ZeroTierOne/node/Topology.hpp
2024-09-26 08:52:29 -04:00

472 lines
15 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_TOPOLOGY_HPP
#define ZT_TOPOLOGY_HPP
#include "../include/ZeroTierOne.h"
#include "Address.hpp"
#include "Constants.hpp"
#include "Hashtable.hpp"
#include "Identity.hpp"
#include "InetAddress.hpp"
#include "Mutex.hpp"
#include "Path.hpp"
#include "Peer.hpp"
#include "World.hpp"
#include <algorithm>
#include <stdexcept>
#include <stdio.h>
#include <string.h>
#include <utility>
#include <vector>
namespace ZeroTier {
class RuntimeEnvironment;
/**
* Database of network topology
*/
class Topology {
public:
Topology(const RuntimeEnvironment* renv, void* tPtr);
~Topology();
/**
* Add a peer to database
*
* This will not replace existing peers. In that case the existing peer
* record is returned.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param peer Peer to add
* @return New or existing peer (should replace 'peer')
*/
SharedPtr<Peer> addPeer(void* tPtr, const SharedPtr<Peer>& peer);
/**
* Get a peer from its address
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param zta ZeroTier address of peer
* @return Peer or NULL if not found
*/
SharedPtr<Peer> getPeer(void* tPtr, const Address& zta);
/**
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param zta ZeroTier address of peer
* @return Identity or NULL identity if not found
*/
Identity getIdentity(void* tPtr, const Address& zta);
/**
* Get a peer only if it is presently in memory (no disk cache)
*
* This also does not update the lastUsed() time for peers, which means
* that it won't prevent them from falling out of RAM. This is currently
* used in the Cluster code to update peer info without forcing all peers
* across the entire cluster to remain in memory cache.
*
* @param zta ZeroTier address
*/
inline SharedPtr<Peer> getPeerNoCache(const Address& zta)
{
Mutex::Lock _l(_peers_m);
const SharedPtr<Peer>* const ap = _peers.get(zta);
if (ap) {
return *ap;
}
return SharedPtr<Peer>();
}
/**
* Get a Path object for a given local and remote physical address, creating if needed
*
* @param l Local socket
* @param r Remote address
* @return Pointer to canonicalized Path object
*/
inline SharedPtr<Path> getPath(const int64_t l, const InetAddress& r)
{
Mutex::Lock _l(_paths_m);
SharedPtr<Path>& p = _paths[Path::HashKey(l, r)];
if (! p) {
p.set(new Path(l, r));
}
return p;
}
/**
* Get the current best upstream peer
*
* @return Upstream or NULL if none available
*/
SharedPtr<Peer> getUpstreamPeer();
/**
* @param id Identity to check
* @return True if this is a root server or a network preferred relay from one of our networks
*/
bool isUpstream(const Identity& id) const;
/**
* @param addr Address to check
* @return True if we should accept a world update from this address
*/
bool shouldAcceptWorldUpdateFrom(const Address& addr) const;
/**
* @param ztaddr ZeroTier address
* @return Peer role for this device
*/
ZT_PeerRole role(const Address& ztaddr) const;
/**
* Check for prohibited endpoints
*
* Right now this returns true if the designated ZT address is a root and if
* the IP (IP only, not port) does not equal any of the IPs defined in the
* current World. This is an extra little security feature in case root keys
* get appropriated or something.
*
* Otherwise it returns false.
