ZeroTierOne/node/Utils.cpp

310 lines
7.3 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <time.h>
#include <sys/stat.h>
#include "Constants.hpp"
#ifdef __UNIX_LIKE__
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include <dirent.h>
#ifdef ZT_ARCH_ARM_HAS_NEON
#ifdef __LINUX__
#include <sys/auxv.h>
#endif
#endif
#endif
#ifdef __WINDOWS__
#include <wincrypt.h>
#include <intrin.h>
#endif
#include "Utils.hpp"
#include "Mutex.hpp"
#include "Salsa20.hpp"
#ifdef __APPLE__
#include <TargetConditionals.h>
#endif
#if defined(__ANDROID__) && defined(__aarch64__)
#include <asm/hwcap.h>
#endif
#ifdef ZT_ARCH_ARM_HAS_NEON
#ifdef __LINUX__
#include <sys/auxv.h>
#include <asm/hwcap.h>
#endif
#if defined(__FreeBSD__)
#include <elf.h>
#include <sys/auxv.h>
static inline long getauxval(int caps)
{
long hwcaps = 0;
elf_aux_info(caps, &hwcaps, sizeof(hwcaps));
return hwcaps;
}
#endif
// If these are not even defined, obviously they are not supported.
#ifndef HWCAP_AES
#define HWCAP_AES 0
#endif
#ifndef HWCAP_CRC32
#define HWCAP_CRC32 0
#endif
#ifndef HWCAP_PMULL
#define HWCAP_PMULL 0
#endif
#ifndef HWCAP_SHA1
#define HWCAP_SHA1 0
#endif
#ifndef HWCAP_SHA2
#define HWCAP_SHA2 0
#endif
#endif // ZT_ARCH_ARM_HAS_NEON
namespace ZeroTier {
const uint64_t Utils::ZERO256[4] = {0ULL,0ULL,0ULL,0ULL};
const char Utils::HEXCHARS[16] = { '0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f' };
#ifdef ZT_ARCH_ARM_HAS_NEON
Utils::ARMCapabilities::ARMCapabilities() noexcept
{
#ifdef __APPLE__
this->aes = true;
this->crc32 = true;
this->pmull = true;
this->sha1 = true;
this->sha2 = true;
#else
#ifdef HWCAP2_AES
if (sizeof(void *) == 4) {
const long hwcaps2 = getauxval(AT_HWCAP2);
this->aes = (hwcaps2 & HWCAP2_AES) != 0;
this->crc32 = (hwcaps2 & HWCAP2_CRC32) != 0;
this->pmull = (hwcaps2 & HWCAP2_PMULL) != 0;
this->sha1 = (hwcaps2 & HWCAP2_SHA1) != 0;
this->sha2 = (hwcaps2 & HWCAP2_SHA2) != 0;
} else {
#endif
const long hwcaps = getauxval(AT_HWCAP);
this->aes = (hwcaps & HWCAP_AES) != 0;
this->crc32 = (hwcaps & HWCAP_CRC32) != 0;
this->pmull = (hwcaps & HWCAP_PMULL) != 0;
this->sha1 = (hwcaps & HWCAP_SHA1) != 0;
this->sha2 = (hwcaps & HWCAP_SHA2) != 0;
#ifdef HWCAP2_AES
}
#endif
#endif // __APPLE__
}
const Utils::ARMCapabilities Utils::ARMCAP;
#endif
#ifdef ZT_ARCH_X64
Utils::CPUIDRegisters::CPUIDRegisters() noexcept
{
uint32_t eax, ebx, ecx, edx;
#ifdef __WINDOWS__
int regs[4];
__cpuid(regs,1);
eax = (uint32_t)regs[0];
ebx = (uint32_t)regs[1];
ecx = (uint32_t)regs[2];
edx = (uint32_t)regs[3];
#else
__asm__ __volatile__ (
"cpuid"
: "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
: "a"(1), "c"(0)
);
#endif
rdrand = ((ecx & (1U << 30U)) != 0);
aes = (((ecx & (1U << 25U)) != 0) && ((ecx & (1U << 19U)) != 0) && ((ecx & (1U << 1U)) != 0));
avx = ((ecx & (1U << 25U)) != 0);
#ifdef __WINDOWS__
__cpuid(regs,7);
eax = (uint32_t)regs[0];
ebx = (uint32_t)regs[1];
ecx = (uint32_t)regs[2];
edx = (uint32_t)regs[3];
#else
__asm__ __volatile__ (
"cpuid"
: "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
: "a"(7), "c"(0)
);
#endif
vaes = aes && avx && ((ecx & (1U << 9U)) != 0);
vpclmulqdq = aes && avx && ((ecx & (1U << 10U)) != 0);
avx2 = avx && ((ebx & (1U << 5U)) != 0);
avx512f = avx && ((ebx & (1U << 16U)) != 0);
sha = ((ebx & (1U << 29U)) != 0);
fsrm = ((edx & (1U << 4U)) != 0);
}
const Utils::CPUIDRegisters Utils::CPUID;
#endif
// Crazy hack to force memory to be securely zeroed in spite of the best efforts of optimizing compilers.
