RRG-Proxmark3/armsrc/mifarecmd.c
2020-05-20 18:30:41 +02:00

2478 lines
72 KiB
C

//-----------------------------------------------------------------------------
// Merlok - June 2011, 2012
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
// Midnitesnake - Dec 2013
// Andy Davies - Apr 2014
// Iceman - May 2014,2015,2016
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
#include "mifarecmd.h"
#include "pmflash.h"
#include "proxmark3_arm.h"
#include "string.h"
#include "mifareutil.h"
#include "protocols.h"
#include "parity.h"
#include "BigBuf.h"
#include "cmd.h"
#include "flashmem.h"
#include "fpgaloader.h"
#include "iso14443a.h"
#include "mifaredesfire.h"
#include "util.h"
#include "commonutil.h"
#include "crc16.h"
#include "dbprint.h"
#include "ticks.h"
#include "usb_cdc.h" // usb_poll_validate_length
#include "spiffs.h" // spiffs
#ifndef HARDNESTED_AUTHENTICATION_TIMEOUT
# define HARDNESTED_AUTHENTICATION_TIMEOUT 848 // card times out 1ms after wrong authentication (according to NXP documentation)
#endif
#ifndef HARDNESTED_PRE_AUTHENTICATION_LEADTIME
# define HARDNESTED_PRE_AUTHENTICATION_LEADTIME 400 // some (non standard) cards need a pause after select before they are ready for first authentication
#endif
// send an incomplete dummy response in order to trigger the card's authentication failure timeout
#ifndef CHK_TIMEOUT
# define CHK_TIMEOUT(void) { \
ReaderTransmit(&dummy_answer, 1, NULL); \
uint32_t timeout = GetCountSspClk() + HARDNESTED_AUTHENTICATION_TIMEOUT; \
while (GetCountSspClk() < timeout) {}; \
}
#endif
static uint8_t dummy_answer = 0;
//-----------------------------------------------------------------------------
// Select, Authenticate, Read a MIFARE tag.
// read block
//-----------------------------------------------------------------------------
void MifareReadBlock(uint8_t blockNo, uint8_t keyType, uint8_t *datain) {
// params
uint64_t ui64Key = 0;
ui64Key = bytes_to_num(datain, 6);
// variables
uint8_t dataoutbuf[16] = {0x00};
uint8_t uid[10] = {0x00};
uint32_t cuid = 0, status = PM3_EOPABORTED;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
while (true) {
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
break;
};
if (mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Auth error");
break;
};
if (mifare_classic_readblock(pcs, cuid, blockNo, dataoutbuf)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Read block error");
break;
};
if (mifare_classic_halt(pcs, cuid)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Halt error");
break;
};
status = PM3_SUCCESS;
break;
}
crypto1_deinit(pcs);
if (DBGLEVEL >= 2) DbpString("READ BLOCK FINISHED");
LED_B_ON();
reply_ng(CMD_HF_MIFARE_READBL, status, dataoutbuf, 16);
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
void MifareUC_Auth(uint8_t arg0, uint8_t *keybytes) {
bool turnOffField = (arg0 == 1);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
OnError(0);
return;
};
if (!mifare_ultra_auth(keybytes)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Authentication failed");
OnError(1);
return;
}
if (turnOffField) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
}
// Arg0 = BlockNo,
// Arg1 = UsePwd bool
// datain = PWD bytes,
void MifareUReadBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) {
uint8_t blockNo = arg0;
uint8_t dataout[16] = {0x00};
bool useKey = (arg1 == 1); //UL_C
bool usePwd = (arg1 == 2); //UL_EV1/NTAG
LEDsoff();
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true);
if (!len) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card (RC:%02X)", len);
OnError(1);
return;
}
// UL-C authentication
if (useKey) {
uint8_t key[16] = {0x00};
memcpy(key, datain, sizeof(key));
if (!mifare_ultra_auth(key)) {
OnError(1);
return;
}
}
// UL-EV1 / NTAG authentication
if (usePwd) {
uint8_t pwd[4] = {0x00};
memcpy(pwd, datain, 4);
uint8_t pack[4] = {0, 0, 0, 0};
if (!mifare_ul_ev1_auth(pwd, pack)) {
OnError(1);
return;
}
}
if (mifare_ultra_readblock(blockNo, dataout)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Read block error");
OnError(2);
return;
}
if (mifare_ultra_halt()) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Halt error");
OnError(3);
return;
}
reply_mix(CMD_ACK, 1, 0, 0, dataout, 16);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
//-----------------------------------------------------------------------------
// Select, Authenticate, Read a MIFARE tag.
// read sector (data = 4 x 16 bytes = 64 bytes, or 16 x 16 bytes = 256 bytes)
//-----------------------------------------------------------------------------
void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t *datain) {
// params
uint8_t sectorNo = arg0;
uint8_t keyType = arg1;
uint64_t ui64Key = 0;
ui64Key = bytes_to_num(datain, 6);
// variables
uint8_t isOK = 0;
uint8_t dataoutbuf[16 * 16];
uint8_t uid[10] = {0x00};
uint32_t cuid = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
isOK = 1;
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
isOK = 0;
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
}
if (isOK && mifare_classic_auth(pcs, cuid, FirstBlockOfSector(sectorNo), keyType, ui64Key, AUTH_FIRST)) {
isOK = 0;
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Auth error");
}
for (uint8_t blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) {
if (mifare_classic_readblock(pcs, cuid, FirstBlockOfSector(sectorNo) + blockNo, dataoutbuf + 16 * blockNo)) {
isOK = 0;
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Read sector %2d block %2d error", sectorNo, blockNo);
break;
}
}
if (mifare_classic_halt(pcs, cuid)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Halt error");
}
if (DBGLEVEL >= 2) DbpString("READ SECTOR FINISHED");
crypto1_deinit(pcs);
LED_B_ON();
reply_old(CMD_ACK, isOK, 0, 0, dataoutbuf, 16 * NumBlocksPerSector(sectorNo));
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
// arg0 = blockNo (start)
// arg1 = Pages (number of blocks)
// arg2 = useKey
// datain = KEY bytes
void MifareUReadCard(uint8_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain) {
LEDsoff();
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// free eventually allocated BigBuf memory
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
// params
uint8_t blockNo = arg0;
uint16_t blocks = arg1;
bool useKey = (arg2 == 1); //UL_C
bool usePwd = (arg2 == 2); //UL_EV1/NTAG
uint32_t countblocks = 0;
uint8_t *dataout = BigBuf_malloc(CARD_MEMORY_SIZE);
if (dataout == NULL) {
Dbprintf("out of memory");
OnError(1);
return;
}
int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true);
if (!len) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card (RC:%d)", len);
OnError(1);
return;
}
// UL-C authentication
if (useKey) {
uint8_t key[16] = {0x00};
memcpy(key, datain, sizeof(key));
if (!mifare_ultra_auth(key)) {
OnError(1);
return;
}
}
// UL-EV1 / NTAG authentication
if (usePwd) {
uint8_t pwd[4] = {0x00};
memcpy(pwd, datain, sizeof(pwd));
uint8_t pack[4] = {0, 0, 0, 0};
if (!mifare_ul_ev1_auth(pwd, pack)) {
OnError(1);
return;
}
}
for (int i = 0; i < blocks; i++) {
if ((i * 4) + 4 >= CARD_MEMORY_SIZE) {
Dbprintf("Data exceeds buffer!!");
break;
}
len = mifare_ultra_readblock(blockNo + i, dataout + 4 * i);
if (len) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Read block %d error", i);
// if no blocks read - error out
if (i == 0) {
OnError(2);
return;
} else {
//stop at last successful read block and return what we got
break;
}
} else {
countblocks++;
}
}
len = mifare_ultra_halt();
if (len) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Halt error");
OnError(3);
return;
}
if (DBGLEVEL >= DBG_EXTENDED) Dbprintf("Blocks read %d", countblocks);
countblocks *= 4;
reply_mix(CMD_ACK, 1, countblocks, BigBuf_max_traceLen(), 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
BigBuf_free();
set_tracing(false);
}
//-----------------------------------------------------------------------------
// Select, Authenticate, Write a MIFARE tag.
