mirror of
https://github.com/clinton-hall/nzbToMedia.git
synced 2025-01-09 04:23:16 -08:00
2334 lines
72 KiB
Python
2334 lines
72 KiB
Python
from __future__ import print_function
|
|
|
|
from collections import Counter, defaultdict, deque
|
|
from functools import partial, wraps
|
|
from heapq import merge
|
|
from itertools import (
|
|
chain,
|
|
compress,
|
|
count,
|
|
cycle,
|
|
dropwhile,
|
|
groupby,
|
|
islice,
|
|
repeat,
|
|
starmap,
|
|
takewhile,
|
|
tee
|
|
)
|
|
from operator import itemgetter, lt, gt, sub
|
|
from sys import maxsize, version_info
|
|
try:
|
|
from collections.abc import Sequence
|
|
except ImportError:
|
|
from collections import Sequence
|
|
|
|
from six import binary_type, string_types, text_type
|
|
from six.moves import filter, map, range, zip, zip_longest
|
|
|
|
from .recipes import consume, flatten, take
|
|
|
|
__all__ = [
|
|
'adjacent',
|
|
'always_iterable',
|
|
'always_reversible',
|
|
'bucket',
|
|
'chunked',
|
|
'circular_shifts',
|
|
'collapse',
|
|
'collate',
|
|
'consecutive_groups',
|
|
'consumer',
|
|
'count_cycle',
|
|
'difference',
|
|
'distinct_permutations',
|
|
'distribute',
|
|
'divide',
|
|
'exactly_n',
|
|
'first',
|
|
'groupby_transform',
|
|
'ilen',
|
|
'interleave_longest',
|
|
'interleave',
|
|
'intersperse',
|
|
'islice_extended',
|
|
'iterate',
|
|
'last',
|
|
'locate',
|
|
'lstrip',
|
|
'make_decorator',
|
|
'map_reduce',
|
|
'numeric_range',
|
|
'one',
|
|
'padded',
|
|
'peekable',
|
|
'replace',
|
|
'rlocate',
|
|
'rstrip',
|
|
'run_length',
|
|
'seekable',
|
|
'SequenceView',
|
|
'side_effect',
|
|
'sliced',
|
|
'sort_together',
|
|
'split_at',
|
|
'split_after',
|
|
'split_before',
|
|
'split_into',
|
|
'spy',
|
|
'stagger',
|
|
'strip',
|
|
'substrings',
|
|
'unique_to_each',
|
|
'unzip',
|
|
'windowed',
|
|
'with_iter',
|
|
'zip_offset',
|
|
]
|
|
|
|
_marker = object()
|
|
|
|
|
|
def chunked(iterable, n):
|
|
"""Break *iterable* into lists of length *n*:
|
|
|
|
>>> list(chunked([1, 2, 3, 4, 5, 6], 3))
|
|
[[1, 2, 3], [4, 5, 6]]
|
|
|
|
If the length of *iterable* is not evenly divisible by *n*, the last
|
|
returned list will be shorter:
|
|
|
|
>>> list(chunked([1, 2, 3, 4, 5, 6, 7, 8], 3))
|
|
[[1, 2, 3], [4, 5, 6], [7, 8]]
|
|
|
|
To use a fill-in value instead, see the :func:`grouper` recipe.
|
|
|
|
:func:`chunked` is useful for splitting up a computation on a large number
|
|
of keys into batches, to be pickled and sent off to worker processes. One
|
|
example is operations on rows in MySQL, which does not implement
|
|
server-side cursors properly and would otherwise load the entire dataset
|
|
into RAM on the client.
|
|
|
|
"""
|
|
return iter(partial(take, n, iter(iterable)), [])
|
|
|
|
|
|
def first(iterable, default=_marker):
|
|
"""Return the first item of *iterable*, or *default* if *iterable* is
|
|
empty.
|
|
|
|
>>> first([0, 1, 2, 3])
|
|
0
|
|
>>> first([], 'some default')
|
|
'some default'
|
|
|
|
If *default* is not provided and there are no items in the iterable,
|
|
raise ``ValueError``.
|
|
|
|
:func:`first` is useful when you have a generator of expensive-to-retrieve
|
|
values and want any arbitrary one. It is marginally shorter than
|
|
``next(iter(iterable), default)``.
|
|
|
|
"""
|
|
try:
|
|
return next(iter(iterable))
|
|
except StopIteration:
|
|
# I'm on the edge about raising ValueError instead of StopIteration. At
|
|
# the moment, ValueError wins, because the caller could conceivably
|
|
# want to do something different with flow control when I raise the
|
|
# exception, and it's weird to explicitly catch StopIteration.
|
|
if default is _marker:
|
|
raise ValueError('first() was called on an empty iterable, and no '
|
|
'default value was provided.')
|
|
return default
|
|
|
|
|
|
def last(iterable, default=_marker):
|
|
"""Return the last item of *iterable*, or *default* if *iterable* is
|
|
empty.
|
|
|
|
>>> last([0, 1, 2, 3])
|
|
3
|
|
>>> last([], 'some default')
|
|
'some default'
|
|
|
|
If *default* is not provided and there are no items in the iterable,
|
|
raise ``ValueError``.
|
|
"""
|
|
try:
|
|
try:
|
|
# Try to access the last item directly
|
|
return iterable[-1]
|
|
except (TypeError, AttributeError, KeyError):
|
|
# If not slice-able, iterate entirely using length-1 deque
|
|
return deque(iterable, maxlen=1)[0]
|
|
except IndexError: # If the iterable was empty
|
|
if default is _marker:
|
|
raise ValueError('last() was called on an empty iterable, and no '
|
|
'default value was provided.')
|
|
return default
|
|
|
|
|
|
class peekable(object):
|
|
"""Wrap an iterator to allow lookahead and prepending elements.
|
|
|
|
Call :meth:`peek` on the result to get the value that will be returned
|
|
by :func:`next`. This won't advance the iterator:
|
|
|
|
>>> p = peekable(['a', 'b'])
|
|
>>> p.peek()
|
|
'a'
|
|
>>> next(p)
|
|
'a'
|
|
|
|
Pass :meth:`peek` a default value to return that instead of raising
|
|
``StopIteration`` when the iterator is exhausted.
|
|
|
|
>>> p = peekable([])
|
|
>>> p.peek('hi')
|
|
'hi'
|
|
|
|
peekables also offer a :meth:`prepend` method, which "inserts" items
|
|
at the head of the iterable:
|
|
|
|
>>> p = peekable([1, 2, 3])
|
|
>>> p.prepend(10, 11, 12)
|
|
>>> next(p)
|
|
10
|
|
>>> p.peek()
|
|
11
|
|
>>> list(p)
|
|
[11, 12, 1, 2, 3]
|
|
|
|
peekables can be indexed. Index 0 is the item that will be returned by
|
|
:func:`next`, index 1 is the item after that, and so on:
|
|
The values up to the given index will be cached.
|
|
|
|
>>> p = peekable(['a', 'b', 'c', 'd'])
|
|
>>> p[0]
|
|
'a'
|
|
>>> p[1]
|
|
'b'
|
|
>>> next(p)
|
|
'a'
|
|
|
|
Negative indexes are supported, but be aware that they will cache the
|
|
remaining items in the source iterator, which may require significant
|
|
storage.
|
|
|
|
To check whether a peekable is exhausted, check its truth value:
|
|
|
|
>>> p = peekable(['a', 'b'])
|
|
>>> if p: # peekable has items
|
|
... list(p)
|
|
['a', 'b']
|
|
>>> if not p: # peekable is exhaused
|
|
... list(p)
|
|
[]
|
|
|
|
"""
|
|
def __init__(self, iterable):
|
|
self._it = iter(iterable)
|
|
self._cache = deque()
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __bool__(self):
|
|
try:
|
|
self.peek()
|
|
except StopIteration:
|
|
return False
|
|
return True
|
|
|
|
def __nonzero__(self):
|
|
# For Python 2 compatibility
|
|
return self.__bool__()
|
|
|
|
def peek(self, default=_marker):
|
|
"""Return the item that will be next returned from ``next()``.
|
|
|
|
Return ``default`` if there are no items left. If ``default`` is not
|
|
provided, raise ``StopIteration``.
|
|
|
|
"""
|
|
if not self._cache:
|
|
try:
|
|
self._cache.append(next(self._it))
|
|
except StopIteration:
|
|
if default is _marker:
|
|
raise
|
|
return default
|
|
return self._cache[0]
|
|
|
|
def prepend(self, *items):
|
|
"""Stack up items to be the next ones returned from ``next()`` or
|
|
``self.peek()``. The items will be returned in
|
|
first in, first out order::
|
|
|
|
>>> p = peekable([1, 2, 3])
|
|
>>> p.prepend(10, 11, 12)
|
|
>>> next(p)
|
|
10
|
|
>>> list(p)
|
|
[11, 12, 1, 2, 3]
|
|
|
|
It is possible, by prepending items, to "resurrect" a peekable that
|
|
previously raised ``StopIteration``.
|
|
|
|
>>> p = peekable([])
|
|
>>> next(p)
|
|
Traceback (most recent call last):
|
|
...
|
|
StopIteration
|
|
>>> p.prepend(1)
|
|
>>> next(p)
|
|
1
|
|
>>> next(p)
|
|
Traceback (most recent call last):
|
|
...
|
|
StopIteration
|
|
|
|
"""
|
|
self._cache.extendleft(reversed(items))
|
|
|
|
def __next__(self):
|
|
if self._cache:
|
|
return self._cache.popleft()
|
|
|
|
return next(self._it)
|
|
|
|
next = __next__ # For Python 2 compatibility
|
|
|
|
def _get_slice(self, index):
|
|
# Normalize the slice's arguments
|
|
step = 1 if (index.step is None) else index.step
|
|
if step > 0:
|
|
start = 0 if (index.start is None) else index.start
|
|
stop = maxsize if (index.stop is None) else index.stop
|
|
elif step < 0:
|
|
start = -1 if (index.start is None) else index.start
|
|
stop = (-maxsize - 1) if (index.stop is None) else index.stop
|
|
else:
|
|
raise ValueError('slice step cannot be zero')
|
|
|
|
# If either the start or stop index is negative, we'll need to cache
|
|
# the rest of the iterable in order to slice from the right side.
|
|
if (start < 0) or (stop < 0):
|
|
self._cache.extend(self._it)
|
|
# Otherwise we'll need to find the rightmost index and cache to that
|
|
# point.
|
|
else:
|
|
n = min(max(start, stop) + 1, maxsize)
|
|
cache_len = len(self._cache)
|
|
if n >= cache_len:
|
|
self._cache.extend(islice(self._it, n - cache_len))
|
|
|
|
return list(self._cache)[index]
|
|
|
|
def __getitem__(self, index):
|
|
if isinstance(index, slice):
|
|
return self._get_slice(index)
|
|
|
|
cache_len = len(self._cache)
|
|
if index < 0:
|
|
self._cache.extend(self._it)
|
|
elif index >= cache_len:
|
|
self._cache.extend(islice(self._it, index + 1 - cache_len))
|
|
|
|
return self._cache[index]
|
|
|
|
|
|
def _collate(*iterables, **kwargs):
|
|
"""Helper for ``collate()``, called when the user is using the ``reverse``
|
|
or ``key`` keyword arguments on Python versions below 3.5.
