greenshot/GreenshotPlugin/Core/AnimationHelpers.cs

572 lines
16 KiB
C#

/*
* Greenshot - a free and open source screenshot tool
* Copyright (C) 2007-2016 Thomas Braun, Jens Klingen, Robin Krom
*
* For more information see: http://getgreenshot.org/
* The Greenshot project is hosted on GitHub https://github.com/greenshot/greenshot
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
using System;
using System.Drawing;
using System.Collections.Generic;
namespace GreenshotPlugin.Core {
/// <summary>
/// Helper interface for passing base type
/// </summary>
public interface IAnimator {
/// <summary>
/// Is there a next frame?
/// </summary>
bool HasNext {
get;
}
/// <summary>
/// The amount of frames
/// </summary>
int Frames {
get;
}
/// <summary>
/// Current frame number
/// </summary>
int CurrentFrameNr {
get;
}
}
/// <summary>
/// This class is used to store a animation leg
/// </summary>
internal class AnimationLeg<T> {
public T Destination {
get;
set;
}
public int Frames {
get;
set;
}
public EasingType EasingType {
get;
set;
}
public EasingMode EasingMode {
get;
set;
}
}
/// <summary>
/// Base class for the animation logic, this only implements Properties and a constructor
/// </summary>
/// <typeparam name="T">Type for the animation, like Point/Rectangle/Size</typeparam>
public abstract class AnimatorBase<T> : IAnimator {
private readonly Queue<AnimationLeg<T>> _queue = new Queue<AnimationLeg<T>>();
/// <summary>
/// Constructor
/// </summary>
/// <param name="first"></param>
/// <param name="last"></param>
/// <param name="frames"></param>
/// <param name="easingType"></param>
/// <param name="easingMode"></param>
public AnimatorBase(T first, T last, int frames, EasingType easingType, EasingMode easingMode) {
First = first;
Last = last;
Frames = frames;
Current = first;
EasingType = easingType;
EasingMode = easingMode;
}
/// <summary>
/// The amount of frames
/// </summary>
public int Frames {
get;
private set;
}
/// <summary>
/// Current frame number
/// </summary>
public int CurrentFrameNr { get; private set; }
/// <summary>
/// First animation value
/// </summary>
public T First { get; private set; }
/// <summary>
/// Last animation value, of this "leg"
/// </summary>
public T Last { get; private set; }
/// <summary>
/// Final animation value, this is including the legs
/// </summary>
public T Final {
get {
if (_queue.Count == 0) {
return Last;
}
return _queue.ToArray()[_queue.Count - 1].Destination;
}
}
/// <summary>
/// This restarts the current animation and changes the last frame
/// </summary>
/// <param name="newDestination"></param>
public void ChangeDestination(T newDestination) {
ChangeDestination(newDestination, Frames);
}
/// <summary>
/// This restarts the current animation and changes the last frame
/// </summary>
/// <param name="newDestination"></param>
/// <param name="frames"></param>
public void ChangeDestination(T newDestination, int frames) {
_queue.Clear();
First = Current;
CurrentFrameNr = 0;
Frames = frames;
Last = newDestination;
}
/// <summary>
/// Queue the destination, it will be used to continue at the last frame
/// All values will stay the same
/// </summary>
/// <param name="queuedDestination"></param>
public void QueueDestinationLeg(T queuedDestination) {
QueueDestinationLeg(queuedDestination, Frames, EasingType, EasingMode);
}
/// <summary>
/// Queue the destination, it will be used to continue at the last frame
/// </summary>
/// <param name="queuedDestination"></param>
/// <param name="frames"></param>
public void QueueDestinationLeg(T queuedDestination, int frames) {