// read block
//-----------------------------------------------------------------------------
void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) {
// params
uint8_t blockNo = arg0;
uint8_t keyType = arg1;
uint64_t ui64Key = 0;
uint8_t blockdata[16] = {0x00};
ui64Key = bytes_to_num(datain, 6);
memcpy(blockdata, datain + 10, 16);
// variables
uint8_t isOK = 0;
uint8_t uid[10] = {0x00};
uint32_t cuid = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
while (true) {
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
break;
};
if (mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Auth error");
break;
};
if (mifare_classic_writeblock(pcs, cuid, blockNo, blockdata)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Write block error");
break;
};
if (mifare_classic_halt(pcs, cuid)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Halt error");
break;
};
isOK = 1;
break;
}
crypto1_deinit(pcs);
if (DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
reply_mix(CMD_ACK, isOK, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
/* // Command not needed but left for future testing
void MifareUWriteBlockCompat(uint8_t arg0, uint8_t *datain)
{
uint8_t blockNo = arg0;
uint8_t blockdata[16] = {0x00};
memcpy(blockdata, datain, 16);
uint8_t uid[10] = {0x00};
LED_A_ON(); LED_B_OFF(); LED_C_OFF();
clear_trace();
set_tracing(true);
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if(!iso14443a_select_card(uid, NULL, NULL, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
OnError(0);
return;
};
if(mifare_ultra_writeblock_compat(blockNo, blockdata)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Write block error");
OnError(0);
return; };
if(mifare_ultra_halt()) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Halt error");
OnError(0);
return;
};
if (DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
reply_mix(CMD_ACK,1,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
*/
// Arg0 : Block to write to.
// Arg1 : 0 = use no authentication.
// 1 = use 0x1A authentication.
// 2 = use 0x1B authentication.
// datain : 4 first bytes is data to be written.
// : 4/16 next bytes is authentication key.
void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) {
uint8_t blockNo = arg0;
bool useKey = (arg1 == 1); //UL_C
bool usePwd = (arg1 == 2); //UL_EV1/NTAG
uint8_t blockdata[4] = {0x00};
memcpy(blockdata, datain, 4);
LEDsoff();
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
OnError(0);
return;
};
// UL-C authentication
if (useKey) {
uint8_t key[16] = {0x00};
memcpy(key, datain + 4, sizeof(key));
if (!mifare_ultra_auth(key)) {
OnError(1);
return;
}
}
// UL-EV1 / NTAG authentication
if (usePwd) {
uint8_t pwd[4] = {0x00};
memcpy(pwd, datain + 4, 4);
uint8_t pack[4] = {0, 0, 0, 0};
if (!mifare_ul_ev1_auth(pwd, pack)) {
OnError(1);
return;
}
}
if (mifare_ultra_writeblock(blockNo, blockdata)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Write block error");
OnError(0);
return;
};
if (mifare_ultra_halt()) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Halt error");
OnError(0);
return;
};
if (DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
void MifareUSetPwd(uint8_t arg0, uint8_t *datain) {
uint8_t pwd[16] = {0x00};
uint8_t blockdata[4] = {0x00};
memcpy(pwd, datain, 16);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
OnError(0);
return;
};
blockdata[0] = pwd[7];
blockdata[1] = pwd[6];
blockdata[2] = pwd[5];
blockdata[3] = pwd[4];
if (mifare_ultra_writeblock(44, blockdata)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Write block error");
OnError(44);
return;
};
blockdata[0] = pwd[3];
blockdata[1] = pwd[2];
blockdata[2] = pwd[1];
blockdata[3] = pwd[0];
if (mifare_ultra_writeblock(45, blockdata)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Write block error");
OnError(45);
return;
};
blockdata[0] = pwd[15];
blockdata[1] = pwd[14];
blockdata[2] = pwd[13];
blockdata[3] = pwd[12];
if (mifare_ultra_writeblock(46, blockdata)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Write block error");
OnError(46);
return;
};
blockdata[0] = pwd[11];
blockdata[1] = pwd[10];
blockdata[2] = pwd[9];
blockdata[3] = pwd[8];
if (mifare_ultra_writeblock(47, blockdata)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Write block error");
OnError(47);
return;
};
if (mifare_ultra_halt()) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Halt error");
OnError(0);
return;
};
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
// Return 1 if the nonce is invalid else return 0
static int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t *parity) {
return ((oddparity8((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ BIT(Ks1, 16))) & \
(oddparity8((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ BIT(Ks1, 8))) & \
(oddparity8((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ BIT(Ks1, 0)))) ? 1 : 0;
}
void MifareAcquireNonces(uint32_t arg0, uint32_t flags) {
uint8_t uid[10] = {0x00};
uint8_t answer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t par[1] = {0x00};
uint8_t buf[PM3_CMD_DATA_SIZE] = {0x00};
uint32_t cuid = 0;
int16_t isOK = 0;
uint16_t num_nonces = 0;
uint8_t cascade_levels = 0;
uint8_t blockNo = arg0 & 0xff;
uint8_t keyType = (arg0 >> 8) & 0xff;
bool initialize = flags & 0x0001;
bool field_off = flags & 0x0004;
bool have_uid = false;
LED_A_ON();
LED_C_OFF();
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
if (initialize)
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
LED_C_ON();
for (uint16_t i = 0; i <= PM3_CMD_DATA_SIZE - 4; i += 4) {
// Test if the action was cancelled
if (BUTTON_PRESS()) {
isOK = 2;
field_off = true;
break;
}
if (!have_uid) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info;
if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("AcquireNonces: Can't select card (ALL)");
continue;
}
switch (card_info.uidlen) {
case 4 :
cascade_levels = 1;
break;
case 7 :
cascade_levels = 2;
break;
case 10:
cascade_levels = 3;
break;
default:
break;
}
have_uid = true;
} else { // no need for anticollision. We can directly select the card
if (!iso14443a_fast_select_card(uid, cascade_levels)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("AcquireNonces: Can't select card (UID)");
continue;
}
}
// Transmit MIFARE_CLASSIC_AUTH
uint8_t dcmd[4] = {0x60 + (keyType & 0x01), blockNo, 0x00, 0x00};
AddCrc14A(dcmd, 2);
ReaderTransmit(dcmd, sizeof(dcmd), NULL);
int len = ReaderReceive(answer, par);
// wait for the card to become ready again
CHK_TIMEOUT();
if (len != 4) {
if (DBGLEVEL >= 2) Dbprintf("AcquireNonces: Auth1 error");
