
|
|
raise PydanticUserError(
|
|
(
|
|
'`unique_items` is removed, use `Set` instead'
|
|
'(this feature is discussed in https://github.com/pydantic/pydantic-core/issues/296)'
|
|
),
|
|
code='removed-kwargs',
|
|
)
|
|
|
|
allow_mutation = extra.pop('allow_mutation', None) # type: ignore
|
|
if allow_mutation is not None:
|
|
warn('`allow_mutation` is deprecated and will be removed. use `frozen` instead', DeprecationWarning)
|
|
if allow_mutation is False:
|
|
frozen = True
|
|
|
|
regex = extra.pop('regex', None) # type: ignore
|
|
if regex is not None:
|
|
raise PydanticUserError('`regex` is removed. use `pattern` instead', code='removed-kwargs')
|
|
|
|
if extra:
|
|
warn(
|
|
'Using extra keyword arguments on `Field` is deprecated and will be removed.'
|
|
' Use `json_schema_extra` instead.'
|
|
f' (Extra keys: {", ".join(k.__repr__() for k in extra.keys())})',
|
|
DeprecationWarning,
|
|
)
|
|
if not json_schema_extra or json_schema_extra is _Unset:
|
|
json_schema_extra = extra # type: ignore
|
|
|
|
if (
|
|
validation_alias
|
|
and validation_alias is not _Unset
|
|
and not isinstance(validation_alias, (str, AliasChoices, AliasPath))
|
|
):
|
|
raise TypeError('Invalid `validation_alias` type. it should be `str`, `AliasChoices`, or `AliasPath`')
|
|
|
|
if serialization_alias in (_Unset, None) and isinstance(alias, str):
|
|
serialization_alias = alias
|
|
|
|
if validation_alias in (_Unset, None):
|
|
validation_alias = alias
|
|
|
|
include = extra.pop('include', None) # type: ignore
|
|
if include is not None:
|
|
warn('`include` is deprecated and does nothing. It will be removed, use `exclude` instead', DeprecationWarning)
|
|
|
|
return FieldInfo.from_field(
|
|
default,
|
|
default_factory=default_factory,
|
|
alias=alias,
|
|
alias_priority=alias_priority,
|
|
validation_alias=validation_alias,
|
|
serialization_alias=serialization_alias,
|
|
title=title,
|
|
description=description,
|
|
examples=examples,
|
|
exclude=exclude,
|
|
discriminator=discriminator,
|
|
json_schema_extra=json_schema_extra,
|
|
frozen=frozen,
|
|
pattern=pattern,
|
|
validate_default=validate_default,
|
|
repr=repr,
|
|
init=init,
|
|
init_var=init_var,
|
|
kw_only=kw_only,
|
|
strict=strict,
|
|
gt=gt,
|
|
ge=ge,
|
|
lt=lt,
|
|
le=le,
|
|
multiple_of=multiple_of,
|
|
min_length=min_length,
|
|
max_length=max_length,
|
|
allow_inf_nan=allow_inf_nan,
|
|
max_digits=max_digits,
|
|
decimal_places=decimal_places,
|
|
union_mode=union_mode,
|
|
)
|
|
|
|
|
|
_FIELD_ARG_NAMES = set(inspect.signature(Field).parameters)
|
|
_FIELD_ARG_NAMES.remove('extra') # do not include the varkwargs parameter
|
|
|
|
|
|
class ModelPrivateAttr(_repr.Representation):
|
|
"""A descriptor for private attributes in class models.
|
|
|
|
!!! warning
|
|
You generally shouldn't be creating `ModelPrivateAttr` instances directly, instead use
|
|
`pydantic.fields.PrivateAttr`. (This is similar to `FieldInfo` vs. `Field`.)
|
|
|
|
Attributes:
|
|
default: The default value of the attribute if not provided.
|
|
default_factory: A callable function that generates the default value of the
|
|
attribute if not provided.