static void _Utils_doBurn(volatile uint8_t *ptr,unsigned int len)
{
volatile uint8_t *const end = ptr + len;
while (ptr != end) {
*(ptr++) = (uint8_t)0;
}
}
static void (*volatile _Utils_doBurn_ptr)(volatile uint8_t *,unsigned int) = _Utils_doBurn;
void Utils::burn(void *ptr,unsigned int len) { (_Utils_doBurn_ptr)((volatile uint8_t *)ptr,len); }
static unsigned long _Utils_itoa(unsigned long n,char *s)
{
if (n == 0) {
return 0;
}
unsigned long pos = _Utils_itoa(n / 10,s);
if (pos >= 22) { // sanity check, should be impossible
pos = 22;
}
s[pos] = '0' + (char)(n % 10);
return pos + 1;
}
char *Utils::decimal(unsigned long n,char s[24])
{
if (n == 0) {
s[0] = '0';
s[1] = (char)0;
return s;
}
s[_Utils_itoa(n,s)] = (char)0;
return s;
}
void Utils::getSecureRandom(void *buf,unsigned int bytes)
{
static Mutex globalLock;
static Salsa20 s20;
static bool s20Initialized = false;
static uint8_t randomBuf[65536];
static unsigned int randomPtr = sizeof(randomBuf);
Mutex::Lock _l(globalLock);
/* Just for posterity we Salsa20 encrypt the result of whatever system
* CSPRNG we use. There have been several bugs at the OS or OS distribution
* level in the past that resulted in systematically weak or predictable
* keys due to random seeding problems. This mitigates that by grabbing
* a bit of extra entropy and further randomizing the result, and comes
* at almost no cost and with no real downside if the random source is
* good. */
if (!s20Initialized) {
s20Initialized = true;
uint64_t s20Key[4];
s20Key[0] = (uint64_t)time(0); // system clock
s20Key[1] = (uint64_t)buf; // address of buf
s20Key[2] = (uint64_t)s20Key; // address of s20Key[]
s20Key[3] = (uint64_t)&s20; // address of s20
s20.init(s20Key,s20Key);
}
#ifdef __WINDOWS__
static HCRYPTPROV cryptProvider = NULL;
for(unsigned int i=0;i<bytes;++i) {
if (randomPtr >= sizeof(randomBuf)) {
if (cryptProvider == NULL) {
if (!CryptAcquireContextA(&cryptProvider,NULL,NULL,PROV_RSA_FULL,CRYPT_VERIFYCONTEXT|CRYPT_SILENT)) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to obtain WinCrypt context!\r\n");
exit(1);
}
}
if (!CryptGenRandom(cryptProvider,(DWORD)sizeof(randomBuf),(BYTE *)randomBuf)) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() CryptGenRandom failed!\r\n");
exit(1);
}
randomPtr = 0;
s20.crypt12(randomBuf,randomBuf,sizeof(randomBuf));
s20.init(randomBuf,randomBuf);
}
((uint8_t *)buf)[i] = randomBuf[randomPtr++];
}
#else // not __WINDOWS__
static int devURandomFd = -1;
if (devURandomFd < 0) {
devURandomFd = ::open("/dev/urandom",O_RDONLY);
if (devURandomFd < 0) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to open /dev/urandom\n");
exit(1);
return;
}
}
for(unsigned int i=0;i<bytes;++i) {
if (randomPtr >= sizeof(randomBuf)) {
for(;;) {
if ((int)::read(devURandomFd,randomBuf,sizeof(randomBuf)) != (int)sizeof(randomBuf)) {
::close(devURandomFd);
devURandomFd = ::open("/dev/urandom",O_RDONLY);
if (devURandomFd < 0) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to open /dev/urandom\n");
exit(1);
return;
}
} else {
break;
}
}
randomPtr = 0;
s20.crypt12(randomBuf,randomBuf,sizeof(randomBuf));
s20.init(randomBuf,randomBuf);
}
((uint8_t *)buf)[i] = randomBuf[randomPtr++];
}
#endif // __WINDOWS__ or not
}
} // namespace ZeroTier