continue;
}
num_nonces++;
// Save the tag nonce (nt)
buf[i] = answer[0];
buf[i + 1] = answer[1];
buf[i + 2] = answer[2];
buf[i + 3] = answer[3];
}
LED_C_OFF();
LED_B_ON();
reply_old(CMD_ACK, isOK, cuid, num_nonces - 1, buf, sizeof(buf));
LED_B_OFF();
if (DBGLEVEL >= 3) DbpString("AcquireNonces finished");
if (field_off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
}
//-----------------------------------------------------------------------------
// acquire encrypted nonces in order to perform the attack described in
// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain) {
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t uid[10] = {0x00};
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t par_enc[1] = {0x00};
uint8_t buf[PM3_CMD_DATA_SIZE] = {0x00};
uint64_t ui64Key = bytes_to_num(datain, 6);
uint32_t cuid = 0;
int16_t isOK = 0;
uint16_t num_nonces = 0;
uint8_t nt_par_enc = 0;
uint8_t cascade_levels = 0;
uint8_t blockNo = arg0 & 0xff;
uint8_t keyType = (arg0 >> 8) & 0xff;
uint8_t targetBlockNo = arg1 & 0xff;
uint8_t targetKeyType = (arg1 >> 8) & 0xff;
bool initialize = flags & 0x0001;
bool slow = flags & 0x0002;
bool field_off = flags & 0x0004;
bool have_uid = false;
LED_A_ON();
LED_C_OFF();
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(false);
if (initialize)
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
LED_C_ON();
for (uint16_t i = 0; i <= PM3_CMD_DATA_SIZE - 9;) {
// Test if the action was cancelled
if (BUTTON_PRESS()) {
isOK = 2;
field_off = true;
break;
}
if (!have_uid) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info;
if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("AcquireNonces: Can't select card (ALL)");
continue;
}
switch (card_info.uidlen) {
case 4 :
cascade_levels = 1;
break;
case 7 :
cascade_levels = 2;
break;
case 10:
cascade_levels = 3;
break;
default:
break;
}
have_uid = true;
} else { // no need for anticollision. We can directly select the card
if (!iso14443a_fast_select_card(uid, cascade_levels)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("AcquireNonces: Can't select card (UID)");
continue;
}
}
if (slow)
SpinDelayUs(HARDNESTED_PRE_AUTHENTICATION_LEADTIME);
uint32_t nt1;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("AcquireNonces: Auth1 error");
continue;
}
// nested authentication
uint16_t len = mifare_sendcmd_short(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par_enc, NULL);
// wait for the card to become ready again
CHK_TIMEOUT();
if (len != 4) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("AcquireNonces: Auth2 error len=%d", len);
continue;
}
num_nonces++;
if (num_nonces % 2) {
memcpy(buf + i, receivedAnswer, 4);
nt_par_enc = par_enc[0] & 0xf0;
} else {
nt_par_enc |= par_enc[0] >> 4;
memcpy(buf + i + 4, receivedAnswer, 4);
memcpy(buf + i + 8, &nt_par_enc, 1);
i += 9;
}
}
LED_C_OFF();
crypto1_deinit(pcs);
LED_B_ON();
reply_old(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
LED_B_OFF();
if (DBGLEVEL >= 3) DbpString("AcquireEncryptedNonces finished");
if (field_off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
}
//-----------------------------------------------------------------------------
// MIFARE nested authentication.
//
//-----------------------------------------------------------------------------
void MifareNested(uint8_t blockNo, uint8_t keyType, uint8_t targetBlockNo, uint8_t targetKeyType, bool calibrate, uint8_t *key) {
uint64_t ui64Key = 0;
ui64Key = bytes_to_num(key, 6);
// variables
uint16_t i, j, len;
static uint16_t dmin, dmax;
uint8_t par[1] = {0x00};
uint8_t par_array[4] = {0x00};
uint8_t uid[10] = {0x00};
uint32_t cuid = 0, nt1, nt2, nttest, ks1;
uint32_t target_nt[2] = {0x00}, target_ks[2] = {0x00};
uint16_t ncount = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint32_t auth1_time, auth2_time;
static uint16_t delta_time = 0;
LED_A_ON();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// free eventually allocated BigBuf memory
BigBuf_free();
BigBuf_Clear_ext(false);
if (calibrate)
clear_trace();
set_tracing(true);
// statistics on nonce distance
int16_t isOK = 0;
#define NESTED_MAX_TRIES 12
if (calibrate) { // calibrate: for first call only. Otherwise reuse previous calibration
LED_B_ON();
WDT_HIT();
uint16_t unsuccessful_tries = 0;
uint16_t davg = 0;
dmax = 0;
dmin = 2000;
delta_time = 0;
uint16_t rtr;
for (rtr = 0; rtr < 17; rtr++) {
// Test if the action was cancelled
if (BUTTON_PRESS() || data_available()) {
isOK = -2;
break;
}
// prepare next select. No need to power down the card.
if (mifare_classic_halt(pcs, cuid)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Halt error");
rtr--;
continue;
}
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Can't select card");
rtr--;
continue;
};
auth1_time = 0;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Auth1 error");
rtr--;
continue;
};
auth2_time = (delta_time) ? auth1_time + delta_time : 0;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2, &auth2_time)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Auth2 error");
rtr--;
continue;
};
// cards with fixed nonce
if (nt1 == nt2) {
Dbprintf("Nested: %08x vs %08x", nt1, nt2);
break;
}
uint32_t nttmp = prng_successor(nt1, 100); //NXP Mifare is typical around 840,but for some unlicensed/compatible mifare card this can be 160
for (i = 101; i < 1200; i++) {
nttmp = prng_successor(nttmp, 1);
if (nttmp == nt2) break;
}
if (i != 1200) {
if (rtr != 0) {
davg += i;
dmin = MIN(dmin, i);
dmax = MAX(dmax, i);
} else {
delta_time = auth2_time - auth1_time + 32; // allow some slack for proper timing
}
if (DBGLEVEL >= DBG_DEBUG) Dbprintf("Nested: calibrating... ntdist=%d", i);
} else {
unsuccessful_tries++;
if (unsuccessful_tries > NESTED_MAX_TRIES) { // card isn't vulnerable to nested attack (random numbers are not predictable)
isOK = -3;
}
}
}
davg = (davg + (rtr - 1) / 2) / (rtr - 1);
if (DBGLEVEL >= DBG_DEBUG) Dbprintf("rtr=%d isOK=%d min=%d max=%d avg=%d, delta_time=%d", rtr, isOK, dmin, dmax, davg, delta_time);
dmin = davg - 2;
dmax = davg + 2;
LED_B_OFF();
}
// -------------------------------------------------------------------------------------------------
LED_C_ON();
// get crypted nonces for target sector
for (i = 0; i < 2 && !isOK; i++) { // look for exactly two different nonces
target_nt[i] = 0;
while (target_nt[i] == 0) { // continue until we have an unambiguous nonce
// Test if the action was cancelled
if (BUTTON_PRESS() || data_available()) {
isOK = -2;
break;
}
// prepare next select. No need to power down the card.