|
|
|
|
"""
|
|
key = kwargs.pop('key', lambda a: a)
|
|
reverse = kwargs.pop('reverse', False)
|
|
|
|
min_or_max = partial(max if reverse else min, key=itemgetter(0))
|
|
peekables = [peekable(it) for it in iterables]
|
|
peekables = [p for p in peekables if p] # Kill empties.
|
|
while peekables:
|
|
_, p = min_or_max((key(p.peek()), p) for p in peekables)
|
|
yield next(p)
|
|
peekables = [x for x in peekables if x]
|
|
|
|
|
|
def collate(*iterables, **kwargs):
|
|
"""Return a sorted merge of the items from each of several already-sorted
|
|
*iterables*.
|
|
|
|
>>> list(collate('ACDZ', 'AZ', 'JKL'))
|
|
['A', 'A', 'C', 'D', 'J', 'K', 'L', 'Z', 'Z']
|
|
|
|
Works lazily, keeping only the next value from each iterable in memory. Use
|
|
:func:`collate` to, for example, perform a n-way mergesort of items that
|
|
don't fit in memory.
|
|
|
|
If a *key* function is specified, the iterables will be sorted according
|
|
to its result:
|
|
|
|
>>> key = lambda s: int(s) # Sort by numeric value, not by string
|
|
>>> list(collate(['1', '10'], ['2', '11'], key=key))
|
|
['1', '2', '10', '11']
|
|
|
|
|
|
If the *iterables* are sorted in descending order, set *reverse* to
|
|
``True``:
|
|
|
|
>>> list(collate([5, 3, 1], [4, 2, 0], reverse=True))
|
|
[5, 4, 3, 2, 1, 0]
|
|
|
|
If the elements of the passed-in iterables are out of order, you might get
|
|
unexpected results.
|
|
|
|
On Python 2.7, this function delegates to :func:`heapq.merge` if neither
|
|
of the keyword arguments are specified. On Python 3.5+, this function
|
|
is an alias for :func:`heapq.merge`.
|
|
|
|
"""
|
|
if not kwargs:
|
|
return merge(*iterables)
|
|
|
|
return _collate(*iterables, **kwargs)
|
|
|
|
|
|
# If using Python version 3.5 or greater, heapq.merge() will be faster than
|
|
# collate - use that instead.
|
|
if version_info >= (3, 5, 0):
|
|
_collate_docstring = collate.__doc__
|
|
collate = partial(merge)
|
|
collate.__doc__ = _collate_docstring
|
|
|
|
|
|
def consumer(func):
|
|
"""Decorator that automatically advances a PEP-342-style "reverse iterator"
|
|
to its first yield point so you don't have to call ``next()`` on it
|
|
manually.
|
|
|
|
>>> @consumer
|
|
... def tally():
|
|
... i = 0
|
|
... while True:
|
|
... print('Thing number %s is %s.' % (i, (yield)))
|
|
... i += 1
|
|
...
|
|
>>> t = tally()
|
|
>>> t.send('red')
|
|
Thing number 0 is red.
|
|
>>> t.send('fish')
|
|
Thing number 1 is fish.
|
|
|
|
Without the decorator, you would have to call ``next(t)`` before
|
|
``t.send()`` could be used.
|
|
|
|
"""
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
gen = func(*args, **kwargs)
|
|
next(gen)
|
|
return gen
|
|
return wrapper
|
|
|
|
|
|
def ilen(iterable):
|
|
"""Return the number of items in *iterable*.
|
|
|
|
>>> ilen(x for x in range(1000000) if x % 3 == 0)
|
|
333334
|
|
|
|
This consumes the iterable, so handle with care.
|
|
|
|
"""
|
|
# This approach was selected because benchmarks showed it's likely the
|
|
# fastest of the known implementations at the time of writing.
|
|
# See GitHub tracker: #236, #230.
|
|
counter = count()
|
|
deque(zip(iterable, counter), maxlen=0)
|
|
return next(counter)
|
|
|
|
|
|
def iterate(func, start):
|
|
"""Return ``start``, ``func(start)``, ``func(func(start))``, ...
|
|
|
|
>>> from itertools import islice
|
|
>>> list(islice(iterate(lambda x: 2*x, 1), 10))
|
|
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
|
|
|
|
"""
|
|
while True:
|
|
yield start
|
|
start = func(start)
|
|
|
|
|
|
def with_iter(context_manager):
|
|
"""Wrap an iterable in a ``with`` statement, so it closes once exhausted.
|
|
|
|
For example, this will close the file when the iterator is exhausted::
|
|
|
|
upper_lines = (line.upper() for line in with_iter(open('foo')))
|
|
|
|
Any context manager which returns an iterable is a candidate for
|
|
``with_iter``.
|
|
|
|
"""
|
|
with context_manager as iterable:
|
|
for item in iterable:
|
|
yield item
|
|
|
|
|
|
def one(iterable, too_short=None, too_long=None):
|
|
"""Return the first item from *iterable*, which is expected to contain only
|
|
that item. Raise an exception if *iterable* is empty or has more than one
|
|
item.
|
|
|
|
:func:`one` is useful for ensuring that an iterable contains only one item.
|
|
For example, it can be used to retrieve the result of a database query
|
|
that is expected to return a single row.
|
|
|
|
If *iterable* is empty, ``ValueError`` will be raised. You may specify a
|
|
different exception with the *too_short* keyword:
|
|
|
|
>>> it = []
|
|
>>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: too many items in iterable (expected 1)'
|
|
>>> too_short = IndexError('too few items')
|
|
>>> one(it, too_short=too_short) # doctest: +IGNORE_EXCEPTION_DETAIL
|
|
Traceback (most recent call last):
|
|
...
|
|
IndexError: too few items
|
|
|
|
Similarly, if *iterable* contains more than one item, ``ValueError`` will
|
|
be raised. You may specify a different exception with the *too_long*
|
|
keyword:
|
|
|
|
>>> it = ['too', 'many']
|
|
>>> one(it) # doctest: +IGNORE_EXCEPTION_DETAIL
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: too many items in iterable (expected 1)'
|
|
>>> too_long = RuntimeError
|
|
>>> one(it, too_long=too_long) # doctest: +IGNORE_EXCEPTION_DETAIL
|
|
Traceback (most recent call last):
|
|
...
|
|
RuntimeError
|
|
|
|
Note that :func:`one` attempts to advance *iterable* twice to ensure there
|
|
is only one item. If there is more than one, both items will be discarded.
|
|
See :func:`spy` or :func:`peekable` to check iterable contents less
|
|
destructively.
|
|
|
|
"""
|
|
it = iter(iterable)
|
|
|
|
try:
|
|
value = next(it)
|
|
except StopIteration:
|
|
raise too_short or ValueError('too few items in iterable (expected 1)')
|
|
|
|
try:
|
|
next(it)
|
|
except StopIteration:
|
|
pass
|
|
else:
|
|
raise too_long or ValueError('too many items in iterable (expected 1)')
|
|
|
|
return value
|
|
|
|
|
|
def distinct_permutations(iterable):
|
|
"""Yield successive distinct permutations of the elements in *iterable*.
|
|
|
|
>>> sorted(distinct_permutations([1, 0, 1]))
|
|
[(0, 1, 1), (1, 0, 1), (1, 1, 0)]
|
|
|
|
Equivalent to ``set(permutations(iterable))``, except duplicates are not
|
|
generated and thrown away. For larger input sequences this is much more
|
|
efficient.
|
|
|
|
Duplicate permutations arise when there are duplicated elements in the
|
|
input iterable. The number of items returned is
|
|
`n! / (x_1! * x_2! * ... * x_n!)`, where `n` is the total number of
|
|
items input, and each `x_i` is the count of a distinct item in the input
|
|
sequence.
|
|
|
|
"""
|
|
def perm_unique_helper(item_counts, perm, i):
|
|
"""Internal helper function
|
|
|
|
:arg item_counts: Stores the unique items in ``iterable`` and how many
|
|
times they are repeated
|
|
:arg perm: The permutation that is being built for output
|
|
:arg i: The index of the permutation being modified
|
|
|
|
The output permutations are built up recursively; the distinct items
|
|
are placed until their repetitions are exhausted.
|
|
"""
|
|
if i < 0:
|
|
yield tuple(perm)
|
|
else:
|
|
for item in item_counts:
|
|
if item_counts[item] <= 0:
|
|
continue
|
|
perm[i] = item
|
|
item_counts[item] -= 1
|
|
for x in perm_unique_helper(item_counts, perm, i - 1):
|
|
yield x
|
|
item_counts[item] += 1
|
|
|
|
item_counts = Counter(iterable)
|
|
length = sum(item_counts.values())
|
|
|
|
return perm_unique_helper(item_counts, [None] * length, length - 1)
|
|
|
|
|
|
def intersperse(e, iterable, n=1):
|
|
"""Intersperse filler element *e* among the items in *iterable*, leaving
|
|
*n* items between each filler element.
|
|
|
|
>>> list(intersperse('!', [1, 2, 3, 4, 5]))
|
|
[1, '!', 2, '!', 3, '!', 4, '!', 5]
|
|
|
|
>>> list(intersperse(None, [1, 2, 3, 4, 5], n=2))
|
|
[1, 2, None, 3, 4, None, 5]
|
|
|
|
"""
|
|
if n == 0:
|
|
raise ValueError('n must be > 0')
|
|
elif n == 1:
|
|
# interleave(repeat(e), iterable) -> e, x_0, e, e, x_1, e, x_2...
|
|
# islice(..., 1, None) -> x_0, e, e, x_1, e, x_2...
|
|
return islice(interleave(repeat(e), iterable), 1, None)
|
|
else:
|
|
# interleave(filler, chunks) -> [e], [x_0, x_1], [e], [x_2, x_3]...
|
|
# islice(..., 1, None) -> [x_0, x_1], [e], [x_2, x_3]...
|
|
# flatten(...) -> x_0, x_1, e, x_2, x_3...
|
|
filler = repeat([e])
|
|
chunks = chunked(iterable, n)
|
|
return flatten(islice(interleave(filler, chunks), 1, None))
|
|
|
|
|
|
def unique_to_each(*iterables):
|
|
"""Return the elements from each of the input iterables that aren't in the
|
|
other input iterables.
|
|
|
|
For example, suppose you have a set of packages, each with a set of
|
|
dependencies::
|
|
|
|
{'pkg_1': {'A', 'B'}, 'pkg_2': {'B', 'C'}, 'pkg_3': {'B', 'D'}}
|
|
|
|
If you remove one package, which dependencies can also be removed?