QueueDestinationLeg(queuedDestination, frames, EasingType, EasingMode);
}
/// <summary>
/// Queue the destination, it will be used to continue at the last frame
/// </summary>
/// <param name="queuedDestination"></param>
/// <param name="frames"></param>
/// <param name="easingType">EasingType</param>
public void QueueDestinationLeg(T queuedDestination, int frames, EasingType easingType) {
QueueDestinationLeg(queuedDestination, frames, easingType, EasingMode);
}
/// <summary>
/// Queue the destination, it will be used to continue at the last frame
/// </summary>
/// <param name="queuedDestination"></param>
/// <param name="frames"></param>
/// <param name="easingType"></param>
/// <param name="easingMode"></param>
public void QueueDestinationLeg(T queuedDestination, int frames, EasingType easingType, EasingMode easingMode) {
AnimationLeg<T> leg = new AnimationLeg<T>
{
Destination = queuedDestination,
Frames = frames,
EasingType = easingType,
EasingMode = easingMode
};
_queue.Enqueue(leg);
}
/// <summary>
/// The EasingType to use for the animation
/// </summary>
public EasingType EasingType {
get;
set;
}
/// <summary>
/// The EasingMode to use for the animation
/// </summary>
public EasingMode EasingMode {
get;
set;
}
/// <summary>
/// Get the easing value, which is from 0-1 and depends on the frame
/// </summary>
protected double EasingValue {
get {
switch (EasingMode) {
case EasingMode.EaseOut:
return Easing.EaseOut(CurrentFrameNr / (double)Frames, EasingType);
case EasingMode.EaseInOut:
return Easing.EaseInOut(CurrentFrameNr / (double)Frames, EasingType);
case EasingMode.EaseIn:
default:
return Easing.EaseIn(CurrentFrameNr / (double)Frames, EasingType);
}
}
}
/// <summary>
/// Get the current (previous) frame object
/// </summary>
public virtual T Current { get; set; }
/// <summary>
/// Returns if there are any frame left, and if this is the case than the frame is increased.
/// </summary>
public virtual bool NextFrame {
get {
if (CurrentFrameNr < Frames) {
CurrentFrameNr++;
return true;
}
if (_queue.Count > 0) {
First = Current;
CurrentFrameNr = 0;
AnimationLeg<T> nextLeg = _queue.Dequeue();
Last = nextLeg.Destination;
Frames = nextLeg.Frames;
EasingType = nextLeg.EasingType;
EasingMode = nextLeg.EasingMode;
return true;
}
return false;
}
}
/// <summary>
/// Are there more frames to animate?
/// </summary>
public virtual bool HasNext {
get {
if (CurrentFrameNr < Frames) {
return true;
}
return _queue.Count > 0;
}
}
/// <summary>
/// Get the next animation frame value object
/// </summary>
/// <returns></returns>
public abstract T Next();
}
/// <summary>
/// Implementation of the RectangleAnimator
/// </summary>
public class RectangleAnimator : AnimatorBase<Rectangle> {
public RectangleAnimator(Rectangle first, Rectangle last, int frames)
: base(first, last, frames, EasingType.Linear, EasingMode.EaseIn) {
}
public RectangleAnimator(Rectangle first, Rectangle last, int frames, EasingType easingType)
: base(first, last, frames, easingType, EasingMode.EaseIn) {
}
public RectangleAnimator(Rectangle first, Rectangle last, int frames, EasingType easingType, EasingMode easingMode)
: base(first, last, frames, easingType, easingMode) {
}
/// <summary>
/// Calculate the next frame object
/// </summary>
/// <returns>Rectangle</returns>
public override Rectangle Next() {
if (NextFrame) {
double easingValue = EasingValue;
double dx = Last.X - First.X;
double dy = Last.Y - First.Y;
int x = First.X + (int)(easingValue * dx);
int y = First.Y + (int)(easingValue * dy);
double dw = Last.Width - First.Width;
double dh = Last.Height - First.Height;