if (mifare_classic_halt(pcs, cuid)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Halt error");
continue;
}
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Can't select card");
continue;
};
auth1_time = 0;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Auth1 error");
continue;
};
// nested authentication
auth2_time = auth1_time + delta_time;
len = mifare_sendcmd_short(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, &auth2_time);
if (len != 4) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Auth2 error len=%d", len);
continue;
};
nt2 = bytes_to_num(receivedAnswer, 4);
if (DBGLEVEL >= DBG_DEBUG) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i + 1, nt1, nt2, par[0]);
// Parity validity check
for (j = 0; j < 4; j++) {
par_array[j] = (oddparity8(receivedAnswer[j]) != ((par[0] >> (7 - j)) & 0x01));
}
ncount = 0;
nttest = prng_successor(nt1, dmin - 1);
for (j = dmin; j < dmax + 1; j++) {
nttest = prng_successor(nttest, 1);
ks1 = nt2 ^ nttest;
if (valid_nonce(nttest, nt2, ks1, par_array)) {
if (ncount > 0) { // we are only interested in disambiguous nonces, try again
if (DBGLEVEL >= DBG_DEBUG) Dbprintf("Nonce#%d: dismissed (ambiguous), ntdist=%d", i + 1, j);
target_nt[i] = 0;
break;
}
target_nt[i] = nttest;
target_ks[i] = ks1;
ncount++;
if (i == 1 && target_nt[1] == target_nt[0]) { // we need two different nonces
target_nt[i] = 0;
if (DBGLEVEL >= DBG_DEBUG) Dbprintf("Nonce#2: dismissed (= nonce#1), ntdist=%d", j);
break;
}
if (DBGLEVEL >= DBG_DEBUG) Dbprintf("Nonce#%d: valid, ntdist=%d", i + 1, j);
}
}
if (target_nt[i] == 0 && j == dmax + 1 && DBGLEVEL >= 3) Dbprintf("Nonce#%d: dismissed (all invalid)", i + 1);
}
}
LED_C_OFF();
crypto1_deinit(pcs);
struct p {
int16_t isOK;
uint8_t block;
uint8_t keytype;
uint8_t cuid[4];
uint8_t nt_a[4];
uint8_t ks_a[4];
uint8_t nt_b[4];
uint8_t ks_b[4];
} PACKED payload;
payload.isOK = isOK;
payload.block = targetBlockNo;
payload.keytype = targetKeyType;
memcpy(payload.cuid, &cuid, 4);
memcpy(payload.nt_a, &target_nt[0], 4);
memcpy(payload.ks_a, &target_ks[0], 4);
memcpy(payload.nt_b, &target_nt[1], 4);
memcpy(payload.ks_b, &target_ks[1], 4);
LED_B_ON();
reply_ng(CMD_HF_MIFARE_NESTED, PM3_SUCCESS, (uint8_t *)&payload, sizeof(payload));
LED_B_OFF();
if (DBGLEVEL >= 3) DbpString("NESTED FINISHED");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
void MifareStaticNested(uint8_t blockNo, uint8_t keyType, uint8_t targetBlockNo, uint8_t targetKeyType, uint8_t *key) {
LEDsoff();
uint64_t ui64Key = 0;
ui64Key = bytes_to_num(key, 6);
// variables
uint16_t len;
uint8_t uid[10] = {0x00};
uint32_t cuid = 0, nt1, nt2;
uint32_t target_nt = {0x00}, target_ks = {0x00};
uint8_t par[1] = {0x00};
uint8_t receivedAnswer[10] = {0x00};
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// free eventually allocated BigBuf memory
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
int16_t isOK = 0;
LED_C_ON();
for (uint8_t retry = 0; retry < 3 && (isOK == 0); retry++) {
WDT_HIT();
// prepare next select. No need to power down the card.
if (mifare_classic_halt(pcs, cuid)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Halt error");
retry--;
continue;
}
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Can't select card");
retry--;
continue;
};
// First authenticatoin. Normal auth.
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Auth1 error");
retry--;
continue;
};
// second authentication. Nested auth
len = mifare_sendcmd_short(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, NULL);
if (len != 4) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Nested: Auth2 error len=%d", len);
continue;
};
nt2 = bytes_to_num(receivedAnswer, 4);
uint32_t nt_tmp = prng_successor(nt1, 160);
target_ks = nt2 ^ nt_tmp;
target_nt = nt_tmp;
isOK = 1;
if (DBGLEVEL >= DBG_DEBUG) Dbprintf("Testing nt1=%08x nt2enc=%08x nt2par=%02x ks=%08x", nt1, nt2, par[0], target_ks);
}
LED_C_OFF();
crypto1_deinit(pcs);
struct p {
int16_t isOK;
uint8_t block;
uint8_t keytype;
uint8_t cuid[4];
uint8_t nt[4];
uint8_t ks[4];
} PACKED payload;
payload.isOK = isOK;
payload.block = targetBlockNo;
payload.keytype = targetKeyType;
memcpy(payload.cuid, &cuid, 4);
memcpy(payload.nt, &target_nt, 4);
memcpy(payload.ks, &target_ks, 4);
LED_B_ON();
reply_ng(CMD_HF_MIFARE_STATIC_NESTED, PM3_SUCCESS, (uint8_t *)&payload, sizeof(payload));
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
//-----------------------------------------------------------------------------
// MIFARE check keys. key count up to 85.
//
//-----------------------------------------------------------------------------
typedef struct sector_t {
uint8_t keyA[6];
uint8_t keyB[6];
} sector_t;
typedef struct chk_t {
uint64_t key;
uint32_t cuid;
uint8_t cl;
uint8_t block;
uint8_t keyType;
uint8_t *uid;
struct Crypto1State *pcs;
} chk_t;
// checks one key.
// fast select, tries 5 times to select
//
// return:
// 2 = failed to select.
// 1 = wrong key
// 0 = correct key
static uint8_t chkKey(struct chk_t *c) {
uint8_t i = 0, res = 2;
while (i < 5) {
// this part is from Piwi's faster nonce collecting part in Hardnested.
// assume: fast select
if (!iso14443a_fast_select_card(c->uid, c->cl)) {
++i;
continue;
}
res = mifare_classic_authex(c->pcs, c->cuid, c->block, c->keyType, c->key, AUTH_FIRST, NULL, NULL);
// CHK_TIMEOUT();
// if successful auth, send HALT
// if ( !res )
// mifare_classic_halt_ex(c->pcs);
break;
}
return res;
}
static uint8_t chkKey_readb(struct chk_t *c, uint8_t *keyb) {
if (!iso14443a_fast_select_card(c->uid, c->cl))
return 2;
if (mifare_classic_authex(c->pcs, c->cuid, c->block, 0, c->key, AUTH_FIRST, NULL, NULL))
return 1;
uint8_t data[16] = {0x00};
uint8_t res = mifare_classic_readblock(c->pcs, c->cuid, c->block, data);
// successful read
if (!res) {
// data was something else than zeros.
if (memcmp(data + 10, "\x00\x00\x00\x00\x00\x00", 6) != 0) {
memcpy(keyb, data + 10, 6);
res = 0;
} else {
res = 3;
}
mifare_classic_halt_ex(c->pcs);
}
return res;
}
static void chkKey_scanA(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, uint8_t *sectorcnt, uint8_t *foundkeys) {
for (uint8_t s = 0; s < *sectorcnt; s++) {
// skip already found A keys
if (found[(s * 2)])
continue;
c->block = FirstBlockOfSector(s);
if (chkKey(c) == 0) {
num_to_bytes(c->key, 6, k_sector[s].keyA);
found[(s * 2)] = 1;
++*foundkeys;
if (DBGLEVEL >= 3) Dbprintf("ChkKeys_fast: Scan A found (%d)", c->block);
}
}
}
static void chkKey_scanB(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, uint8_t *sectorcnt, uint8_t *foundkeys) {
for (uint8_t s = 0; s < *sectorcnt; s++) {
// skip already found B keys
if (found[(s * 2) + 1])
continue;
c->block = FirstBlockOfSector(s);
if (chkKey(c) == 0) {
num_to_bytes(c->key, 6, k_sector[s].keyB);
found[(s * 2) + 1] = 1;
++*foundkeys;
if (DBGLEVEL >= 3) Dbprintf("ChkKeys_fast: Scan B found (%d)", c->block);
}
}
}
// loop all A keys,
// when A is found but not B, try to read B.