|
|
|
|
If ``pkg_1`` is removed, then ``A`` is no longer necessary - it is not
|
|
associated with ``pkg_2`` or ``pkg_3``. Similarly, ``C`` is only needed for
|
|
``pkg_2``, and ``D`` is only needed for ``pkg_3``::
|
|
|
|
>>> unique_to_each({'A', 'B'}, {'B', 'C'}, {'B', 'D'})
|
|
[['A'], ['C'], ['D']]
|
|
|
|
If there are duplicates in one input iterable that aren't in the others
|
|
they will be duplicated in the output. Input order is preserved::
|
|
|
|
>>> unique_to_each("mississippi", "missouri")
|
|
[['p', 'p'], ['o', 'u', 'r']]
|
|
|
|
It is assumed that the elements of each iterable are hashable.
|
|
|
|
"""
|
|
pool = [list(it) for it in iterables]
|
|
counts = Counter(chain.from_iterable(map(set, pool)))
|
|
uniques = {element for element in counts if counts[element] == 1}
|
|
return [list(filter(uniques.__contains__, it)) for it in pool]
|
|
|
|
|
|
def windowed(seq, n, fillvalue=None, step=1):
|
|
"""Return a sliding window of width *n* over the given iterable.
|
|
|
|
>>> all_windows = windowed([1, 2, 3, 4, 5], 3)
|
|
>>> list(all_windows)
|
|
[(1, 2, 3), (2, 3, 4), (3, 4, 5)]
|
|
|
|
When the window is larger than the iterable, *fillvalue* is used in place
|
|
of missing values::
|
|
|
|
>>> list(windowed([1, 2, 3], 4))
|
|
[(1, 2, 3, None)]
|
|
|
|
Each window will advance in increments of *step*:
|
|
|
|
>>> list(windowed([1, 2, 3, 4, 5, 6], 3, fillvalue='!', step=2))
|
|
[(1, 2, 3), (3, 4, 5), (5, 6, '!')]
|
|
|
|
"""
|
|
if n < 0:
|
|
raise ValueError('n must be >= 0')
|
|
if n == 0:
|
|
yield tuple()
|
|
return
|
|
if step < 1:
|
|
raise ValueError('step must be >= 1')
|
|
|
|
it = iter(seq)
|
|
window = deque([], n)
|
|
append = window.append
|
|
|
|
# Initial deque fill
|
|
for _ in range(n):
|
|
append(next(it, fillvalue))
|
|
yield tuple(window)
|
|
|
|
# Appending new items to the right causes old items to fall off the left
|
|
i = 0
|
|
for item in it:
|
|
append(item)
|
|
i = (i + 1) % step
|
|
if i % step == 0:
|
|
yield tuple(window)
|
|
|
|
# If there are items from the iterable in the window, pad with the given
|
|
# value and emit them.
|
|
if (i % step) and (step - i < n):
|
|
for _ in range(step - i):
|
|
append(fillvalue)
|
|
yield tuple(window)
|
|
|
|
|
|
def substrings(iterable, join_func=None):
|
|
"""Yield all of the substrings of *iterable*.
|
|
|
|
>>> [''.join(s) for s in substrings('more')]
|
|
['m', 'o', 'r', 'e', 'mo', 'or', 're', 'mor', 'ore', 'more']
|
|
|
|
Note that non-string iterables can also be subdivided.
|
|
|
|
>>> list(substrings([0, 1, 2]))
|
|
[(0,), (1,), (2,), (0, 1), (1, 2), (0, 1, 2)]
|
|
|
|
"""
|
|
# The length-1 substrings
|
|
seq = []
|
|
for item in iter(iterable):
|
|
seq.append(item)
|
|
yield (item,)
|
|
seq = tuple(seq)
|
|
item_count = len(seq)
|
|
|
|
# And the rest
|
|
for n in range(2, item_count + 1):
|
|
for i in range(item_count - n + 1):
|
|
yield seq[i:i + n]
|
|
|
|
|
|
class bucket(object):
|
|
"""Wrap *iterable* and return an object that buckets it iterable into
|
|
child iterables based on a *key* function.
|
|
|
|
>>> iterable = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2', 'b3']
|
|
>>> s = bucket(iterable, key=lambda x: x[0])
|
|
>>> a_iterable = s['a']
|
|
>>> next(a_iterable)
|
|
'a1'
|
|
>>> next(a_iterable)
|
|
'a2'
|
|
>>> list(s['b'])
|
|
['b1', 'b2', 'b3']
|
|
|
|
The original iterable will be advanced and its items will be cached until
|
|
they are used by the child iterables. This may require significant storage.
|
|
|
|
By default, attempting to select a bucket to which no items belong will
|
|
exhaust the iterable and cache all values.
|
|
If you specify a *validator* function, selected buckets will instead be
|
|
checked against it.
|
|
|
|
>>> from itertools import count
|
|
>>> it = count(1, 2) # Infinite sequence of odd numbers
|
|
>>> key = lambda x: x % 10 # Bucket by last digit
|
|
>>> validator = lambda x: x in {1, 3, 5, 7, 9} # Odd digits only
|
|
>>> s = bucket(it, key=key, validator=validator)
|
|
>>> 2 in s
|
|
False
|
|
>>> list(s[2])
|
|
[]
|
|
|
|
"""
|
|
def __init__(self, iterable, key, validator=None):
|
|
self._it = iter(iterable)
|
|
self._key = key
|
|
self._cache = defaultdict(deque)
|
|
self._validator = validator or (lambda x: True)
|
|
|
|
def __contains__(self, value):
|
|
if not self._validator(value):
|
|
return False
|
|
|
|
try:
|
|
item = next(self[value])
|
|
except StopIteration:
|
|
return False
|
|
else:
|
|
self._cache[value].appendleft(item)
|
|
|
|
return True
|
|
|
|
def _get_values(self, value):
|
|
"""
|
|
Helper to yield items from the parent iterator that match *value*.
|
|
Items that don't match are stored in the local cache as they
|
|
are encountered.
|
|
"""
|
|
while True:
|
|
# If we've cached some items that match the target value, emit
|
|
# the first one and evict it from the cache.
|
|
if self._cache[value]:
|
|
yield self._cache[value].popleft()
|
|
# Otherwise we need to advance the parent iterator to search for
|
|
# a matching item, caching the rest.
|
|
else:
|
|
while True:
|
|
try:
|
|
item = next(self._it)
|
|
except StopIteration:
|
|
return
|
|
item_value = self._key(item)
|
|
if item_value == value:
|
|
yield item
|
|
break
|
|
elif self._validator(item_value):
|
|
self._cache[item_value].append(item)
|
|
|
|
def __getitem__(self, value):
|
|
if not self._validator(value):
|
|
return iter(())
|
|
|
|
return self._get_values(value)
|
|
|
|
|
|
def spy(iterable, n=1):
|
|
"""Return a 2-tuple with a list containing the first *n* elements of
|
|
*iterable*, and an iterator with the same items as *iterable*.
|
|
This allows you to "look ahead" at the items in the iterable without
|
|
advancing it.
|
|
|
|
There is one item in the list by default:
|
|
|
|
>>> iterable = 'abcdefg'
|
|
>>> head, iterable = spy(iterable)
|
|
>>> head
|
|
['a']
|
|
>>> list(iterable)
|
|
['a', 'b', 'c', 'd', 'e', 'f', 'g']
|
|
|
|
You may use unpacking to retrieve items instead of lists:
|
|
|
|
>>> (head,), iterable = spy('abcdefg')
|
|
>>> head
|
|
'a'
|
|
>>> (first, second), iterable = spy('abcdefg', 2)
|
|
>>> first
|
|
'a'
|
|
>>> second
|
|
'b'
|
|
|
|
The number of items requested can be larger than the number of items in
|
|
the iterable:
|
|
|
|
>>> iterable = [1, 2, 3, 4, 5]
|
|
>>> head, iterable = spy(iterable, 10)
|
|
>>> head
|
|
[1, 2, 3, 4, 5]
|
|
>>> list(iterable)
|
|
[1, 2, 3, 4, 5]
|
|
|
|
"""
|
|
it = iter(iterable)
|
|
head = take(n, it)
|
|
|
|
return head, chain(head, it)
|
|
|
|
|
|
def interleave(*iterables):
|
|
"""Return a new iterable yielding from each iterable in turn,
|
|
until the shortest is exhausted.
|
|
|
|
>>> list(interleave([1, 2, 3], [4, 5], [6, 7, 8]))
|
|
[1, 4, 6, 2, 5, 7]
|
|
|
|
For a version that doesn't terminate after the shortest iterable is
|
|
exhausted, see :func:`interleave_longest`.
|
|
|
|
"""
|
|
return chain.from_iterable(zip(*iterables))
|
|
|
|
|
|
def interleave_longest(*iterables):
|
|
"""Return a new iterable yielding from each iterable in turn,
|
|
skipping any that are exhausted.
|
|
|
|
>>> list(interleave_longest([1, 2, 3], [4, 5], [6, 7, 8]))
|
|
[1, 4, 6, 2, 5, 7, 3, 8]
|
|
|
|
This function produces the same output as :func:`roundrobin`, but may
|
|
perform better for some inputs (in particular when the number of iterables
|
|
is large).
|
|
|
|
"""
|
|
i = chain.from_iterable(zip_longest(*iterables, fillvalue=_marker))
|
|
return (x for x in i if x is not _marker)
|
|
|
|
|
|
def collapse(iterable, base_type=None, levels=None):
|
|
"""Flatten an iterable with multiple levels of nesting (e.g., a list of
|
|
lists of tuples) into non-iterable types.
|
|
|
|
>>> iterable = [(1, 2), ([3, 4], [[5], [6]])]
|
|
>>> list(collapse(iterable))
|
|
[1, 2, 3, 4, 5, 6]
|
|
|
|
String types are not considered iterable and will not be collapsed.
|
|
To avoid collapsing other types, specify *base_type*:
|
|
|
|
>>> iterable = ['ab', ('cd', 'ef'), ['gh', 'ij']]
|
|
>>> list(collapse(iterable, base_type=tuple))
|
|
['ab', ('cd', 'ef'), 'gh', 'ij']
|
|
|
|
Specify *levels* to stop flattening after a certain level:
|
|
|
|
>>> iterable = [('a', ['b']), ('c', ['d'])]
|
|
>>> list(collapse(iterable)) # Fully flattened
|
|
['a', 'b', 'c', 'd']
|
|
>>> list(collapse(iterable, levels=1)) # Only one level flattened
|
|
['a', ['b'], 'c', ['d']]
|
|
|
|
"""
|
|
def walk(node, level):
|
|
if (
|
|
((levels is not None) and (level > levels)) or
|
|
isinstance(node, string_types) or
|
|
((base_type is not None) and isinstance(node, base_type))
|
|
):
|
|
yield node
|
|
return
|
|
|
|
try:
|
|
tree = iter(node)
|
|
except TypeError:
|
|
yield node
|
|
return
|
|
else:
|
|
for child in tree:
|
|
for x in walk(child, level + 1):
|
|
yield x
|
|
|
|
for x in walk(iterable, 0):
|
|
yield x
|
|
|
|
|
|
def side_effect(func, iterable, chunk_size=None, before=None, after=None):
|
|
"""Invoke *func* on each item in *iterable* (or on each *chunk_size* group
|
|
of items) before yielding the item.
