RRG-Proxmark3/common_arm/ticks.c
nvx 5c195b8a14 fix ssp_clk sometimes resetting to 0 shortly after being started or reset
this could happen if TC2 was already 0 when it was started or reset
resulting in the initial reset not happening until TC0 had overflowed for
the first time as the delay to ensure this didn't happen would be missed
when TC2 was already 0

the new behaviour results in TIOA0 being toggled when a software trigger
of TC0 happens which makes TC2 reset immediately without having to wait
for TC0 to overflow
2024-11-04 22:04:05 +10:00

340 lines
16 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Jonathan Westhues, Sept 2005
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// Timers, Clocks functions used in LF or Legic where you would need detailed time.
//-----------------------------------------------------------------------------
#include "ticks.h"
#include "proxmark3_arm.h"
#ifndef AS_BOOTROM
#include "dbprint.h"
#endif
#ifndef AS_BOOTROM
// timer counts in 666ns increments (32/48MHz), rounding applies
// WARNING: timer can't measure more than 43ms (666ns * 0xFFFF)
void SpinDelayUsPrecision(int us) {
int ticks = ((MCK / 1000000) * us + 16) >> 5;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 32 gives 1.5 Mhz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(5); // Channel Mode Register
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; // Channel Duty Cycle Register
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xFFFF; // Channel Period Register
uint16_t end = AT91C_BASE_PWMC_CH0->PWMC_CCNTR + ticks;
if (end == 0) // AT91C_BASE_PWMC_CH0->PWMC_CCNTR is never == 0
end++; // so we have to end++ to avoid inivity loop
for (;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
if (now == end)
return;
WDT_HIT();
}
}
// timer counts in 21.3us increments (1024/48MHz), rounding applies
// WARNING: timer can't measure more than 1.39s (21.3us * 0xffff)
void SpinDelayUs(int us) {
int ticks = ((MCK / 1000000) * us + 512) >> 10;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); // Channel Mode Register
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; // Channel Duty Cycle Register
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; // Channel Period Register
uint16_t end = AT91C_BASE_PWMC_CH0->PWMC_CCNTR + ticks;
if (end == 0) // AT91C_BASE_PWMC_CH0->PWMC_CCNTR is never == 0
end++; // so we have to end++ to avoid inivity loop
for (;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
if (now == end)
return;
WDT_HIT();
}
}
// WARNING: timer can't measure more than 1.39s (21.3us * 0xffff)
void SpinDelay(int ms) {
if (ms > 1390) {
if (g_dbglevel >= DBG_ERROR) Dbprintf(_RED_("Error, SpinDelay called with %i > 1390"), ms);
ms = 1390;
}
// convert to us and call microsecond delay function
SpinDelayUs(ms * 1000);
}
// -------------------------------------------------------------------------
// timer lib
// -------------------------------------------------------------------------
// test procedure:
//
// ti = GetTickCount();
// SpinDelay(1000);
// ti = GetTickCount() - ti;
// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
void StartTickCount(void) {
// This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
// We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
while ((AT91C_BASE_PMC->PMC_MCFR & AT91C_CKGR_MAINRDY) == 0); // Wait for MAINF value to become available...
uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & AT91C_CKGR_MAINF; // Get # main clocks within 16 slow clocks
// set RealTimeCounter divider to count at 1kHz, should be 32 if RC is exactly at 32kHz:
AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((((MAINCK / 1000 * 16) + (mainf / 2)) / mainf) & AT91C_RTTC_RTPRES);
// note: worst case precision is approx 2.5%
}
/*
* Get the current count.
*/
uint32_t RAMFUNC GetTickCount(void) {
return AT91C_BASE_RTTC->RTTC_RTVR;
}
uint32_t RAMFUNC GetTickCountDelta(uint32_t start_ticks) {
uint32_t stop_ticks = AT91C_BASE_RTTC->RTTC_RTVR;
if (stop_ticks >= start_ticks)
return stop_ticks - start_ticks;
return (UINT32_MAX - start_ticks) + stop_ticks;
}
// -------------------------------------------------------------------------
// Timer for iso14443 commands. Uses ssp_clk from FPGA
// -------------------------------------------------------------------------
void StartCountSspClk(void) {
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
| AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
| AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
// configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
| AT91C_TC_CPCSTOP // Stop clock on RC compare
| AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
| AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
| AT91C_TC_ENETRG // Enable external trigger event
| AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_AEEVT_SET // Set TIOA1 on external event
| AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
AT91C_BASE_TC1->TC_RC = 0x01; // RC Compare value = 0x01, pulse width to TC0
// use TC0 to count TIOA1 pulses
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP // just count
| AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
| AT91C_TC_ACPC_SET // Set TIOA0 on RC Compare
| AT91C_TC_ASWTRG_SET; // Set TIOA0 on software trigger to trigger instant reset of TC2
AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
// use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP; // just count
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC0
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC1
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC2
//
// synchronize the counter with the ssp_frame signal.