static void chkKey_loopBonly(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, uint8_t *sectorcnt, uint8_t *foundkeys) {
// read Block B, if A is found.
for (uint8_t s = 0; s < *sectorcnt; ++s) {
if (found[(s * 2)] && found[(s * 2) + 1])
continue;
c->block = (FirstBlockOfSector(s) + NumBlocksPerSector(s) - 1);
// A but not B
if (found[(s * 2)] && !found[(s * 2) + 1]) {
c->key = bytes_to_num(k_sector[s].keyA, 6);
uint8_t status = chkKey_readb(c, k_sector[s].keyB);
if (status == 0) {
found[(s * 2) + 1] = 1;
++*foundkeys;
if (DBGLEVEL >= 3) Dbprintf("ChkKeys_fast: Reading B found (%d)", c->block);
// try quick find all B?
// assume: keys comes in groups. Find one B, test against all B.
c->key = bytes_to_num(k_sector[s].keyB, 6);
c->keyType = 1;
chkKey_scanB(c, k_sector, found, sectorcnt, foundkeys);
}
}
}
}
// get Chunks of keys, to test authentication against card.
// arg0 = antal sectorer
// arg0 = first time
// arg1 = clear trace
// arg2 = antal nycklar i keychunk
// datain = keys as array
void MifareChkKeys_fast(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
// first call or
uint8_t sectorcnt = arg0 & 0xFF; // 16;
uint8_t firstchunk = (arg0 >> 8) & 0xF;
uint8_t lastchunk = (arg0 >> 12) & 0xF;
uint8_t strategy = arg1 & 0xFF;
uint8_t use_flashmem = (arg1 >> 8) & 0xFF;
uint16_t keyCount = arg2 & 0xFF;
uint8_t status = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
struct chk_t chk_data;
uint8_t allkeys = sectorcnt << 1;
static uint32_t cuid = 0;
static uint8_t cascade_levels = 0;
static uint8_t foundkeys = 0;
static sector_t k_sector[80];
static uint8_t found[80];
static uint8_t *uid;
int oldbg = DBGLEVEL;
#ifdef WITH_FLASH
if (use_flashmem) {
BigBuf_free();
uint16_t isok = 0;
uint8_t size[2] = {0x00, 0x00};
isok = Flash_ReadData(DEFAULT_MF_KEYS_OFFSET, size, 2);
if (isok != 2)
goto OUT;
keyCount = size[1] << 8 | size[0];
if (keyCount == 0)
goto OUT;
// limit size of availlable for keys in bigbuff
// a key is 6bytes
uint16_t key_mem_available = MIN(BIGBUF_SIZE, keyCount * 6);
keyCount = key_mem_available / 6;
datain = BigBuf_malloc(key_mem_available);
if (datain == NULL)
goto OUT;
isok = Flash_ReadData(DEFAULT_MF_KEYS_OFFSET + 2, datain, key_mem_available);
if (isok != key_mem_available)
goto OUT;
}
#endif
if (uid == NULL || firstchunk) {
uid = BigBuf_malloc(10);
if (uid == NULL)
goto OUT;
}
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
LEDsoff();
LED_A_ON();
if (firstchunk) {
clear_trace();
set_tracing(false);
memset(k_sector, 0x00, 480 + 10);
memset(found, 0x00, sizeof(found));
foundkeys = 0;
iso14a_card_select_t card_info;
if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("ChkKeys_fast: Can't select card (ALL)");
goto OUT;
}
switch (card_info.uidlen) {
case 4 :
cascade_levels = 1;
break;
case 7 :
cascade_levels = 2;
break;
case 10:
cascade_levels = 3;
break;
default:
break;
}
CHK_TIMEOUT();
}
// clear debug level. We are expecting lots of authentication failures...
DBGLEVEL = DBG_NONE;
// set check struct.
chk_data.uid = uid;
chk_data.cuid = cuid;
chk_data.cl = cascade_levels;
chk_data.pcs = pcs;
chk_data.block = 0;
// keychunk loop - depth first one sector.
if (strategy == 1 || use_flashmem) {
uint8_t newfound = foundkeys;
uint16_t lastpos = 0;
uint16_t s_point = 0;
// Sector main loop
// keep track of how many sectors on card.
for (uint8_t s = 0; s < sectorcnt; ++s) {
if (found[(s * 2)] && found[(s * 2) + 1])
continue;
for (uint16_t i = s_point; i < keyCount; ++i) {
// Allow button press / usb cmd to interrupt device
if (BUTTON_PRESS() || data_available()) {
goto OUT;
}
// found all keys?
if (foundkeys == allkeys)
goto OUT;
WDT_HIT();
// assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector
chk_data.block = FirstBlockOfSector(s);
// new key
chk_data.key = bytes_to_num(datain + i * 6, 6);
// skip already found A keys
if (!found[(s * 2)]) {
chk_data.keyType = 0;
status = chkKey(&chk_data);
if (status == 0) {
memcpy(k_sector[s].keyA, datain + i * 6, 6);
found[(s * 2)] = 1;
++foundkeys;
chkKey_scanA(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
// read Block B, if A is found.
chkKey_loopBonly(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
chk_data.keyType = 1;
chkKey_scanB(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
chk_data.keyType = 0;
chk_data.block = FirstBlockOfSector(s);
if (use_flashmem) {
if (lastpos != i && lastpos != 0) {
if (i - lastpos < 0xF) {
s_point = i & 0xFFF0;
}
} else {
lastpos = i;
}
}
}
}
// skip already found B keys
if (!found[(s * 2) + 1]) {
chk_data.keyType = 1;
status = chkKey(&chk_data);
if (status == 0) {
memcpy(k_sector[s].keyB, datain + i * 6, 6);
found[(s * 2) + 1] = 1;
++foundkeys;
chkKey_scanB(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
if (use_flashmem) {
if (lastpos != i && lastpos != 0) {
if (i - lastpos < 0xF)
s_point = i & 0xFFF0;
} else {
lastpos = i;
}
}
}
}
if (found[(s * 2)] && found[(s * 2) + 1])
break;
} // end keys test loop - depth first
// assume1. if no keys found in first sector, get next keychunk from client
if (!use_flashmem && (newfound - foundkeys == 0))
goto OUT;
} // end loop - sector
} // end strategy 1
if (foundkeys == allkeys)
goto OUT;
if (strategy == 2 || use_flashmem) {
// Keychunk loop
for (uint16_t i = 0; i < keyCount; i++) {
// Allow button press / usb cmd to interrupt device
if (BUTTON_PRESS() || data_available()) break;
// found all keys?
if (foundkeys == allkeys)
goto OUT;
WDT_HIT();
// new key
chk_data.key = bytes_to_num(datain + i * 6, 6);
// Sector main loop
// keep track of how many sectors on card.
for (uint8_t s = 0; s < sectorcnt; ++s) {
if (found[(s * 2)] && found[(s * 2) + 1]) continue;
// found all keys?