|
|
|
|
`func` must be a function that takes a single argument. Its return value
|
|
will be discarded.
|
|
|
|
*before* and *after* are optional functions that take no arguments. They
|
|
will be executed before iteration starts and after it ends, respectively.
|
|
|
|
`side_effect` can be used for logging, updating progress bars, or anything
|
|
that is not functionally "pure."
|
|
|
|
Emitting a status message:
|
|
|
|
>>> from more_itertools import consume
|
|
>>> func = lambda item: print('Received {}'.format(item))
|
|
>>> consume(side_effect(func, range(2)))
|
|
Received 0
|
|
Received 1
|
|
|
|
Operating on chunks of items:
|
|
|
|
>>> pair_sums = []
|
|
>>> func = lambda chunk: pair_sums.append(sum(chunk))
|
|
>>> list(side_effect(func, [0, 1, 2, 3, 4, 5], 2))
|
|
[0, 1, 2, 3, 4, 5]
|
|
>>> list(pair_sums)
|
|
[1, 5, 9]
|
|
|
|
Writing to a file-like object:
|
|
|
|
>>> from io import StringIO
|
|
>>> from more_itertools import consume
|
|
>>> f = StringIO()
|
|
>>> func = lambda x: print(x, file=f)
|
|
>>> before = lambda: print(u'HEADER', file=f)
|
|
>>> after = f.close
|
|
>>> it = [u'a', u'b', u'c']
|
|
>>> consume(side_effect(func, it, before=before, after=after))
|
|
>>> f.closed
|
|
True
|
|
|
|
"""
|
|
try:
|
|
if before is not None:
|
|
before()
|
|
|
|
if chunk_size is None:
|
|
for item in iterable:
|
|
func(item)
|
|
yield item
|
|
else:
|
|
for chunk in chunked(iterable, chunk_size):
|
|
func(chunk)
|
|
for item in chunk:
|
|
yield item
|
|
finally:
|
|
if after is not None:
|
|
after()
|
|
|
|
|
|
def sliced(seq, n):
|
|
"""Yield slices of length *n* from the sequence *seq*.
|
|
|
|
>>> list(sliced((1, 2, 3, 4, 5, 6), 3))
|
|
[(1, 2, 3), (4, 5, 6)]
|
|
|
|
If the length of the sequence is not divisible by the requested slice
|
|
length, the last slice will be shorter.
|
|
|
|
>>> list(sliced((1, 2, 3, 4, 5, 6, 7, 8), 3))
|
|
[(1, 2, 3), (4, 5, 6), (7, 8)]
|
|
|
|
This function will only work for iterables that support slicing.
|
|
For non-sliceable iterables, see :func:`chunked`.
|
|
|
|
"""
|
|
return takewhile(bool, (seq[i: i + n] for i in count(0, n)))
|
|
|
|
|
|
def split_at(iterable, pred):
|
|
"""Yield lists of items from *iterable*, where each list is delimited by
|
|
an item where callable *pred* returns ``True``. The lists do not include
|
|
the delimiting items.
|
|
|
|
>>> list(split_at('abcdcba', lambda x: x == 'b'))
|
|
[['a'], ['c', 'd', 'c'], ['a']]
|
|
|
|
>>> list(split_at(range(10), lambda n: n % 2 == 1))
|
|
[[0], [2], [4], [6], [8], []]
|
|
"""
|
|
buf = []
|
|
for item in iterable:
|
|
if pred(item):
|
|
yield buf
|
|
buf = []
|
|
else:
|
|
buf.append(item)
|
|
yield buf
|
|
|
|
|
|
def split_before(iterable, pred):
|
|
"""Yield lists of items from *iterable*, where each list starts with an
|
|
item where callable *pred* returns ``True``:
|
|
|
|
>>> list(split_before('OneTwo', lambda s: s.isupper()))
|
|
[['O', 'n', 'e'], ['T', 'w', 'o']]
|
|
|
|
>>> list(split_before(range(10), lambda n: n % 3 == 0))
|
|
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
|
|
|
|
"""
|
|
buf = []
|
|
for item in iterable:
|
|
if pred(item) and buf:
|
|
yield buf
|
|
buf = []
|
|
buf.append(item)
|
|
yield buf
|
|
|
|
|
|
def split_after(iterable, pred):
|
|
"""Yield lists of items from *iterable*, where each list ends with an
|
|
item where callable *pred* returns ``True``:
|
|
|
|
>>> list(split_after('one1two2', lambda s: s.isdigit()))
|
|
[['o', 'n', 'e', '1'], ['t', 'w', 'o', '2']]
|
|
|
|
>>> list(split_after(range(10), lambda n: n % 3 == 0))
|
|
[[0], [1, 2, 3], [4, 5, 6], [7, 8, 9]]
|
|
|
|
"""
|
|
buf = []
|
|
for item in iterable:
|
|
buf.append(item)
|
|
if pred(item) and buf:
|
|
yield buf
|
|
buf = []
|
|
if buf:
|
|
yield buf
|
|
|
|
|
|
def split_into(iterable, sizes):
|
|
"""Yield a list of sequential items from *iterable* of length 'n' for each
|
|
integer 'n' in *sizes*.
|
|
|
|
>>> list(split_into([1,2,3,4,5,6], [1,2,3]))
|
|
[[1], [2, 3], [4, 5, 6]]
|
|
|
|
If the sum of *sizes* is smaller than the length of *iterable*, then the
|
|
remaining items of *iterable* will not be returned.
|
|
|
|
>>> list(split_into([1,2,3,4,5,6], [2,3]))
|
|
[[1, 2], [3, 4, 5]]
|
|
|
|
If the sum of *sizes* is larger than the length of *iterable*, fewer items
|
|
will be returned in the iteration that overruns *iterable* and further
|
|
lists will be empty:
|
|
|
|
>>> list(split_into([1,2,3,4], [1,2,3,4]))
|
|
[[1], [2, 3], [4], []]
|
|
|
|
When a ``None`` object is encountered in *sizes*, the returned list will
|
|
contain items up to the end of *iterable* the same way that itertools.slice
|
|
does:
|
|
|
|
>>> list(split_into([1,2,3,4,5,6,7,8,9,0], [2,3,None]))
|
|
[[1, 2], [3, 4, 5], [6, 7, 8, 9, 0]]
|
|
|
|
:func:`split_into` can be useful for grouping a series of items where the
|
|
sizes of the groups are not uniform. An example would be where in a row
|
|
from a table, multiple columns represent elements of the same feature
|
|
(e.g. a point represented by x,y,z) but, the format is not the same for
|
|
all columns.
|
|
"""
|
|
# convert the iterable argument into an iterator so its contents can
|
|
# be consumed by islice in case it is a generator
|
|
it = iter(iterable)
|
|
|
|
for size in sizes:
|
|
if size is None:
|
|
yield list(it)
|
|
return
|
|
else:
|
|
yield list(islice(it, size))
|
|
|
|
|
|
def padded(iterable, fillvalue=None, n=None, next_multiple=False):
|
|
"""Yield the elements from *iterable*, followed by *fillvalue*, such that
|
|
at least *n* items are emitted.
|
|
|
|
>>> list(padded([1, 2, 3], '?', 5))
|
|
[1, 2, 3, '?', '?']
|
|
|
|
If *next_multiple* is ``True``, *fillvalue* will be emitted until the
|
|
number of items emitted is a multiple of *n*::
|
|
|
|
>>> list(padded([1, 2, 3, 4], n=3, next_multiple=True))
|
|
[1, 2, 3, 4, None, None]
|
|
|
|
If *n* is ``None``, *fillvalue* will be emitted indefinitely.
|
|
|
|
"""
|
|
it = iter(iterable)
|
|
if n is None:
|
|
for item in chain(it, repeat(fillvalue)):
|
|
yield item
|
|
elif n < 1:
|
|
raise ValueError('n must be at least 1')
|
|
else:
|
|
item_count = 0
|
|
for item in it:
|
|
yield item
|
|
item_count += 1
|
|
|
|
remaining = (n - item_count) % n if next_multiple else n - item_count
|
|
for _ in range(remaining):
|
|
yield fillvalue
|
|
|
|
|
|
def distribute(n, iterable):
|
|
"""Distribute the items from *iterable* among *n* smaller iterables.
|
|
|
|
>>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6])
|
|
>>> list(group_1)
|
|
[1, 3, 5]
|
|
>>> list(group_2)
|
|
[2, 4, 6]
|
|
|
|
If the length of *iterable* is not evenly divisible by *n*, then the
|
|
length of the returned iterables will not be identical:
|
|
|
|
>>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7])
|
|
>>> [list(c) for c in children]
|
|
[[1, 4, 7], [2, 5], [3, 6]]
|
|
|
|
If the length of *iterable* is smaller than *n*, then the last returned
|
|
iterables will be empty:
|
|
|
|
>>> children = distribute(5, [1, 2, 3])
|
|
>>> [list(c) for c in children]
|
|
[[1], [2], [3], [], []]
|
|
|
|
This function uses :func:`itertools.tee` and may require significant
|
|
storage. If you need the order items in the smaller iterables to match the
|
|
original iterable, see :func:`divide`.
|
|
|
|
"""
|
|
if n < 1:
|
|
raise ValueError('n must be at least 1')
|
|
|
|
children = tee(iterable, n)
|
|
return [islice(it, index, None, n) for index, it in enumerate(children)]
|
|
|
|
|
|
def stagger(iterable, offsets=(-1, 0, 1), longest=False, fillvalue=None):
|
|
"""Yield tuples whose elements are offset from *iterable*.
|
|
The amount by which the `i`-th item in each tuple is offset is given by
|
|
the `i`-th item in *offsets*.
|
|
|
|
>>> list(stagger([0, 1, 2, 3]))
|
|
[(None, 0, 1), (0, 1, 2), (1, 2, 3)]
|
|
>>> list(stagger(range(8), offsets=(0, 2, 4)))
|
|
[(0, 2, 4), (1, 3, 5), (2, 4, 6), (3, 5, 7)]
|
|
|
|
By default, the sequence will end when the final element of a tuple is the
|
|
last item in the iterable. To continue until the first element of a tuple
|
|
is the last item in the iterable, set *longest* to ``True``::
|
|
|
|
>>> list(stagger([0, 1, 2, 3], longest=True))
|
|
[(None, 0, 1), (0, 1, 2), (1, 2, 3), (2, 3, None), (3, None, None)]
|
|
|
|
By default, ``None`` will be used to replace offsets beyond the end of the
|
|
sequence. Specify *fillvalue* to use some other value.