|
|
"""
|
|
|
|
__slots__ = 'default', 'default_factory'
|
|
|
|
def __init__(
|
|
self, default: Any = PydanticUndefined, *, default_factory: typing.Callable[[], Any] | None = None
|
|
) -> None:
|
|
self.default = default
|
|
self.default_factory = default_factory
|
|
|
|
if not typing.TYPE_CHECKING:
|
|
# We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access
|
|
|
|
def __getattr__(self, item: str) -> Any:
|
|
"""This function improves compatibility with custom descriptors by ensuring delegation happens
|
|
as expected when the default value of a private attribute is a descriptor.
|
|
"""
|
|
if item in {'__get__', '__set__', '__delete__'}:
|
|
if hasattr(self.default, item):
|
|
return getattr(self.default, item)
|
|
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}')
|
|
|
|
def __set_name__(self, cls: type[Any], name: str) -> None:
|
|
"""Preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487."""
|
|
if self.default is PydanticUndefined:
|
|
return
|
|
if not hasattr(self.default, '__set_name__'):
|
|
return
|
|
set_name = self.default.__set_name__
|
|
if callable(set_name):
|
|
set_name(cls, name)
|
|
|
|
def get_default(self) -> Any:
|
|
"""Retrieve the default value of the object.
|
|
|
|
If `self.default_factory` is `None`, the method will return a deep copy of the `self.default` object.
|
|
|
|
If `self.default_factory` is not `None`, it will call `self.default_factory` and return the value returned.
|
|
|
|
Returns:
|
|
The default value of the object.
|
|
"""
|
|
return _utils.smart_deepcopy(self.default) if self.default_factory is None else self.default_factory()
|
|
|
|
def __eq__(self, other: Any) -> bool:
|
|
return isinstance(other, self.__class__) and (self.default, self.default_factory) == (
|
|
other.default,
|
|
other.default_factory,
|
|
)
|
|
|
|
|
|
def PrivateAttr(
|
|
default: Any = PydanticUndefined,
|
|
*,
|
|
default_factory: typing.Callable[[], Any] | None = None,
|
|
) -> Any:
|
|
"""Usage docs: https://docs.pydantic.dev/2.6/concepts/models/#private-model-attributes
|
|
|
|
Indicates that an attribute is intended for private use and not handled during normal validation/serialization.
|
|
|
|
Private attributes are not validated by Pydantic, so it's up to you to ensure they are used in a type-safe manner.
|
|
|
|
Private attributes are stored in `__private_attributes__` on the model.
|
|
|
|
Args:
|
|
default: The attribute's default value. Defaults to Undefined.
|
|
default_factory: Callable that will be
|
|
called when a default value is needed for this attribute.
|
|
If both `default` and `default_factory` are set, an error will be raised.
|
|
|
|
Returns:
|
|
An instance of [`ModelPrivateAttr`][pydantic.fields.ModelPrivateAttr] class.
|
|
|
|
Raises:
|
|
ValueError: If both `default` and `default_factory` are set.
|
|
"""
|
|
if default is not PydanticUndefined and default_factory is not None:
|
|
raise TypeError('cannot specify both default and default_factory')
|
|
|
|
return ModelPrivateAttr(
|
|
default,
|
|
default_factory=default_factory,
|
|
)
|
|
|
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true)
|
|
class ComputedFieldInfo:
|
|
"""A container for data from `@computed_field` so that we can access it while building the pydantic-core schema.
|
|
|
|
Attributes:
|
|
decorator_repr: A class variable representing the decorator string, '@computed_field'.
|
|
wrapped_property: The wrapped computed field property.
|
|
return_type: The type of the computed field property's return value.
|
|
alias: The alias of the property to be used during serialization.
|
|
alias_priority: The priority of the alias. This affects whether an alias generator is used.
|
|
title: Title of the computed field to include in the serialization JSON schema.
|
|
description: Description of the computed field to include in the serialization JSON schema.
|
|
examples: Example values of the computed field to include in the serialization JSON schema.
|
|
json_schema_extra: A dict or callable to provide extra JSON schema properties.
|
|
repr: A boolean indicating whether to include the field in the __repr__ output.