if (foundkeys == allkeys)
goto OUT;
// assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector
chk_data.block = FirstBlockOfSector(s);
// skip already found A keys
if (!found[(s * 2)]) {
chk_data.keyType = 0;
status = chkKey(&chk_data);
if (status == 0) {
memcpy(k_sector[s].keyA, datain + i * 6, 6);
found[(s * 2)] = 1;
++foundkeys;
chkKey_scanA(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
// read Block B, if A is found.
chkKey_loopBonly(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
chk_data.block = FirstBlockOfSector(s);
}
}
// skip already found B keys
if (!found[(s * 2) + 1]) {
chk_data.keyType = 1;
status = chkKey(&chk_data);
if (status == 0) {
memcpy(k_sector[s].keyB, datain + i * 6, 6);
found[(s * 2) + 1] = 1;
++foundkeys;
chkKey_scanB(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
}
}
} // end loop sectors
} // end loop keys
} // end loop strategy 2
OUT:
LEDsoff();
crypto1_deinit(pcs);
// All keys found, send to client, or last keychunk from client
if (foundkeys == allkeys || lastchunk) {
uint64_t foo = 0;
for (uint8_t m = 0; m < 64; m++) {
foo |= ((uint64_t)(found[m] & 1) << m);
}
uint16_t bar = 0;
uint8_t j = 0;
for (uint8_t m = 64; m < ARRAYLEN(found); m++) {
bar |= ((uint16_t)(found[m] & 1) << j++);
}
uint8_t *tmp = BigBuf_malloc(480 + 10);
memcpy(tmp, k_sector, sectorcnt * sizeof(sector_t));
num_to_bytes(foo, 8, tmp + 480);
tmp[488] = bar & 0xFF;
tmp[489] = bar >> 8 & 0xFF;
reply_old(CMD_ACK, foundkeys, 0, 0, tmp, 480 + 10);
set_tracing(false);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
BigBuf_free();
BigBuf_Clear_ext(false);
// special trick ecfill
if (use_flashmem && foundkeys == allkeys) {
uint8_t block[16] = {0};
for (int i = 0; i < sectorcnt; i++) {
uint8_t blockno;
if (i < 32) {
blockno = (i * 4) ^ 0x3;
} else {
blockno = (32 * 4 + (i - 32) * 16) ^ 0xF;
}
// get ST
emlGetMem(block, blockno, 1);
memcpy(block, k_sector[i].keyA, 6);
memcpy(block + 10, k_sector[i].keyB, 6);
emlSetMem_xt(block, blockno, 1, sizeof(block));
}
MifareECardLoad(sectorcnt, 0);
MifareECardLoad(sectorcnt, 1);
}
} else {
// partial/none keys found
reply_mix(CMD_ACK, foundkeys, 0, 0, 0, 0);
}
DBGLEVEL = oldbg;
}
void MifareChkKeys(uint8_t *datain) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t uid[10] = {0x00};
uint64_t key = 0;
uint32_t cuid = 0;
int i, res;
uint8_t cascade_levels = 0;
struct {
uint8_t key[6];
bool found;
} PACKED keyresult;
keyresult.found = false;
bool have_uid = false;
uint8_t keyType = datain[0];
uint8_t blockNo = datain[1];
bool clearTrace = datain[2];
uint16_t key_count = (datain[3] << 8) | datain[4];
uint16_t key_mem_available = MIN((PM3_CMD_DATA_SIZE - 5), key_count * 6);
key_count = key_mem_available / 6;
datain += 5;
LEDsoff();
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if (clearTrace)
clear_trace();
int oldbg = DBGLEVEL;
DBGLEVEL = DBG_NONE;
set_tracing(false);
for (i = 0; i < key_count; i++) {
// Iceman: use piwi's faster nonce collecting part in hardnested.
if (!have_uid) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info;
if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("ChkKeys: Can't select card (ALL)");
--i; // try same key once again
continue;
}
switch (card_info.uidlen) {
case 4 :
cascade_levels = 1;
break;
case 7 :
cascade_levels = 2;
break;
case 10:
cascade_levels = 3;
break;
default:
break;
}
have_uid = true;
} else { // no need for anticollision. We can directly select the card
if (!iso14443a_select_card(uid, NULL, NULL, false, cascade_levels, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("ChkKeys: Can't select card (UID)");
--i; // try same key once again
continue;
}
}
key = bytes_to_num(datain + i * 6, 6);
res = mifare_classic_auth(pcs, cuid, blockNo, keyType, key, AUTH_FIRST);
// CHK_TIMEOUT();
if (res)
continue;
memcpy(keyresult.key, datain + i * 6, 6);
keyresult.found = true;
break;
}
LED_B_ON();
reply_ng(CMD_HF_MIFARE_CHKKEYS, PM3_SUCCESS, (uint8_t *)&keyresult, sizeof(keyresult));
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
crypto1_deinit(pcs);
DBGLEVEL = oldbg;
}
void MifareChkKeys_file(uint8_t *fn) {
#ifdef WITH_FLASH
SpinOff(0);
int changed = rdv40_spiffs_lazy_mount();
uint32_t size = size_in_spiffs((char *)fn);
uint8_t *mem = BigBuf_malloc(size);
rdv40_spiffs_read_as_filetype((char *)fn, mem, size, RDV40_SPIFFS_SAFETY_SAFE);
if (changed) {
rdv40_spiffs_lazy_unmount();
}
SpinOff(0);
MifareChkKeys(mem);
BigBuf_free();
#endif
}
//-----------------------------------------------------------------------------
// MIFARE Personalize UID. Only for Mifare Classic EV1 7Byte UID
//-----------------------------------------------------------------------------
void MifarePersonalizeUID(uint8_t keyType, uint8_t perso_option, uint64_t key) {
uint16_t isOK = PM3_EUNDEF;
uint8_t uid[10];
uint32_t cuid;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
LED_A_ON();
while (true) {
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
break;
}
uint8_t block_number = 0;
if (mifare_classic_auth(pcs, cuid, block_number, keyType, key, AUTH_FIRST)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Auth error");
break;
}
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
int len = mifare_sendcmd_short(pcs, true, MIFARE_EV1_PERSONAL_UID, perso_option, receivedAnswer, receivedAnswerPar, NULL);
if (len != 1 || receivedAnswer[0] != CARD_ACK) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
break;
}
if (mifare_classic_halt(pcs, cuid)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Halt error");
break;
}
isOK = PM3_SUCCESS;
break;
}
crypto1_deinit(pcs);
LED_B_ON();
reply_ng(CMD_HF_MIFARE_PERSONALIZE_UID, isOK, NULL, 0);
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
//-----------------------------------------------------------------------------
// Work with emulator memory
//
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
// involved in dealing with emulator memory. But if it is called later, it might
// destroy the Emulator Memory.