int width = First.Width + (int)(easingValue * dw);
int height = First.Height + (int)(easingValue * dh);
Current = new Rectangle(x, y, width, height);
}
return Current;
}
}
/// <summary>
/// Implementation of the PointAnimator
/// </summary>
public class PointAnimator : AnimatorBase<Point> {
public PointAnimator(Point first, Point last, int frames)
: base(first, last, frames, EasingType.Linear, EasingMode.EaseIn) {
}
public PointAnimator(Point first, Point last, int frames, EasingType easingType)
: base(first, last, frames, easingType, EasingMode.EaseIn) {
}
public PointAnimator(Point first, Point last, int frames, EasingType easingType, EasingMode easingMode)
: base(first, last, frames, easingType, easingMode) {
}
/// <summary>
/// Calculate the next frame value
/// </summary>
/// <returns>Point</returns>
public override Point Next() {
if (NextFrame) {
double easingValue = EasingValue;
double dx = Last.X - First.X;
double dy = Last.Y - First.Y;
int x = First.X + (int)(easingValue * dx);
int y = First.Y + (int)(easingValue * dy);
Current = new Point(x, y);
}
return Current;
}
}
/// <summary>
/// Implementation of the SizeAnimator
/// </summary>
public class SizeAnimator : AnimatorBase<Size> {
public SizeAnimator(Size first, Size last, int frames)
: base(first, last, frames, EasingType.Linear, EasingMode.EaseIn) {
}
public SizeAnimator(Size first, Size last, int frames, EasingType easingType)
: base(first, last, frames, easingType, EasingMode.EaseIn) {
}
public SizeAnimator(Size first, Size last, int frames, EasingType easingType, EasingMode easingMode)
: base(first, last, frames, easingType, easingMode) {
}
/// <summary>
/// Calculate the next frame values
/// </summary>
/// <returns>Size</returns>
public override Size Next() {
if (NextFrame) {
double easingValue = EasingValue;
double dw = Last.Width - First.Width;
double dh = Last.Height - First.Height;
int width = First.Width + (int)(easingValue * dw);
int height = First.Height + (int)(easingValue * dh);
Current = new Size(width, height);
}
return Current;
}
}
/// <summary>
/// Implementation of the ColorAnimator
/// </summary>
public class ColorAnimator : AnimatorBase<Color> {
public ColorAnimator(Color first, Color last, int frames)
: base(first, last, frames, EasingType.Linear, EasingMode.EaseIn) {
}
public ColorAnimator(Color first, Color last, int frames, EasingType easingType)
: base(first, last, frames, easingType, EasingMode.EaseIn) {
}
public ColorAnimator(Color first, Color last, int frames, EasingType easingType, EasingMode easingMode)
: base(first, last, frames, easingType, easingMode) {
}
/// <summary>
/// Calculate the next frame values
/// </summary>
/// <returns>Color</returns>
public override Color Next() {
if (NextFrame) {
double easingValue = EasingValue;
double da = Last.A - First.A;
double dr = Last.R - First.R;
double dg = Last.G - First.G;
double db = Last.B - First.B;
int a = First.A + (int)(easingValue * da);
int r = First.R + (int)(easingValue * dr);
int g = First.G + (int)(easingValue * dg);
int b = First.B + (int)(easingValue * db);
Current = Color.FromArgb(a,r,g,b);
}
return Current;
}
}
/// <summary>
/// Implementation of the IntAnimator
/// </summary>
public class IntAnimator : AnimatorBase<int> {
public IntAnimator(int first, int last, int frames)
: base(first, last, frames, EasingType.Linear, EasingMode.EaseIn) {
}
public IntAnimator(int first, int last, int frames, EasingType easingType)
: base(first, last, frames, easingType, EasingMode.EaseIn) {
}
public IntAnimator(int first, int last, int frames, EasingType easingType, EasingMode easingMode)