// Note: FPGA must be in a FPGA mode with SSC transfer, otherwise SSC_FRAME and SSC_CLK signals would not be present
//
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 1st ssp_clk after start of frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 2nd ssp_clk after start of frame
if ((AT91C_BASE_SSC->SSC_RFMR & SSC_FRAME_MODE_BITS_IN_WORD(32)) == SSC_FRAME_MODE_BITS_IN_WORD(16)) { // 16bit frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 3rd ssp_clk after start of frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 4th ssp_clk after start of frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 5th ssp_clk after start of frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 6th ssp_clk after start of frame
}
// note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
// it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
// at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
// at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
// whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
// (just started with the transfer of the 4th Bit).
// The high word of the counter (TC2) will not reset until the low word (TC0) clocks to process the external trigger.
// Therefore may need to wait a little bit before we can use the counter.
while (AT91C_BASE_TC2->TC_CV > 0);
}
void ResetSspClk(void) {
//enable clock of timer and software trigger
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while (AT91C_BASE_TC2->TC_CV > 0);
}
uint32_t RAMFUNC GetCountSspClk(void) {
uint32_t tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
// small chance that we may have missed an increment in TC2
if ((tmp_count & 0x0000ffff) == 0) {
return (AT91C_BASE_TC2->TC_CV << 16);
}
return tmp_count;
}
uint32_t RAMFUNC GetCountSspClkDelta(uint32_t start) {
uint32_t stop = GetCountSspClk();
if (stop >= start) {
return stop - start;
}
return (UINT32_MAX - start) + stop;
}
void WaitMS(uint32_t ms) {
WaitTicks((ms & 0x1FFFFF) * 1500);
}
#endif // #ifndef AS_BOOTROM
// -------------------------------------------------------------------------
// microseconds timer
// -------------------------------------------------------------------------
void StartCountUS(void) {
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock
// tick=1.5mks
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Assert a sync signal. This sets all timers to 0 on next active clock edge
AT91C_BASE_TCB->TCB_BCR = 1;
while (AT91C_BASE_TC1->TC_CV > 0);
}
uint32_t RAMFUNC GetCountUS(void) {
//return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
// By suggestion from PwPiwi, http://www.proxmark.org/forum/viewtopic.php?pid=17548#p17548
return ((uint32_t)AT91C_BASE_TC1->TC_CV) * 0x8000 + (((uint32_t)AT91C_BASE_TC0->TC_CV) * 2) / 3;
}
// -------------------------------------------------------------------------
// Timer for bitbanging, or LF stuff when you need a very precis timer
// 1us = 1.5ticks
// -------------------------------------------------------------------------
void StartTicks(void) {
// initialization of the timer
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// disable TC0 and TC1 for re-configuration
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// first configure TC1 (higher, 0xFFFF0000) 16 bit counter
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // just connect to TIOA0 from TC0
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // re-enable timer and wait for TC0
// second configure TC0 (lower, 0x0000FFFF) 16 bit counter
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO |
AT91C_TC_ACPA_CLEAR | // RA comperator clears TIOA (carry bit)
AT91C_TC_ACPC_SET | // RC comperator sets TIOA (carry bit)
AT91C_TC_ASWTRG_SET; // SWTriger sets TIOA (carry bit)
AT91C_BASE_TC0->TC_RC = 0; // set TIOA (carry bit) on overflow, return to zero
AT91C_BASE_TC0->TC_RA = 1; // clear carry bit on next clock cycle
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // reset and re-enable timer
// synchronized startup procedure
while (AT91C_BASE_TC0->TC_CV > 0); // wait until TC0 returned to zero
while (AT91C_BASE_TC0->TC_CV < 2); // and has started (TC_CV > TC_RA, now TC1 is cleared)
// return to zero
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV > 0);
}
uint32_t GetTicks(void) {
uint32_t hi, lo;
do {
hi = AT91C_BASE_TC1->TC_CV;
lo = AT91C_BASE_TC0->TC_CV;
} while (hi != AT91C_BASE_TC1->TC_CV);
return (hi << 16) | lo;
}
uint32_t RAMFUNC GetTicksDelta(uint32_t start) {
uint32_t stop = GetTicks();
if (stop >= start) {
return stop - start;
}
return (UINT32_MAX - start) + stop;
}
// Wait - Spindelay in ticks.
// if called with a high number, this will trigger the WDT...
void WaitTicks(uint32_t ticks) {
if (ticks == 0) return;
ticks += GetTicks();
while (GetTicks() < ticks);
}
// Wait / Spindelay in us (microseconds)
// 1us = 1.5ticks.
void WaitUS(uint32_t us) {
WaitTicks((us & 0x3FFFFFFF) * 3 / 2);
}
// stop clock
void StopTicks(void) {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
}