//-----------------------------------------------------------------------------
void MifareEMemClr(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
emlClearMem();
}
void MifareEMemSet(uint8_t blockno, uint8_t blockcnt, uint8_t blockwidth, uint8_t *datain) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
if (blockwidth == 0)
blockwidth = 16; // backwards compat... default bytewidth
emlSetMem_xt(datain, blockno, blockcnt, blockwidth); // data, block num, blocks count, block byte width
}
void MifareEMemGet(uint8_t blockno, uint8_t blockcnt) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
//
size_t size = blockcnt * 16;
if (size > PM3_CMD_DATA_SIZE) {
reply_ng(CMD_HF_MIFARE_EML_MEMGET, PM3_EMALLOC, NULL, 0);
return;
}
uint8_t *buf = BigBuf_malloc(size);
emlGetMem(buf, blockno, blockcnt); // data, block num, blocks count (max 4)
LED_B_ON();
reply_ng(CMD_HF_MIFARE_EML_MEMGET, PM3_SUCCESS, buf, size);
LED_B_OFF();
BigBuf_free_keep_EM();
}
//-----------------------------------------------------------------------------
// Load a card into the emulator memory
//
//-----------------------------------------------------------------------------
int MifareECardLoadExt(uint8_t sectorcnt, uint8_t keytype) {
int retval = MifareECardLoad(sectorcnt, keytype);
reply_ng(CMD_HF_MIFARE_EML_LOAD, retval, NULL, 0);
return retval;
}
int MifareECardLoad(uint8_t sectorcnt, uint8_t keytype) {
uint32_t cuid = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
// variables
uint8_t dataoutbuf[16] = {0x00};
uint8_t dataoutbuf2[16] = {0x00};
uint8_t uid[10] = {0x00};
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
int retval = PM3_SUCCESS;
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
retval = PM3_ESOFT;
if (DBGLEVEL > DBG_ERROR) Dbprintf("Can't select card");
goto out;
}
for (uint8_t sectorNo = 0; sectorNo < sectorcnt; sectorNo++) {
uint64_t ui64Key = emlGetKey(sectorNo, keytype);
if (sectorNo == 0) {
if (mifare_classic_auth(pcs, cuid, FirstBlockOfSector(sectorNo), keytype, ui64Key, AUTH_FIRST)) {
retval = PM3_ESOFT;
if (DBGLEVEL > DBG_ERROR) Dbprintf("Sector[%2d]. Auth error", sectorNo);
goto out;
}
} else {
if (mifare_classic_auth(pcs, cuid, FirstBlockOfSector(sectorNo), keytype, ui64Key, AUTH_NESTED)) {
retval = PM3_ESOFT;
if (DBGLEVEL > DBG_ERROR) Dbprintf("Sector[%2d]. Auth nested error", sectorNo);
goto out;
}
}
for (uint8_t blockNo = 0; blockNo < NumBlocksPerSector(sectorNo); blockNo++) {
if (mifare_classic_readblock(pcs, cuid, FirstBlockOfSector(sectorNo) + blockNo, dataoutbuf)) {
retval = PM3_ESOFT;
if (DBGLEVEL > DBG_ERROR) Dbprintf("Error reading sector %2d block %2d", sectorNo, blockNo);
break;
}
if (blockNo < NumBlocksPerSector(sectorNo) - 1) {
emlSetMem(dataoutbuf, FirstBlockOfSector(sectorNo) + blockNo, 1);
} else { // sector trailer, keep the keys, set only the AC
emlGetMem(dataoutbuf2, FirstBlockOfSector(sectorNo) + blockNo, 1);
memcpy(&dataoutbuf2[6], &dataoutbuf[6], 4);
emlSetMem(dataoutbuf2, FirstBlockOfSector(sectorNo) + blockNo, 1);
}
}
}
int res = mifare_classic_halt(pcs, cuid);
(void)res;
if (DBGLEVEL >= DBG_INFO) DbpString("Emulator fill sectors finished");
out:
crypto1_deinit(pcs);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
return retval;
}
//-----------------------------------------------------------------------------
// Work with "magic Chinese" card (email him: ouyangweidaxian@live.cn)
//
// PARAMS - workFlags
// bit 0 - need get UID
// bit 1 - need wupC
// bit 2 - need HALT after sequence
// bit 3 - need turn on FPGA before sequence
// bit 4 - need turn off FPGA
// bit 5 - need to set datain instead of issuing USB reply (called via ARM for StandAloneMode14a)
// bit 6 - wipe tag.
//-----------------------------------------------------------------------------
// magic uid card generation 1 commands
static uint8_t wupC1[] = { MIFARE_MAGICWUPC1 };
static uint8_t wupC2[] = { MIFARE_MAGICWUPC2 };
static uint8_t wipeC[] = { MIFARE_MAGICWIPEC };
void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain) {
// params
uint8_t workFlags = arg0;
uint8_t blockNo = arg1;
// detect 1a/1b
bool is1b = false;
// variables
bool isOK = false; //assume we will get an error
uint8_t errormsg = 0x00;
uint8_t uid[10] = {0x00};
uint8_t data[18] = {0x00};
uint32_t cuid = 0;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
if (workFlags & MAGIC_INIT) {
LED_A_ON();
LED_B_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
}
//loop doesn't loop just breaks out if error
while (true) {
// read UID and return to client with write
if (workFlags & MAGIC_UID) {
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
errormsg = MAGIC_UID;
}
mifare_classic_halt_ex(NULL);
break;
}
// wipe tag, fill it with zeros
if (workFlags & MAGIC_WIPE) {
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("wupC1 error");
errormsg = MAGIC_WIPE;
break;
}
ReaderTransmit(wipeC, sizeof(wipeC), NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("wipeC error");
errormsg = MAGIC_WIPE;
break;
}
mifare_classic_halt_ex(NULL);
}
// write block
if (workFlags & MAGIC_WUPC) {
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("wupC1 error");
errormsg = MAGIC_WUPC;
break;
}
if (!is1b) {
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]");
is1b = true;
continue;
}
}
}
if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_WRITEBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 1) || (receivedAnswer[0] != 0x0a)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("write block send command error");
errormsg = 4;
break;
}
memcpy(data, datain, 16);
AddCrc14A(data, 16);
ReaderTransmit(data, sizeof(data), NULL);
if ((ReaderReceive(receivedAnswer, receivedAnswerPar) != 1) || (receivedAnswer[0] != 0x0a)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("write block send data error");
errormsg = 0;
break;
}
if (workFlags & MAGIC_HALT)
mifare_classic_halt_ex(NULL);
isOK = true;
break;
} // end while
if (isOK)
reply_mix(CMD_ACK, 1, 0, 0, uid, sizeof(uid));
else
OnErrorMagic(errormsg);
if (workFlags & MAGIC_OFF)
OnSuccessMagic();
}
void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain) {
uint8_t workFlags = arg0;
uint8_t blockNo = arg1;
uint8_t errormsg = 0x00;
bool isOK = false; //assume we will get an error
// detect 1a/1b
bool is1b = false;
// variables
uint8_t data[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
memset(data, 0x00, sizeof(data));
if (workFlags & MAGIC_INIT) {
LED_A_ON();
LED_B_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
}
//loop doesn't loop just breaks out if error or done
while (true) {
if (workFlags & MAGIC_WUPC) {
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("wupC1 error");
errormsg = MAGIC_WUPC;
break;
}
if (!is1b) {
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (DBGLEVEL >= DBG_INFO) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]");
is1b = true;
continue;
}
}
}
// read block
if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_READBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 18)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("read block send command error");
errormsg = 0;
break;
}
memcpy(data, receivedAnswer, sizeof(data));
// send HALT
if (workFlags & MAGIC_HALT)
mifare_classic_halt_ex(NULL);
isOK = true;
break;
}
// if MAGIC_DATAIN, the data stays on device side.