|
|
|
|
"""
|
|
children = tee(iterable, len(offsets))
|
|
|
|
return zip_offset(
|
|
*children, offsets=offsets, longest=longest, fillvalue=fillvalue
|
|
)
|
|
|
|
|
|
def zip_offset(*iterables, **kwargs):
|
|
"""``zip`` the input *iterables* together, but offset the `i`-th iterable
|
|
by the `i`-th item in *offsets*.
|
|
|
|
>>> list(zip_offset('0123', 'abcdef', offsets=(0, 1)))
|
|
[('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e')]
|
|
|
|
This can be used as a lightweight alternative to SciPy or pandas to analyze
|
|
data sets in which some series have a lead or lag relationship.
|
|
|
|
By default, the sequence will end when the shortest iterable is exhausted.
|
|
To continue until the longest iterable is exhausted, set *longest* to
|
|
``True``.
|
|
|
|
>>> list(zip_offset('0123', 'abcdef', offsets=(0, 1), longest=True))
|
|
[('0', 'b'), ('1', 'c'), ('2', 'd'), ('3', 'e'), (None, 'f')]
|
|
|
|
By default, ``None`` will be used to replace offsets beyond the end of the
|
|
sequence. Specify *fillvalue* to use some other value.
|
|
|
|
"""
|
|
offsets = kwargs['offsets']
|
|
longest = kwargs.get('longest', False)
|
|
fillvalue = kwargs.get('fillvalue', None)
|
|
|
|
if len(iterables) != len(offsets):
|
|
raise ValueError("Number of iterables and offsets didn't match")
|
|
|
|
staggered = []
|
|
for it, n in zip(iterables, offsets):
|
|
if n < 0:
|
|
staggered.append(chain(repeat(fillvalue, -n), it))
|
|
elif n > 0:
|
|
staggered.append(islice(it, n, None))
|
|
else:
|
|
staggered.append(it)
|
|
|
|
if longest:
|
|
return zip_longest(*staggered, fillvalue=fillvalue)
|
|
|
|
return zip(*staggered)
|
|
|
|
|
|
def sort_together(iterables, key_list=(0,), reverse=False):
|
|
"""Return the input iterables sorted together, with *key_list* as the
|
|
priority for sorting. All iterables are trimmed to the length of the
|
|
shortest one.
|
|
|
|
This can be used like the sorting function in a spreadsheet. If each
|
|
iterable represents a column of data, the key list determines which
|
|
columns are used for sorting.
|
|
|
|
By default, all iterables are sorted using the ``0``-th iterable::
|
|
|
|
>>> iterables = [(4, 3, 2, 1), ('a', 'b', 'c', 'd')]
|
|
>>> sort_together(iterables)
|
|
[(1, 2, 3, 4), ('d', 'c', 'b', 'a')]
|
|
|
|
Set a different key list to sort according to another iterable.
|
|
Specifying multiple keys dictates how ties are broken::
|
|
|
|
>>> iterables = [(3, 1, 2), (0, 1, 0), ('c', 'b', 'a')]
|
|
>>> sort_together(iterables, key_list=(1, 2))
|
|
[(2, 3, 1), (0, 0, 1), ('a', 'c', 'b')]
|
|
|
|
Set *reverse* to ``True`` to sort in descending order.
|
|
|
|
>>> sort_together([(1, 2, 3), ('c', 'b', 'a')], reverse=True)
|
|
[(3, 2, 1), ('a', 'b', 'c')]
|
|
|
|
"""
|
|
return list(zip(*sorted(zip(*iterables),
|
|
key=itemgetter(*key_list),
|
|
reverse=reverse)))
|
|
|
|
|
|
def unzip(iterable):
|
|
"""The inverse of :func:`zip`, this function disaggregates the elements
|
|
of the zipped *iterable*.
|
|
|
|
The ``i``-th iterable contains the ``i``-th element from each element
|
|
of the zipped iterable. The first element is used to to determine the
|
|
length of the remaining elements.
|
|
|
|
>>> iterable = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
|
|
>>> letters, numbers = unzip(iterable)
|
|
>>> list(letters)
|
|
['a', 'b', 'c', 'd']
|
|
>>> list(numbers)
|
|
[1, 2, 3, 4]
|
|
|
|
This is similar to using ``zip(*iterable)``, but it avoids reading
|
|
*iterable* into memory. Note, however, that this function uses
|
|
:func:`itertools.tee` and thus may require significant storage.
|
|
|
|
"""
|
|
head, iterable = spy(iter(iterable))
|
|
if not head:
|
|
# empty iterable, e.g. zip([], [], [])
|
|
return ()
|
|
# spy returns a one-length iterable as head
|
|
head = head[0]
|
|
iterables = tee(iterable, len(head))
|
|
|
|
def itemgetter(i):
|
|
def getter(obj):
|
|
try:
|
|
return obj[i]
|
|
except IndexError:
|
|
# basically if we have an iterable like
|
|
# iter([(1, 2, 3), (4, 5), (6,)])
|
|
# the second unzipped iterable would fail at the third tuple
|
|
# since it would try to access tup[1]
|
|
# same with the third unzipped iterable and the second tuple
|
|
# to support these "improperly zipped" iterables,
|
|
# we create a custom itemgetter
|
|
# which just stops the unzipped iterables
|
|
# at first length mismatch
|
|
raise StopIteration
|
|
return getter
|
|
|
|
return tuple(map(itemgetter(i), it) for i, it in enumerate(iterables))
|
|
|
|
|
|
def divide(n, iterable):
|
|
"""Divide the elements from *iterable* into *n* parts, maintaining
|
|
order.
|
|
|
|
>>> group_1, group_2 = divide(2, [1, 2, 3, 4, 5, 6])
|
|
>>> list(group_1)
|
|
[1, 2, 3]
|
|
>>> list(group_2)
|
|
[4, 5, 6]
|
|
|
|
If the length of *iterable* is not evenly divisible by *n*, then the
|
|
length of the returned iterables will not be identical:
|
|
|
|
>>> children = divide(3, [1, 2, 3, 4, 5, 6, 7])
|
|
>>> [list(c) for c in children]
|
|
[[1, 2, 3], [4, 5], [6, 7]]
|
|
|
|
If the length of the iterable is smaller than n, then the last returned
|
|
iterables will be empty:
|
|
|
|
>>> children = divide(5, [1, 2, 3])
|
|
>>> [list(c) for c in children]
|
|
[[1], [2], [3], [], []]
|
|
|
|
This function will exhaust the iterable before returning and may require
|
|
significant storage. If order is not important, see :func:`distribute`,
|
|
which does not first pull the iterable into memory.
|
|
|
|
"""
|
|
if n < 1:
|
|
raise ValueError('n must be at least 1')
|
|
|
|
seq = tuple(iterable)
|
|
q, r = divmod(len(seq), n)
|
|
|
|
ret = []
|
|
for i in range(n):
|
|
start = (i * q) + (i if i < r else r)
|
|
stop = ((i + 1) * q) + (i + 1 if i + 1 < r else r)
|
|
ret.append(iter(seq[start:stop]))
|
|
|
|
return ret
|
|
|
|
|
|
def always_iterable(obj, base_type=(text_type, binary_type)):
|
|
"""If *obj* is iterable, return an iterator over its items::
|
|
|
|
>>> obj = (1, 2, 3)
|
|
>>> list(always_iterable(obj))
|
|
[1, 2, 3]
|
|
|
|
If *obj* is not iterable, return a one-item iterable containing *obj*::
|
|
|
|
>>> obj = 1
|
|
>>> list(always_iterable(obj))
|
|
[1]
|
|
|
|
If *obj* is ``None``, return an empty iterable:
|
|
|
|
>>> obj = None
|
|
>>> list(always_iterable(None))
|
|
[]
|
|
|
|
By default, binary and text strings are not considered iterable::
|
|
|
|
>>> obj = 'foo'
|
|
>>> list(always_iterable(obj))
|
|
['foo']
|
|
|
|
If *base_type* is set, objects for which ``isinstance(obj, base_type)``
|
|
returns ``True`` won't be considered iterable.
|
|
|
|
>>> obj = {'a': 1}
|
|
>>> list(always_iterable(obj)) # Iterate over the dict's keys
|
|
['a']
|
|
>>> list(always_iterable(obj, base_type=dict)) # Treat dicts as a unit
|
|
[{'a': 1}]
|
|
|
|
Set *base_type* to ``None`` to avoid any special handling and treat objects
|
|
Python considers iterable as iterable:
|
|
|
|
>>> obj = 'foo'
|
|
>>> list(always_iterable(obj, base_type=None))
|
|
['f', 'o', 'o']
|
|
"""
|
|
if obj is None:
|
|
return iter(())
|
|
|
|
if (base_type is not None) and isinstance(obj, base_type):
|
|
return iter((obj,))
|
|
|
|
try:
|
|
return iter(obj)
|
|
except TypeError:
|
|
return iter((obj,))
|
|
|
|
|
|
def adjacent(predicate, iterable, distance=1):
|
|
"""Return an iterable over `(bool, item)` tuples where the `item` is
|
|
drawn from *iterable* and the `bool` indicates whether
|
|
that item satisfies the *predicate* or is adjacent to an item that does.
|
|
|
|
For example, to find whether items are adjacent to a ``3``::
|
|
|
|
>>> list(adjacent(lambda x: x == 3, range(6)))
|
|
[(False, 0), (False, 1), (True, 2), (True, 3), (True, 4), (False, 5)]
|
|
|
|
Set *distance* to change what counts as adjacent. For example, to find
|
|
whether items are two places away from a ``3``:
|
|
|
|
>>> list(adjacent(lambda x: x == 3, range(6), distance=2))
|
|
[(False, 0), (True, 1), (True, 2), (True, 3), (True, 4), (True, 5)]
|
|
|
|
This is useful for contextualizing the results of a search function.
|
|
For example, a code comparison tool might want to identify lines that
|
|
have changed, but also surrounding lines to give the viewer of the diff
|
|
context.
|
|
|
|
The predicate function will only be called once for each item in the
|
|
iterable.
|
|
|
|
See also :func:`groupby_transform`, which can be used with this function
|
|
to group ranges of items with the same `bool` value.
|
|
|
|
"""
|
|
# Allow distance=0 mainly for testing that it reproduces results with map()
|
|
if distance < 0:
|
|
raise ValueError('distance must be at least 0')
|
|
|
|
i1, i2 = tee(iterable)
|
|
padding = [False] * distance
|
|
selected = chain(padding, map(predicate, i1), padding)
|
|
adjacent_to_selected = map(any, windowed(selected, 2 * distance + 1))
|
|
return zip(adjacent_to_selected, i2)
|
|
|
|
|
|
def groupby_transform(iterable, keyfunc=None, valuefunc=None):
|
|
"""An extension of :func:`itertools.groupby` that transforms the values of
|
|
*iterable* after grouping them.