|
|
"""
|
|
|
|
decorator_repr: ClassVar[str] = '@computed_field'
|
|
wrapped_property: property
|
|
return_type: Any
|
|
alias: str | None
|
|
alias_priority: int | None
|
|
title: str | None
|
|
description: str | None
|
|
examples: list[Any] | None
|
|
json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None
|
|
repr: bool
|
|
|
|
|
|
def _wrapped_property_is_private(property_: cached_property | property) -> bool: # type: ignore
|
|
"""Returns true if provided property is private, False otherwise."""
|
|
wrapped_name: str = ''
|
|
|
|
if isinstance(property_, property):
|
|
wrapped_name = getattr(property_.fget, '__name__', '')
|
|
elif isinstance(property_, cached_property): # type: ignore
|
|
wrapped_name = getattr(property_.func, '__name__', '') # type: ignore
|
|
|
|
return wrapped_name.startswith('_') and not wrapped_name.startswith('__')
|
|
|
|
|
|
# this should really be `property[T], cached_property[T]` but property is not generic unlike cached_property
|
|
# See https://github.com/python/typing/issues/985 and linked issues
|
|
PropertyT = typing.TypeVar('PropertyT')
|
|
|
|
|
|
@typing.overload
|
|
def computed_field(
|
|
*,
|
|
alias: str | None = None,
|
|
alias_priority: int | None = None,
|
|
title: str | None = None,
|
|
description: str | None = None,
|
|
examples: list[Any] | None = None,
|
|
json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None = None,
|
|
repr: bool = True,
|
|
return_type: Any = PydanticUndefined,
|
|
) -> typing.Callable[[PropertyT], PropertyT]:
|
|
...
|
|
|
|
|
|
@typing.overload
|
|
def computed_field(__func: PropertyT) -> PropertyT:
|
|
...
|
|
|
|
|
|
def computed_field(
|
|
__f: PropertyT | None = None,
|
|
*,
|
|
alias: str | None = None,
|
|
alias_priority: int | None = None,
|
|
title: str | None = None,
|
|
description: str | None = None,
|
|
examples: list[Any] | None = None,
|
|
json_schema_extra: JsonDict | typing.Callable[[JsonDict], None] | None = None,
|
|
repr: bool | None = None,
|
|
return_type: Any = PydanticUndefined,
|
|
) -> PropertyT | typing.Callable[[PropertyT], PropertyT]:
|
|
"""Usage docs: https://docs.pydantic.dev/2.6/concepts/fields#the-computed_field-decorator
|
|
|
|
Decorator to include `property` and `cached_property` when serializing models or dataclasses.
|
|
|
|
This is useful for fields that are computed from other fields, or for fields that are expensive to compute and should be cached.
|
|
|
|
```py
|
|
from pydantic import BaseModel, computed_field
|
|
|
|
class Rectangle(BaseModel):
|
|
width: int
|
|
length: int
|
|
|
|
@computed_field
|
|
@property
|
|
def area(self) -> int:
|
|
return self.width * self.length
|
|
|
|
print(Rectangle(width=3, length=2).model_dump())
|
|
#> {'width': 3, 'length': 2, 'area': 6}
|
|
```
|
|
|
|
If applied to functions not yet decorated with `@property` or `@cached_property`, the function is
|
|
automatically wrapped with `property`. Although this is more concise, you will lose IntelliSense in your IDE,
|
|
and confuse static type checkers, thus explicit use of `@property` is recommended.
|
|
|
|
!!! warning "Mypy Warning"
|
|
Even with the `@property` or `@cached_property` applied to your function before `@computed_field`,
|
|
mypy may throw a `Decorated property not supported` error.
|
|
See [mypy issue #1362](https://github.com/python/mypy/issues/1362), for more information.
|
|
To avoid this error message, add `# type: ignore[misc]` to the `@computed_field` line.
|
|
|
|
[pyright](https://github.com/microsoft/pyright) supports `@computed_field` without error.