*
* @param ztaddr ZeroTier address
* @param ipaddr IP address
* @return True if this ZT/IP pair should not be allowed to be used
*/
bool isProhibitedEndpoint(const Address& ztaddr, const InetAddress& ipaddr) const;
/**
* Gets upstreams to contact and their stable endpoints (if known)
*
* @param eps Hash table to fill with addresses and their stable endpoints
*/
inline void getUpstreamsToContact(Hashtable<Address, std::vector<InetAddress> >& eps) const
{
Mutex::Lock _l(_upstreams_m);
for (std::vector<World::Root>::const_iterator i(_planet.roots().begin()); i != _planet.roots().end(); ++i) {
if (i->identity != RR->identity) {
std::vector<InetAddress>& ips = eps[i->identity.address()];
for (std::vector<InetAddress>::const_iterator j(i->stableEndpoints.begin()); j != i->stableEndpoints.end(); ++j) {
if (std::find(ips.begin(), ips.end(), *j) == ips.end()) {
ips.push_back(*j);
}
}
}
}
for (std::vector<World>::const_iterator m(_moons.begin()); m != _moons.end(); ++m) {
for (std::vector<World::Root>::const_iterator i(m->roots().begin()); i != m->roots().end(); ++i) {
if (i->identity != RR->identity) {
std::vector<InetAddress>& ips = eps[i->identity.address()];
for (std::vector<InetAddress>::const_iterator j(i->stableEndpoints.begin()); j != i->stableEndpoints.end(); ++j) {
if (std::find(ips.begin(), ips.end(), *j) == ips.end()) {
ips.push_back(*j);
}
}
}
}
}
for (std::vector<std::pair<uint64_t, Address> >::const_iterator m(_moonSeeds.begin()); m != _moonSeeds.end(); ++m) {
eps[m->second];
}
}
/**
* @return Vector of active upstream addresses (including roots)
*/
inline std::vector<Address> upstreamAddresses() const
{
Mutex::Lock _l(_upstreams_m);
return _upstreamAddresses;
}
/**
* @return Current moons
*/
inline std::vector<World> moons() const
{
Mutex::Lock _l(_upstreams_m);
return _moons;
}
/**
* @return Moon IDs we are waiting for from seeds
*/
inline std::vector<uint64_t> moonsWanted() const
{
Mutex::Lock _l(_upstreams_m);
std::vector<uint64_t> mw;
for (std::vector<std::pair<uint64_t, Address> >::const_iterator s(_moonSeeds.begin()); s != _moonSeeds.end(); ++s) {
if (std::find(mw.begin(), mw.end(), s->first) == mw.end()) {
mw.push_back(s->first);
}
}
return mw;
}
/**
* @return Current planet
*/
inline World planet() const
{
Mutex::Lock _l(_upstreams_m);
return _planet;
}
/**
* @return Current planet's world ID
*/
inline uint64_t planetWorldId() const
{
return _planet.id(); // safe to read without lock, and used from within eachPeer() so don't lock
}
/**
* @return Current planet's world timestamp
*/
inline uint64_t planetWorldTimestamp() const
{
return _planet.timestamp(); // safe to read without lock, and used from within eachPeer() so don't lock
}
/**
* Validate new world and update if newer and signature is okay
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param newWorld A new or updated planet or moon to learn
* @param alwaysAcceptNew If true, always accept new moons even if we're not waiting for one
* @return True if it was valid and newer than current (or totally new for moons)
*/
bool addWorld(void* tPtr, const World& newWorld, bool alwaysAcceptNew);
/**
* Add a moon
*
* This loads it from moons.d if present, and if not adds it to
* a list of moons that we want to contact.
*
* @param id Moon ID
* @param seed If non-NULL, an address of any member of the moon to contact
*/
void addMoon(void* tPtr, const uint64_t id, const Address& seed);
/**
* Remove a moon
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param id Moon's world ID
*/
void removeMoon(void* tPtr, const uint64_t id);
/**
* Clean and flush database
*/
void doPeriodicTasks(void* tPtr, int64_t now);
/**
* @param now Current time
* @return Number of peers with active direct paths
*/
inline unsigned long countActive(int64_t now) const
{
unsigned long cnt = 0;
Mutex::Lock _l(_peers_m);
Hashtable<Address, SharedPtr<Peer> >::Iterator i(const_cast<Topology*>(this)->_peers);
Address* a = (Address*)0;
SharedPtr<Peer>* p = (SharedPtr<Peer>*)0;
while (i.next(a, p)) {
const SharedPtr<Path> pp((*p)->getAppropriatePath(now, false));
if (pp) {
++cnt;
}
}
return cnt;
}
/**
* Apply a function or function object to all peers
*
* @param f Function to apply
* @tparam F Function or function object type
*/
template <typename F> inline void eachPeer(F f)
{
Mutex::Lock _l(_peers_m);
Hashtable<Address, SharedPtr<Peer> >::Iterator i(_peers);
Address* a = (Address*)0;
SharedPtr<Peer>* p = (SharedPtr<Peer>*)0;
while (i.next(a, p)) {
f(*this, *((const SharedPtr<Peer>*)p));
}
}
/**
* @return All currently active peers by address (unsorted)
*/
inline std::vector<std::pair<Address, SharedPtr<Peer> > > allPeers() const
{
Mutex::Lock _l(_peers_m);
return _peers.entries();
}
/**
* @return True if I am a root server in a planet or moon
*/
inline bool amUpstream() const
{
return _amUpstream;
}
/**
* Get info about a path
*
* The supplied result variables are not modified if no special config info is found.