|
|
*keyfunc* is a function used to compute a grouping key for each item.
|
|
*valuefunc* is a function for transforming the items after grouping.
|
|
|
|
>>> iterable = 'AaaABbBCcA'
|
|
>>> keyfunc = lambda x: x.upper()
|
|
>>> valuefunc = lambda x: x.lower()
|
|
>>> grouper = groupby_transform(iterable, keyfunc, valuefunc)
|
|
>>> [(k, ''.join(g)) for k, g in grouper]
|
|
[('A', 'aaaa'), ('B', 'bbb'), ('C', 'cc'), ('A', 'a')]
|
|
|
|
*keyfunc* and *valuefunc* default to identity functions if they are not
|
|
specified.
|
|
|
|
:func:`groupby_transform` is useful when grouping elements of an iterable
|
|
using a separate iterable as the key. To do this, :func:`zip` the iterables
|
|
and pass a *keyfunc* that extracts the first element and a *valuefunc*
|
|
that extracts the second element::
|
|
|
|
>>> from operator import itemgetter
|
|
>>> keys = [0, 0, 1, 1, 1, 2, 2, 2, 3]
|
|
>>> values = 'abcdefghi'
|
|
>>> iterable = zip(keys, values)
|
|
>>> grouper = groupby_transform(iterable, itemgetter(0), itemgetter(1))
|
|
>>> [(k, ''.join(g)) for k, g in grouper]
|
|
[(0, 'ab'), (1, 'cde'), (2, 'fgh'), (3, 'i')]
|
|
|
|
Note that the order of items in the iterable is significant.
|
|
Only adjacent items are grouped together, so if you don't want any
|
|
duplicate groups, you should sort the iterable by the key function.
|
|
|
|
"""
|
|
valuefunc = (lambda x: x) if valuefunc is None else valuefunc
|
|
return ((k, map(valuefunc, g)) for k, g in groupby(iterable, keyfunc))
|
|
|
|
|
|
def numeric_range(*args):
|
|
"""An extension of the built-in ``range()`` function whose arguments can
|
|
be any orderable numeric type.
|
|
|
|
With only *stop* specified, *start* defaults to ``0`` and *step*
|
|
defaults to ``1``. The output items will match the type of *stop*:
|
|
|
|
>>> list(numeric_range(3.5))
|
|
[0.0, 1.0, 2.0, 3.0]
|
|
|
|
With only *start* and *stop* specified, *step* defaults to ``1``. The
|
|
output items will match the type of *start*:
|
|
|
|
>>> from decimal import Decimal
|
|
>>> start = Decimal('2.1')
|
|
>>> stop = Decimal('5.1')
|
|
>>> list(numeric_range(start, stop))
|
|
[Decimal('2.1'), Decimal('3.1'), Decimal('4.1')]
|
|
|
|
With *start*, *stop*, and *step* specified the output items will match
|
|
the type of ``start + step``:
|
|
|
|
>>> from fractions import Fraction
|
|
>>> start = Fraction(1, 2) # Start at 1/2
|
|
>>> stop = Fraction(5, 2) # End at 5/2
|
|
>>> step = Fraction(1, 2) # Count by 1/2
|
|
>>> list(numeric_range(start, stop, step))
|
|
[Fraction(1, 2), Fraction(1, 1), Fraction(3, 2), Fraction(2, 1)]
|
|
|
|
If *step* is zero, ``ValueError`` is raised. Negative steps are supported:
|
|
|
|
>>> list(numeric_range(3, -1, -1.0))
|
|
[3.0, 2.0, 1.0, 0.0]
|
|
|
|
Be aware of the limitations of floating point numbers; the representation
|
|
of the yielded numbers may be surprising.
|
|
|
|
"""
|
|
argc = len(args)
|
|
if argc == 1:
|
|
stop, = args
|
|
start = type(stop)(0)
|
|
step = 1
|
|
elif argc == 2:
|
|
start, stop = args
|
|
step = 1
|
|
elif argc == 3:
|
|
start, stop, step = args
|
|
else:
|
|
err_msg = 'numeric_range takes at most 3 arguments, got {}'
|
|
raise TypeError(err_msg.format(argc))
|
|
|
|
values = (start + (step * n) for n in count())
|
|
if step > 0:
|
|
return takewhile(partial(gt, stop), values)
|
|
elif step < 0:
|
|
return takewhile(partial(lt, stop), values)
|
|
else:
|
|
raise ValueError('numeric_range arg 3 must not be zero')
|
|
|
|
|
|
def count_cycle(iterable, n=None):
|
|
"""Cycle through the items from *iterable* up to *n* times, yielding
|
|
the number of completed cycles along with each item. If *n* is omitted the
|
|
process repeats indefinitely.
|
|
|
|
>>> list(count_cycle('AB', 3))
|
|
[(0, 'A'), (0, 'B'), (1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')]
|
|
|
|
"""
|
|
iterable = tuple(iterable)
|
|
if not iterable:
|
|
return iter(())
|
|
counter = count() if n is None else range(n)
|
|
return ((i, item) for i in counter for item in iterable)
|
|
|
|
|
|
def locate(iterable, pred=bool, window_size=None):
|
|
"""Yield the index of each item in *iterable* for which *pred* returns
|
|
``True``.
|
|
|
|
*pred* defaults to :func:`bool`, which will select truthy items:
|
|
|
|
>>> list(locate([0, 1, 1, 0, 1, 0, 0]))
|
|
[1, 2, 4]
|
|
|
|
Set *pred* to a custom function to, e.g., find the indexes for a particular
|
|
item.
|
|
|
|
>>> list(locate(['a', 'b', 'c', 'b'], lambda x: x == 'b'))
|
|
[1, 3]
|
|
|
|
If *window_size* is given, then the *pred* function will be called with
|
|
that many items. This enables searching for sub-sequences:
|
|
|
|
>>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
|
|
>>> pred = lambda *args: args == (1, 2, 3)
|
|
>>> list(locate(iterable, pred=pred, window_size=3))
|
|
[1, 5, 9]
|
|
|
|
Use with :func:`seekable` to find indexes and then retrieve the associated
|
|
items:
|
|
|
|
>>> from itertools import count
|
|
>>> from more_itertools import seekable
|
|
>>> source = (3 * n + 1 if (n % 2) else n // 2 for n in count())
|
|
>>> it = seekable(source)
|
|
>>> pred = lambda x: x > 100
|
|
>>> indexes = locate(it, pred=pred)
|
|
>>> i = next(indexes)
|
|
>>> it.seek(i)
|
|
>>> next(it)
|
|
106
|
|
|
|
"""
|
|
if window_size is None:
|
|
return compress(count(), map(pred, iterable))
|
|
|
|
if window_size < 1:
|
|
raise ValueError('window size must be at least 1')
|
|
|
|
it = windowed(iterable, window_size, fillvalue=_marker)
|
|
return compress(count(), starmap(pred, it))
|
|
|
|
|
|
def lstrip(iterable, pred):
|
|
"""Yield the items from *iterable*, but strip any from the beginning
|
|
for which *pred* returns ``True``.
|
|
|
|
For example, to remove a set of items from the start of an iterable:
|
|
|
|
>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
|
|
>>> pred = lambda x: x in {None, False, ''}
|
|
>>> list(lstrip(iterable, pred))
|
|
[1, 2, None, 3, False, None]
|
|
|
|
This function is analogous to to :func:`str.lstrip`, and is essentially
|
|
an wrapper for :func:`itertools.dropwhile`.
|
|
|
|
"""
|
|
return dropwhile(pred, iterable)
|
|
|
|
|
|
def rstrip(iterable, pred):
|
|
"""Yield the items from *iterable*, but strip any from the end
|
|
for which *pred* returns ``True``.
|
|
|
|
For example, to remove a set of items from the end of an iterable:
|
|
|
|
>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
|
|
>>> pred = lambda x: x in {None, False, ''}
|
|
>>> list(rstrip(iterable, pred))
|
|
[None, False, None, 1, 2, None, 3]
|
|
|
|
This function is analogous to :func:`str.rstrip`.
|
|
|
|
"""
|
|
cache = []
|
|
cache_append = cache.append
|
|
for x in iterable:
|
|
if pred(x):
|
|
cache_append(x)
|
|
else:
|
|
for y in cache:
|
|
yield y
|
|
del cache[:]
|
|
yield x
|
|
|
|
|
|
def strip(iterable, pred):
|
|
"""Yield the items from *iterable*, but strip any from the
|
|
beginning and end for which *pred* returns ``True``.
|
|
|
|
For example, to remove a set of items from both ends of an iterable:
|
|
|
|
>>> iterable = (None, False, None, 1, 2, None, 3, False, None)
|
|
>>> pred = lambda x: x in {None, False, ''}
|
|
>>> list(strip(iterable, pred))
|
|
[1, 2, None, 3]
|
|
|
|
This function is analogous to :func:`str.strip`.
|
|
|
|
"""
|
|
return rstrip(lstrip(iterable, pred), pred)
|
|
|
|
|
|
def islice_extended(iterable, *args):
|
|
"""An extension of :func:`itertools.islice` that supports negative values
|
|
for *stop*, *start*, and *step*.
|
|
|
|
>>> iterable = iter('abcdefgh')
|
|
>>> list(islice_extended(iterable, -4, -1))
|
|
['e', 'f', 'g']
|
|
|
|
Slices with negative values require some caching of *iterable*, but this
|
|
function takes care to minimize the amount of memory required.
|
|
|
|
For example, you can use a negative step with an infinite iterator:
|
|
|
|
>>> from itertools import count
|
|
>>> list(islice_extended(count(), 110, 99, -2))
|
|
[110, 108, 106, 104, 102, 100]
|
|
|
|
"""
|
|
s = slice(*args)
|
|
start = s.start
|
|
stop = s.stop
|
|
if s.step == 0:
|
|
raise ValueError('step argument must be a non-zero integer or None.')