|
|
|
|
```py
|
|
import random
|
|
|
|
from pydantic import BaseModel, computed_field
|
|
|
|
class Square(BaseModel):
|
|
width: float
|
|
|
|
@computed_field
|
|
def area(self) -> float: # converted to a `property` by `computed_field`
|
|
return round(self.width**2, 2)
|
|
|
|
@area.setter
|
|
def area(self, new_area: float) -> None:
|
|
self.width = new_area**0.5
|
|
|
|
@computed_field(alias='the magic number', repr=False)
|
|
def random_number(self) -> int:
|
|
return random.randint(0, 1_000)
|
|
|
|
square = Square(width=1.3)
|
|
|
|
# `random_number` does not appear in representation
|
|
print(repr(square))
|
|
#> Square(width=1.3, area=1.69)
|
|
|
|
print(square.random_number)
|
|
#> 3
|
|
|
|
square.area = 4
|
|
|
|
print(square.model_dump_json(by_alias=True))
|
|
#> {"width":2.0,"area":4.0,"the magic number":3}
|
|
```
|
|
|
|
!!! warning "Overriding with `computed_field`"
|
|
You can't override a field from a parent class with a `computed_field` in the child class.
|
|
`mypy` complains about this behavior if allowed, and `dataclasses` doesn't allow this pattern either.
|
|
See the example below:
|
|
|
|
```py
|
|
from pydantic import BaseModel, computed_field
|
|
|
|
class Parent(BaseModel):
|
|
a: str
|
|
|
|
try:
|
|
|
|
class Child(Parent):
|
|
@computed_field
|
|
@property
|
|
def a(self) -> str:
|
|
return 'new a'
|
|
|
|
except ValueError as e:
|
|
print(repr(e))
|
|
#> ValueError("you can't override a field with a computed field")
|
|
```
|
|
|
|
Private properties decorated with `@computed_field` have `repr=False` by default.
|
|
|
|
```py
|
|
from functools import cached_property
|
|
|
|
from pydantic import BaseModel, computed_field
|
|
|
|
class Model(BaseModel):
|
|
foo: int
|
|
|
|
@computed_field
|
|
@cached_property
|
|
def _private_cached_property(self) -> int:
|
|
return -self.foo
|
|
|
|
@computed_field
|
|
@property
|
|
def _private_property(self) -> int:
|
|
return -self.foo
|
|
|
|
m = Model(foo=1)
|
|
print(repr(m))
|
|
#> M(foo=1)
|
|
```
|
|
|
|
Args:
|
|
__f: the function to wrap.
|
|
alias: alias to use when serializing this computed field, only used when `by_alias=True`
|
|
alias_priority: priority of the alias. This affects whether an alias generator is used
|
|
title: Title to use when including this computed field in JSON Schema
|
|
description: Description to use when including this computed field in JSON Schema, defaults to the function's
|
|
docstring
|
|
examples: Example values to use when including this computed field in JSON Schema
|
|
json_schema_extra: A dict or callable to provide extra JSON schema properties.
|
|
repr: whether to include this computed field in model repr.
|
|
Default is `False` for private properties and `True` for public properties.
|
|
return_type: optional return for serialization logic to expect when serializing to JSON, if included
|
|
this must be correct, otherwise a `TypeError` is raised.
|
|
If you don't include a return type Any is used, which does runtime introspection to handle arbitrary
|
|
objects.
|
|
|
|
Returns:
|
|
A proxy wrapper for the property.
|
|
"""
|
|
|
|
def dec(f: Any) -> Any:
|
|
nonlocal description, return_type, alias_priority
|
|
unwrapped = _decorators.unwrap_wrapped_function(f)
|
|
if description is None and unwrapped.__doc__:
|
|
description = inspect.cleandoc(unwrapped.__doc__)
|
|
|
|
# if the function isn't already decorated with `@property` (or another descriptor), then we wrap it now
|
|
f = _decorators.ensure_property(f)
|
|
alias_priority = (alias_priority or 2) if alias is not None else None
|
|
|
|
if repr is None:
|
|
repr_: bool = False if _wrapped_property_is_private(property_=f) else True
|
|
else:
|
|
repr_ = repr
|
|
|
|
dec_info = ComputedFieldInfo(
|
|
f, return_type, alias, alias_priority, title, description, examples, json_schema_extra, repr_
|
|
)
|
|
return _decorators.PydanticDescriptorProxy(f, dec_info)
|
|
|
|
if __f is None:
|
|
return dec
|
|
else:
|
|
return dec(__f)
|