: base(first, last, frames, easingType, easingMode) {
}
/// <summary>
/// Calculate the next frame values
/// </summary>
/// <returns>int</returns>
public override int Next() {
if (NextFrame) {
double easingValue = EasingValue;
double delta = Last - First;
Current = First + (int)(easingValue * delta);
}
return Current;
}
}
/// <summary>
/// Easing logic, to make the animations more "fluent"
/// </summary>
public static class Easing {
// Adapted from http://www.robertpenner.com/easing/penner_chapter7_tweening.pdf
public static double Ease(double linearStep, double acceleration, EasingType type) {
double easedStep = acceleration > 0 ? EaseIn(linearStep, type) : acceleration < 0 ? EaseOut(linearStep, type) : linearStep;
// Lerp:
return ((easedStep - linearStep) * Math.Abs(acceleration) + linearStep);
}
public static double EaseIn(double linearStep, EasingType type) {
switch (type) {
case EasingType.Step:
return linearStep < 0.5 ? 0 : 1;
case EasingType.Linear:
return linearStep;
case EasingType.Sine:
return Sine.EaseIn(linearStep);
case EasingType.Quadratic:
return Power.EaseIn(linearStep, 2);
case EasingType.Cubic:
return Power.EaseIn(linearStep, 3);
case EasingType.Quartic:
return Power.EaseIn(linearStep, 4);
case EasingType.Quintic:
return Power.EaseIn(linearStep, 5);
}
throw new NotImplementedException();
}
public static double EaseOut(double linearStep, EasingType type) {
switch (type) {
case EasingType.Step:
return linearStep < 0.5 ? 0 : 1;
case EasingType.Linear:
return linearStep;
case EasingType.Sine:
return Sine.EaseOut(linearStep);
case EasingType.Quadratic:
return Power.EaseOut(linearStep, 2);
case EasingType.Cubic:
return Power.EaseOut(linearStep, 3);
case EasingType.Quartic:
return Power.EaseOut(linearStep, 4);
case EasingType.Quintic:
return Power.EaseOut(linearStep, 5);
}
throw new NotImplementedException();
}
public static double EaseInOut(double linearStep, EasingType easeInType, EasingType easeOutType) {
return linearStep < 0.5 ? EaseInOut(linearStep, easeInType) : EaseInOut(linearStep, easeOutType);
}
public static double EaseInOut(double linearStep, EasingType type) {
switch (type) {
case EasingType.Step:
return linearStep < 0.5 ? 0 : 1;
case EasingType.Linear:
return linearStep;
case EasingType.Sine:
return Sine.EaseInOut(linearStep);
case EasingType.Quadratic:
return Power.EaseInOut(linearStep, 2);
case EasingType.Cubic:
return Power.EaseInOut(linearStep, 3);
case EasingType.Quartic:
return Power.EaseInOut(linearStep, 4);
case EasingType.Quintic:
return Power.EaseInOut(linearStep, 5);
}
throw new NotImplementedException();
}
private static class Sine {
public static double EaseIn(double s) {
return Math.Sin(s * (Math.PI / 2) - (Math.PI / 2)) + 1;
}
public static double EaseOut(double s) {
return Math.Sin(s * (Math.PI / 2));
}
public static double EaseInOut(double s) {
return Math.Sin(s * Math.PI - (Math.PI / 2) + 1) / 2;
}
}
private static class Power {
public static double EaseIn(double s, int power) {
return Math.Pow(s, power);
}
public static double EaseOut(double s, int power) {
var sign = power % 2 == 0 ? -1 : 1;
return sign * (Math.Pow(s - 1, power) + sign);
}
public static double EaseInOut(double s, int power) {
s *= 2;
if (s < 1) {
return EaseIn(s, power) / 2;
}
var sign = power % 2 == 0 ? -1 : 1;
return (sign / 2.0 * (Math.Pow(s - 2, power) + sign * 2));
}
}
}
/// <summary>
/// This defines the way the animation works
/// </summary>
public enum EasingType {
Step,
Linear,
Sine,
Quadratic,
Cubic,
Quartic,
Quintic
}
public enum EasingMode {
EaseIn,
EaseOut,
EaseInOut
}
}