|
|
step = s.step or 1
|
|
|
|
it = iter(iterable)
|
|
|
|
if step > 0:
|
|
start = 0 if (start is None) else start
|
|
|
|
if (start < 0):
|
|
# Consume all but the last -start items
|
|
cache = deque(enumerate(it, 1), maxlen=-start)
|
|
len_iter = cache[-1][0] if cache else 0
|
|
|
|
# Adjust start to be positive
|
|
i = max(len_iter + start, 0)
|
|
|
|
# Adjust stop to be positive
|
|
if stop is None:
|
|
j = len_iter
|
|
elif stop >= 0:
|
|
j = min(stop, len_iter)
|
|
else:
|
|
j = max(len_iter + stop, 0)
|
|
|
|
# Slice the cache
|
|
n = j - i
|
|
if n <= 0:
|
|
return
|
|
|
|
for index, item in islice(cache, 0, n, step):
|
|
yield item
|
|
elif (stop is not None) and (stop < 0):
|
|
# Advance to the start position
|
|
next(islice(it, start, start), None)
|
|
|
|
# When stop is negative, we have to carry -stop items while
|
|
# iterating
|
|
cache = deque(islice(it, -stop), maxlen=-stop)
|
|
|
|
for index, item in enumerate(it):
|
|
cached_item = cache.popleft()
|
|
if index % step == 0:
|
|
yield cached_item
|
|
cache.append(item)
|
|
else:
|
|
# When both start and stop are positive we have the normal case
|
|
for item in islice(it, start, stop, step):
|
|
yield item
|
|
else:
|
|
start = -1 if (start is None) else start
|
|
|
|
if (stop is not None) and (stop < 0):
|
|
# Consume all but the last items
|
|
n = -stop - 1
|
|
cache = deque(enumerate(it, 1), maxlen=n)
|
|
len_iter = cache[-1][0] if cache else 0
|
|
|
|
# If start and stop are both negative they are comparable and
|
|
# we can just slice. Otherwise we can adjust start to be negative
|
|
# and then slice.
|
|
if start < 0:
|
|
i, j = start, stop
|
|
else:
|
|
i, j = min(start - len_iter, -1), None
|
|
|
|
for index, item in list(cache)[i:j:step]:
|
|
yield item
|
|
else:
|
|
# Advance to the stop position
|
|
if stop is not None:
|
|
m = stop + 1
|
|
next(islice(it, m, m), None)
|
|
|
|
# stop is positive, so if start is negative they are not comparable
|
|
# and we need the rest of the items.
|
|
if start < 0:
|
|
i = start
|
|
n = None
|
|
# stop is None and start is positive, so we just need items up to
|
|
# the start index.
|
|
elif stop is None:
|
|
i = None
|
|
n = start + 1
|
|
# Both stop and start are positive, so they are comparable.
|
|
else:
|
|
i = None
|
|
n = start - stop
|
|
if n <= 0:
|
|
return
|
|
|
|
cache = list(islice(it, n))
|
|
|
|
for item in cache[i::step]:
|
|
yield item
|
|
|
|
|
|
def always_reversible(iterable):
|
|
"""An extension of :func:`reversed` that supports all iterables, not
|
|
just those which implement the ``Reversible`` or ``Sequence`` protocols.
|
|
|
|
>>> print(*always_reversible(x for x in range(3)))
|
|
2 1 0
|
|
|
|
If the iterable is already reversible, this function returns the
|
|
result of :func:`reversed()`. If the iterable is not reversible,
|
|
this function will cache the remaining items in the iterable and
|
|
yield them in reverse order, which may require significant storage.
|
|
"""
|
|
try:
|
|
return reversed(iterable)
|
|
except TypeError:
|
|
return reversed(list(iterable))
|
|
|
|
|
|
def consecutive_groups(iterable, ordering=lambda x: x):
|
|
"""Yield groups of consecutive items using :func:`itertools.groupby`.
|
|
The *ordering* function determines whether two items are adjacent by
|
|
returning their position.
|
|
|
|
By default, the ordering function is the identity function. This is
|
|
suitable for finding runs of numbers:
|
|
|
|
>>> iterable = [1, 10, 11, 12, 20, 30, 31, 32, 33, 40]
|
|
>>> for group in consecutive_groups(iterable):
|
|
... print(list(group))
|
|
[1]
|
|
[10, 11, 12]
|
|
[20]
|
|
[30, 31, 32, 33]
|
|
[40]
|
|
|
|
For finding runs of adjacent letters, try using the :meth:`index` method
|
|
of a string of letters:
|
|
|
|
>>> from string import ascii_lowercase
|
|
>>> iterable = 'abcdfgilmnop'
|
|
>>> ordering = ascii_lowercase.index
|
|
>>> for group in consecutive_groups(iterable, ordering):
|
|
... print(list(group))
|
|
['a', 'b', 'c', 'd']
|
|
['f', 'g']
|
|
['i']
|
|
['l', 'm', 'n', 'o', 'p']
|
|
|
|
"""
|
|
for k, g in groupby(
|
|
enumerate(iterable), key=lambda x: x[0] - ordering(x[1])
|
|
):
|
|
yield map(itemgetter(1), g)
|
|
|
|
|
|
def difference(iterable, func=sub):
|
|
"""By default, compute the first difference of *iterable* using
|
|
:func:`operator.sub`.
|
|
|
|
>>> iterable = [0, 1, 3, 6, 10]
|
|
>>> list(difference(iterable))
|
|
[0, 1, 2, 3, 4]
|
|
|
|
This is the opposite of :func:`accumulate`'s default behavior:
|
|
|
|
>>> from more_itertools import accumulate
|
|
>>> iterable = [0, 1, 2, 3, 4]
|
|
>>> list(accumulate(iterable))
|
|
[0, 1, 3, 6, 10]
|
|
>>> list(difference(accumulate(iterable)))
|
|
[0, 1, 2, 3, 4]
|
|
|
|
By default *func* is :func:`operator.sub`, but other functions can be
|
|
specified. They will be applied as follows::
|
|
|
|
A, B, C, D, ... --> A, func(B, A), func(C, B), func(D, C), ...
|
|
|
|
For example, to do progressive division:
|
|
|
|
>>> iterable = [1, 2, 6, 24, 120] # Factorial sequence
|
|
>>> func = lambda x, y: x // y
|
|
>>> list(difference(iterable, func))
|
|
[1, 2, 3, 4, 5]
|
|
|
|
"""
|
|
a, b = tee(iterable)
|
|
try:
|
|
item = next(b)
|
|
except StopIteration:
|
|
return iter([])
|
|
return chain([item], map(lambda x: func(x[1], x[0]), zip(a, b)))
|
|
|
|
|
|
class SequenceView(Sequence):
|
|
"""Return a read-only view of the sequence object *target*.
|
|
|
|
:class:`SequenceView` objects are analogous to Python's built-in
|
|
"dictionary view" types. They provide a dynamic view of a sequence's items,
|
|
meaning that when the sequence updates, so does the view.
|
|
|
|
>>> seq = ['0', '1', '2']
|
|
>>> view = SequenceView(seq)
|
|
>>> view
|
|
SequenceView(['0', '1', '2'])
|
|
>>> seq.append('3')
|
|
>>> view
|
|
SequenceView(['0', '1', '2', '3'])
|
|
|
|
Sequence views support indexing, slicing, and length queries. They act
|
|
like the underlying sequence, except they don't allow assignment:
|
|
|
|
>>> view[1]
|
|
'1'
|
|
>>> view[1:-1]
|
|
['1', '2']
|
|
>>> len(view)
|
|
4
|
|
|
|
Sequence views are useful as an alternative to copying, as they don't
|
|
require (much) extra storage.
|
|
|
|
"""
|
|
def __init__(self, target):
|
|
if not isinstance(target, Sequence):
|
|
raise TypeError
|
|
self._target = target
|
|
|
|
def __getitem__(self, index):
|
|
return self._target[index]
|
|
|
|
def __len__(self):
|
|
return len(self._target)
|
|
|
|
def __repr__(self):
|
|
return '{}({})'.format(self.__class__.__name__, repr(self._target))
|
|
|
|
|
|
class seekable(object):
|
|
"""Wrap an iterator to allow for seeking backward and forward. This
|
|
progressively caches the items in the source iterable so they can be
|
|
re-visited.
|
|
|
|
Call :meth:`seek` with an index to seek to that position in the source
|
|
iterable.
|
|
|
|
To "reset" an iterator, seek to ``0``:
|
|
|
|
>>> from itertools import count
|
|
>>> it = seekable((str(n) for n in count()))
|
|
>>> next(it), next(it), next(it)
|
|
('0', '1', '2')
|
|
>>> it.seek(0)
|
|
>>> next(it), next(it), next(it)
|
|
('0', '1', '2')
|
|
>>> next(it)
|
|
'3'
|
|
|
|
You can also seek forward:
|
|
|
|
>>> it = seekable((str(n) for n in range(20)))
|
|
>>> it.seek(10)
|
|
>>> next(it)
|
|
'10'
|
|
>>> it.seek(20) # Seeking past the end of the source isn't a problem
|
|
>>> list(it)
|
|
[]
|
|
>>> it.seek(0) # Resetting works even after hitting the end
|
|
>>> next(it), next(it), next(it)
|
|
('0', '1', '2')
|
|
|
|
The cache grows as the source iterable progresses, so beware of wrapping
|
|
very large or infinite iterables.
|
|
|
|
You may view the contents of the cache with the :meth:`elements` method.
|
|
That returns a :class:`SequenceView`, a view that updates automatically:
|
|
|
|
>>> it = seekable((str(n) for n in range(10)))
|
|
>>> next(it), next(it), next(it)
|
|
('0', '1', '2')
|
|
>>> elements = it.elements()
|
|
>>> elements
|
|
SequenceView(['0', '1', '2'])
|
|
>>> next(it)
|
|
'3'
|
|
>>> elements
|
|
SequenceView(['0', '1', '2', '3'])
|
|
|
|
"""
|
|
|
|
def __init__(self, iterable):
|
|
self._source = iter(iterable)
|
|
self._cache = []
|
|
self._index = None
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self._index is not None:
|
|
try:
|
|
item = self._cache[self._index]
|
|
except IndexError:
|
|
self._index = None
|
|
else:
|
|
self._index += 1
|
|
return item
|
|
|
|
item = next(self._source)
|
|
self._cache.append(item)
|
|
return item
|
|
|
|
next = __next__
|
|
|
|
def elements(self):
|
|
return SequenceView(self._cache)
|
|
|
|
def seek(self, index):
|
|
self._index = index
|
|
remainder = index - len(self._cache)
|
|
if remainder > 0:
|
|
consume(self, remainder)
|
|
|
|
|
|
class run_length(object):
|
|
"""
|
|
:func:`run_length.encode` compresses an iterable with run-length encoding.
|
|
It yields groups of repeated items with the count of how many times they
|
|
were repeated:
|
|
|
|
>>> uncompressed = 'abbcccdddd'
|
|
>>> list(run_length.encode(uncompressed))
|
|
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
|
|
|
|
:func:`run_length.decode` decompresses an iterable that was previously
|
|
compressed with run-length encoding. It yields the items of the
|
|
decompressed iterable:
|
|
|
|
>>> compressed = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
|
|
>>> list(run_length.decode(compressed))
|
|
['a', 'b', 'b', 'c', 'c', 'c', 'd', 'd', 'd', 'd']
|
|
|
|
"""
|
|
|
|
@staticmethod
|
|
def encode(iterable):
|
|
return ((k, ilen(g)) for k, g in groupby(iterable))
|
|
|
|
@staticmethod
|
|
def decode(iterable):
|
|
return chain.from_iterable(repeat(k, n) for k, n in iterable)
|
|
|
|
|
|
def exactly_n(iterable, n, predicate=bool):
|
|
"""Return ``True`` if exactly ``n`` items in the iterable are ``True``
|
|
according to the *predicate* function.