*
* @param physicalAddress Physical endpoint address
* @param mtu Variable set to MTU
* @param trustedPathId Variable set to trusted path ID
*/
inline void getOutboundPathInfo(const InetAddress& physicalAddress, unsigned int& mtu, uint64_t& trustedPathId)
{
for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) {
if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) {
trustedPathId = _physicalPathConfig[i].second.trustedPathId;
mtu = _physicalPathConfig[i].second.mtu;
return;
}
}
}
/**
* Get the payload MTU for an outbound physical path (returns default if not configured)
*
* @param physicalAddress Physical endpoint address
* @return MTU
*/
inline unsigned int getOutboundPathMtu(const InetAddress& physicalAddress)
{
for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) {
if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) {
return _physicalPathConfig[i].second.mtu;
}
}
return ZT_DEFAULT_PHYSMTU;
}
/**
* Get the outbound trusted path ID for a physical address, or 0 if none
*
* @param physicalAddress Physical address to which we are sending the packet
* @return Trusted path ID or 0 if none (0 is not a valid trusted path ID)
*/
inline uint64_t getOutboundPathTrust(const InetAddress& physicalAddress)
{
for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) {
if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) {
return _physicalPathConfig[i].second.trustedPathId;
}
}
return 0;
}
/**
* Check whether in incoming trusted path marked packet is valid
*
* @param physicalAddress Originating physical address
* @param trustedPathId Trusted path ID from packet (from MAC field)
*/
inline bool shouldInboundPathBeTrusted(const InetAddress& physicalAddress, const uint64_t trustedPathId)
{
for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) {
if ((_physicalPathConfig[i].second.trustedPathId == trustedPathId) && (_physicalPathConfig[i].first.containsAddress(physicalAddress))) {
return true;
}
}
return false;
}
/**
* Set or clear physical path configuration (called via Node::setPhysicalPathConfiguration)
*/
inline void setPhysicalPathConfiguration(const struct sockaddr_storage* pathNetwork, const ZT_PhysicalPathConfiguration* pathConfig)
{
if (! pathNetwork) {
_numConfiguredPhysicalPaths = 0;
}
else {
std::map<InetAddress, ZT_PhysicalPathConfiguration> cpaths;
for (unsigned int i = 0, j = _numConfiguredPhysicalPaths; i < j; ++i) {
cpaths[_physicalPathConfig[i].first] = _physicalPathConfig[i].second;
}
if (pathConfig) {
ZT_PhysicalPathConfiguration pc(*pathConfig);
if (pc.mtu <= 0) {
pc.mtu = ZT_DEFAULT_PHYSMTU;
}
else if (pc.mtu < ZT_MIN_PHYSMTU) {
pc.mtu = ZT_MIN_PHYSMTU;
}
else if (pc.mtu > ZT_MAX_PHYSMTU) {
pc.mtu = ZT_MAX_PHYSMTU;
}
cpaths[*(reinterpret_cast<const InetAddress*>(pathNetwork))] = pc;
}
else {
cpaths.erase(*(reinterpret_cast<const InetAddress*>(pathNetwork)));
}
unsigned int cnt = 0;
for (std::map<InetAddress, ZT_PhysicalPathConfiguration>::const_iterator i(cpaths.begin()); ((i != cpaths.end()) && (cnt < ZT_MAX_CONFIGURABLE_PATHS)); ++i) {
_physicalPathConfig[cnt].first = i->first;
_physicalPathConfig[cnt].second = i->second;
++cnt;
}
_numConfiguredPhysicalPaths = cnt;
}
}
private:
Identity _getIdentity(void* tPtr, const Address& zta);
void _memoizeUpstreams(void* tPtr);
void _savePeer(void* tPtr, const SharedPtr<Peer>& peer);
const RuntimeEnvironment* const RR;
std::pair<InetAddress, ZT_PhysicalPathConfiguration> _physicalPathConfig[ZT_MAX_CONFIGURABLE_PATHS];
volatile unsigned int _numConfiguredPhysicalPaths;
Hashtable<Address, SharedPtr<Peer> > _peers;
Mutex _peers_m;
Hashtable<Path::HashKey, SharedPtr<Path> > _paths;
Mutex _paths_m;
World _planet;
std::vector<World> _moons;
std::vector<std::pair<uint64_t, Address> > _moonSeeds;
std::vector<Address> _upstreamAddresses;
bool _amUpstream;
Mutex _upstreams_m; // locks worlds, upstream info, moon info, etc.
};
} // namespace ZeroTier
#endif