if (workFlags & MAGIC_DATAIN) {
if (isOK)
memcpy(datain, data, sizeof(data));
} else {
if (isOK)
reply_old(CMD_ACK, 1, 0, 0, data, sizeof(data));
else
OnErrorMagic(errormsg);
}
if (workFlags & MAGIC_OFF)
OnSuccessMagic();
}
void MifareCIdent(void) {
// variables
uint8_t isGen = 0;
uint8_t rec[1] = {0x00};
uint8_t recpar[1] = {0x00};
uint8_t rats[4] = { ISO14443A_CMD_RATS, 0x80, 0x31, 0x73 };
uint8_t *par = BigBuf_malloc(MAX_PARITY_SIZE);
uint8_t *buf = BigBuf_malloc(PM3_CMD_DATA_SIZE);
uint8_t *uid = BigBuf_malloc(10);
uint32_t cuid = 0;
uint8_t data[1] = {0x00};
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// Generation 1 test
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
if (ReaderReceive(rec, recpar) && (rec[0] == 0x0a)) {
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if (!ReaderReceive(rec, recpar) || (rec[0] != 0x0a)) {
isGen = MAGIC_GEN_1B;
goto OUT;
};
isGen = MAGIC_GEN_1A;
goto OUT;
}
// reset card
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(40);
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
int res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
if (res == 2) {
if (cuid == 0xAA55C396) {
isGen = MAGIC_GEN_UNFUSED;
goto OUT;
}
ReaderTransmit(rats, sizeof(rats), NULL);
res = ReaderReceive(buf, par);
if (memcmp(buf, "\x09\x78\x00\x91\x02\xDA\xBC\x19\x10\xF0\x05", 11) == 0) {
isGen = MAGIC_GEN_2;
goto OUT;
}
if (memcmp(buf, "\x0D\x78\x00\x71\x02\x88\x49\xA1\x30\x20\x15\x06\x08\x56\x3D", 15) == 0) {
isGen = MAGIC_GEN_2;
}
};
OUT:
data[0] = isGen;
reply_ng(CMD_HF_MIFARE_CIDENT, PM3_SUCCESS, data, sizeof(data));
// turns off
OnSuccessMagic();
BigBuf_free();
}
void MifareHasStaticNonce(void) {
// variables
int retval = PM3_SUCCESS, len;
uint32_t nt = 0 ;
uint8_t rec[1] = {0x00};
uint8_t recpar[1] = {0x00};
uint8_t *uid = BigBuf_malloc(10);
uint8_t data[1] = {0x00};
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14a_card_select_t card_info;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
for (int i = 0; i < 3; i++) {
if (!iso14443a_select_card(uid, &card_info, NULL, true, 0, true)) {
retval = PM3_ESOFT;
goto OUT;
}
// Transmit MIFARE_CLASSIC_AUTH 0x60, block 0
len = mifare_sendcmd_short(pcs, false, MIFARE_AUTH_KEYA, 0, rec, recpar, NULL);
if (len != 4) {
retval = PM3_ESOFT;
goto OUT;
}
// Save the tag nonce (nt)
if (nt == bytes_to_num(rec, 4)) {
data[0]++;
}
nt = bytes_to_num(rec, 4);
CHK_TIMEOUT();
}
OUT:
reply_ng(CMD_HF_MIFARE_STATIC_NONCE, retval, data, sizeof(data));
// turns off
OnSuccessMagic();
BigBuf_free();
crypto1_deinit(pcs);
}
void OnSuccessMagic(void) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
void OnErrorMagic(uint8_t reason) {
// ACK, ISOK, reason,0,0,0
reply_mix(CMD_ACK, 0, reason, 0, 0, 0);
OnSuccessMagic();
}
void MifareSetMod(uint8_t *datain) {
uint8_t mod = datain[0];
uint64_t ui64Key = bytes_to_num(datain + 1, 6);
// variables
uint16_t isOK = PM3_EUNDEF;
uint8_t uid[10] = {0};
uint32_t cuid = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs = &mpcs;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0};
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0};
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
while (true) {
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
break;
}
if (mifare_classic_auth(pcs, cuid, 0, 0, ui64Key, AUTH_FIRST)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Auth error");
break;
}
int respLen;
if (((respLen = mifare_sendcmd_short(pcs, CRYPT_ALL, 0x43, mod, receivedAnswer, receivedAnswerPar, NULL)) != 1) || (receivedAnswer[0] != 0x0a)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("SetMod error; response[0]: %hhX, len: %d", receivedAnswer[0], respLen);
break;
}
if (mifare_classic_halt(pcs, cuid)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Halt error");
break;
}
isOK = PM3_SUCCESS;
break;
}
crypto1_deinit(pcs);
LED_B_ON();
reply_ng(CMD_HF_MIFARE_SETMOD, isOK, NULL, 0);
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
//
// DESFIRE
//
void Mifare_DES_Auth1(uint8_t arg0, uint8_t *datain) {
uint8_t dataout[12] = {0x00};
uint8_t uid[10] = {0x00};
uint32_t cuid = 0;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
int len = iso14443a_select_card(uid, NULL, &cuid, true, 0, false);
if (!len) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
OnError(1);
return;
};
if (mifare_desfire_des_auth1(cuid, dataout)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Authentication part1: Fail.");
OnError(4);
return;
}
if (DBGLEVEL >= DBG_EXTENDED) DbpString("AUTH 1 FINISHED");
reply_mix(CMD_ACK, 1, cuid, 0, dataout, sizeof(dataout));
}
void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain) {
uint32_t cuid = arg0;
uint8_t key[16] = {0x00};
uint8_t dataout[12] = {0x00};
uint8_t isOK = 0;
memcpy(key, datain, 16);
isOK = mifare_desfire_des_auth2(cuid, key, dataout);
if (isOK) {
if (DBGLEVEL >= DBG_EXTENDED) Dbprintf("Authentication part2: Failed");
OnError(4);
return;
}
if (DBGLEVEL >= DBG_EXTENDED) DbpString("AUTH 2 FINISHED");
reply_old(CMD_ACK, isOK, 0, 0, dataout, sizeof(dataout));
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
//
// Tear-off attack against MFU.
// - Moebius et al
void MifareU_Otp_Tearoff(uint8_t arg0, uint32_t arg1, uint8_t *datain) {
uint8_t blockNo = arg0;
uint32_t tearOffTime = arg1;
uint8_t data_fullwrite[4] = {0x00};
uint8_t data_testwrite[4] = {0x00};
memcpy(data_fullwrite, datain, 4);
memcpy(data_testwrite, datain + 4, 4);
// optional authentication before?
if (DBGLEVEL >= DBG_ERROR) DbpString("Preparing OTP tear-off");
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
StartTicks();
// write cmd to send, include CRC
// 1b write, 1b block, 4b data, 2 crc
uint8_t cmd[] = {MIFARE_ULC_WRITE, blockNo, data_testwrite[0], data_testwrite[1], data_testwrite[2], data_testwrite[3], 0, 0};
MifareUWriteBlock(blockNo, 0, data_fullwrite);
AddCrc14A(cmd, sizeof(cmd) - 2);
if (DBGLEVEL >= DBG_ERROR) DbpString("Transmitting");
// anticollision / select card
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (DBGLEVEL >= DBG_ERROR) Dbprintf("Can't select card");
OnError(1);
return;
};
// send
ReaderTransmit(cmd, sizeof(cmd), NULL);
// Wait before cutting power. aka tear-off
LED_D_ON();
WaitUS(tearOffTime);
switch_off();
reply_ng(CMD_HF_MFU_OTP_TEAROFF, PM3_SUCCESS, NULL, 0);
StopTicks();
if (DBGLEVEL >= DBG_ERROR) DbpString("Done");
}