|
|
|
|
>>> exactly_n([True, True, False], 2)
|
|
True
|
|
>>> exactly_n([True, True, False], 1)
|
|
False
|
|
>>> exactly_n([0, 1, 2, 3, 4, 5], 3, lambda x: x < 3)
|
|
True
|
|
|
|
The iterable will be advanced until ``n + 1`` truthy items are encountered,
|
|
so avoid calling it on infinite iterables.
|
|
|
|
"""
|
|
return len(take(n + 1, filter(predicate, iterable))) == n
|
|
|
|
|
|
def circular_shifts(iterable):
|
|
"""Return a list of circular shifts of *iterable*.
|
|
|
|
>>> circular_shifts(range(4))
|
|
[(0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2)]
|
|
"""
|
|
lst = list(iterable)
|
|
return take(len(lst), windowed(cycle(lst), len(lst)))
|
|
|
|
|
|
def make_decorator(wrapping_func, result_index=0):
|
|
"""Return a decorator version of *wrapping_func*, which is a function that
|
|
modifies an iterable. *result_index* is the position in that function's
|
|
signature where the iterable goes.
|
|
|
|
This lets you use itertools on the "production end," i.e. at function
|
|
definition. This can augment what the function returns without changing the
|
|
function's code.
|
|
|
|
For example, to produce a decorator version of :func:`chunked`:
|
|
|
|
>>> from more_itertools import chunked
|
|
>>> chunker = make_decorator(chunked, result_index=0)
|
|
>>> @chunker(3)
|
|
... def iter_range(n):
|
|
... return iter(range(n))
|
|
...
|
|
>>> list(iter_range(9))
|
|
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
|
|
|
|
To only allow truthy items to be returned:
|
|
|
|
>>> truth_serum = make_decorator(filter, result_index=1)
|
|
>>> @truth_serum(bool)
|
|
... def boolean_test():
|
|
... return [0, 1, '', ' ', False, True]
|
|
...
|
|
>>> list(boolean_test())
|
|
[1, ' ', True]
|
|
|
|
The :func:`peekable` and :func:`seekable` wrappers make for practical
|
|
decorators:
|
|
|
|
>>> from more_itertools import peekable
|
|
>>> peekable_function = make_decorator(peekable)
|
|
>>> @peekable_function()
|
|
... def str_range(*args):
|
|
... return (str(x) for x in range(*args))
|
|
...
|
|
>>> it = str_range(1, 20, 2)
|
|
>>> next(it), next(it), next(it)
|
|
('1', '3', '5')
|
|
>>> it.peek()
|
|
'7'
|
|
>>> next(it)
|
|
'7'
|
|
|
|
"""
|
|
# See https://sites.google.com/site/bbayles/index/decorator_factory for
|
|
# notes on how this works.
|
|
def decorator(*wrapping_args, **wrapping_kwargs):
|
|
def outer_wrapper(f):
|
|
def inner_wrapper(*args, **kwargs):
|
|
result = f(*args, **kwargs)
|
|
wrapping_args_ = list(wrapping_args)
|
|
wrapping_args_.insert(result_index, result)
|
|
return wrapping_func(*wrapping_args_, **wrapping_kwargs)
|
|
|
|
return inner_wrapper
|
|
|
|
return outer_wrapper
|
|
|
|
return decorator
|
|
|
|
|
|
def map_reduce(iterable, keyfunc, valuefunc=None, reducefunc=None):
|
|
"""Return a dictionary that maps the items in *iterable* to categories
|
|
defined by *keyfunc*, transforms them with *valuefunc*, and
|
|
then summarizes them by category with *reducefunc*.
|
|
|
|
*valuefunc* defaults to the identity function if it is unspecified.
|
|
If *reducefunc* is unspecified, no summarization takes place:
|
|
|
|
>>> keyfunc = lambda x: x.upper()
|
|
>>> result = map_reduce('abbccc', keyfunc)
|
|
>>> sorted(result.items())
|
|
[('A', ['a']), ('B', ['b', 'b']), ('C', ['c', 'c', 'c'])]
|
|
|
|
Specifying *valuefunc* transforms the categorized items:
|
|
|
|
>>> keyfunc = lambda x: x.upper()
|
|
>>> valuefunc = lambda x: 1
|
|
>>> result = map_reduce('abbccc', keyfunc, valuefunc)
|
|
>>> sorted(result.items())
|
|
[('A', [1]), ('B', [1, 1]), ('C', [1, 1, 1])]
|
|
|
|
Specifying *reducefunc* summarizes the categorized items:
|
|
|
|
>>> keyfunc = lambda x: x.upper()
|
|
>>> valuefunc = lambda x: 1
|
|
>>> reducefunc = sum
|
|
>>> result = map_reduce('abbccc', keyfunc, valuefunc, reducefunc)
|
|
>>> sorted(result.items())
|
|
[('A', 1), ('B', 2), ('C', 3)]
|
|
|
|
You may want to filter the input iterable before applying the map/reduce
|
|
procedure:
|
|
|
|
>>> all_items = range(30)
|
|
>>> items = [x for x in all_items if 10 <= x <= 20] # Filter
|
|
>>> keyfunc = lambda x: x % 2 # Evens map to 0; odds to 1
|
|
>>> categories = map_reduce(items, keyfunc=keyfunc)
|
|
>>> sorted(categories.items())
|
|
[(0, [10, 12, 14, 16, 18, 20]), (1, [11, 13, 15, 17, 19])]
|
|
>>> summaries = map_reduce(items, keyfunc=keyfunc, reducefunc=sum)
|
|
>>> sorted(summaries.items())
|
|
[(0, 90), (1, 75)]
|
|
|
|
Note that all items in the iterable are gathered into a list before the
|
|
summarization step, which may require significant storage.
|
|
|
|
The returned object is a :obj:`collections.defaultdict` with the
|
|
``default_factory`` set to ``None``, such that it behaves like a normal
|
|
dictionary.
|
|
|
|
"""
|
|
valuefunc = (lambda x: x) if (valuefunc is None) else valuefunc
|
|
|
|
ret = defaultdict(list)
|
|
for item in iterable:
|
|
key = keyfunc(item)
|
|
value = valuefunc(item)
|
|
ret[key].append(value)
|
|
|
|
if reducefunc is not None:
|
|
for key, value_list in ret.items():
|
|
ret[key] = reducefunc(value_list)
|
|
|
|
ret.default_factory = None
|
|
return ret
|
|
|
|
|
|
def rlocate(iterable, pred=bool, window_size=None):
|
|
"""Yield the index of each item in *iterable* for which *pred* returns
|
|
``True``, starting from the right and moving left.
|
|
|
|
*pred* defaults to :func:`bool`, which will select truthy items:
|
|
|
|
>>> list(rlocate([0, 1, 1, 0, 1, 0, 0])) # Truthy at 1, 2, and 4
|
|
[4, 2, 1]
|
|
|
|
Set *pred* to a custom function to, e.g., find the indexes for a particular
|
|
item:
|
|
|
|
>>> iterable = iter('abcb')
|
|
>>> pred = lambda x: x == 'b'
|
|
>>> list(rlocate(iterable, pred))
|
|
[3, 1]
|
|
|
|
If *window_size* is given, then the *pred* function will be called with
|
|
that many items. This enables searching for sub-sequences:
|
|
|
|
>>> iterable = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
|
|
>>> pred = lambda *args: args == (1, 2, 3)
|
|
>>> list(rlocate(iterable, pred=pred, window_size=3))
|
|
[9, 5, 1]
|
|
|
|
Beware, this function won't return anything for infinite iterables.
|
|
If *iterable* is reversible, ``rlocate`` will reverse it and search from
|
|
the right. Otherwise, it will search from the left and return the results
|
|
in reverse order.
|
|
|
|
See :func:`locate` to for other example applications.
|
|
|
|
"""
|
|
if window_size is None:
|
|
try:
|
|
len_iter = len(iterable)
|
|
return (
|
|
len_iter - i - 1 for i in locate(reversed(iterable), pred)
|
|
)
|
|
except TypeError:
|
|
pass
|
|
|
|
return reversed(list(locate(iterable, pred, window_size)))
|
|
|
|
|
|
def replace(iterable, pred, substitutes, count=None, window_size=1):
|
|
"""Yield the items from *iterable*, replacing the items for which *pred*
|
|
returns ``True`` with the items from the iterable *substitutes*.
|
|
|
|
>>> iterable = [1, 1, 0, 1, 1, 0, 1, 1]
|
|
>>> pred = lambda x: x == 0
|
|
>>> substitutes = (2, 3)
|
|
>>> list(replace(iterable, pred, substitutes))
|
|
[1, 1, 2, 3, 1, 1, 2, 3, 1, 1]
|
|
|
|
If *count* is given, the number of replacements will be limited:
|
|
|
|
>>> iterable = [1, 1, 0, 1, 1, 0, 1, 1, 0]
|
|
>>> pred = lambda x: x == 0
|
|
>>> substitutes = [None]
|
|
>>> list(replace(iterable, pred, substitutes, count=2))
|
|
[1, 1, None, 1, 1, None, 1, 1, 0]
|
|
|
|
Use *window_size* to control the number of items passed as arguments to
|
|
*pred*. This allows for locating and replacing subsequences.
|
|
|
|
>>> iterable = [0, 1, 2, 5, 0, 1, 2, 5]
|
|
>>> window_size = 3
|
|
>>> pred = lambda *args: args == (0, 1, 2) # 3 items passed to pred
|
|
>>> substitutes = [3, 4] # Splice in these items
|
|
>>> list(replace(iterable, pred, substitutes, window_size=window_size))
|
|
[3, 4, 5, 3, 4, 5]
|
|
|
|
"""
|
|
if window_size < 1:
|
|
raise ValueError('window_size must be at least 1')
|
|
|
|
# Save the substitutes iterable, since it's used more than once
|
|
substitutes = tuple(substitutes)
|
|
|
|
# Add padding such that the number of windows matches the length of the
|
|
# iterable
|
|
it = chain(iterable, [_marker] * (window_size - 1))
|
|
windows = windowed(it, window_size)
|
|
|
|
n = 0
|
|
for w in windows:
|
|
# If the current window matches our predicate (and we haven't hit
|
|
# our maximum number of replacements), splice in the substitutes
|
|
# and then consume the following windows that overlap with this one.
|
|
# For example, if the iterable is (0, 1, 2, 3, 4...)
|
|
# and the window size is 2, we have (0, 1), (1, 2), (2, 3)...
|
|
# If the predicate matches on (0, 1), we need to zap (0, 1) and (1, 2)
|
|
if pred(*w):
|
|
if (count is None) or (n < count):
|
|
n += 1
|
|
for s in substitutes:
|
|
yield s
|
|
consume(windows, window_size - 1)
|
|
continue
|
|
|
|
# If there was no match (or we've reached the replacement limit),
|
|
# yield the first item from the window.
|
|
if w and (w[0] is not _marker):
|
|
yield w[0]
|