RRG-Proxmark3/bootrom/bootrom.c

466 lines
15 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Jonathan Westhues, Mar 2006
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// Main code for the bootloader
//-----------------------------------------------------------------------------
#include "clocks.h"
#include "usb_cdc.h"
#ifdef WITH_FLASH
#include "flashmem.h"
#endif
#include "proxmark3_arm.h"
#define DEBUG 0
common_area_t g_common_area __attribute__((section(".commonarea")));
uint32_t start_addr, end_addr;
bool bootrom_unlocked;
extern uint32_t _bootrom_start[], _bootrom_end[], _flash_start[], _flash_end[], _osimage_entry[], __bss_start__[], __bss_end__[];
static int reply_old(uint64_t cmd, uint64_t arg0, uint64_t arg1, uint64_t arg2, void *data, size_t len) {
PacketResponseOLD txcmd;
for (size_t i = 0; i < sizeof(PacketResponseOLD); i++)
((uint8_t *)&txcmd)[i] = 0x00;
// Compose the outgoing command frame
txcmd.cmd = cmd;
txcmd.arg[0] = arg0;
txcmd.arg[1] = arg1;
txcmd.arg[2] = arg2;
// Add the (optional) content to the frame, with a maximum size of PM3_CMD_DATA_SIZE
if (data && len) {
len = MIN(len, PM3_CMD_DATA_SIZE);
for (size_t i = 0; i < len; i++) {
txcmd.d.asBytes[i] = ((uint8_t *)data)[i];
}
}
// Send frame and make sure all bytes are transmitted
return usb_write((uint8_t *)&txcmd, sizeof(PacketResponseOLD));
}
#if DEBUG
static void DbpString(char *str) {
uint8_t len = 0;
while (str[len] != 0x00) {
len++;
}
reply_old(CMD_DEBUG_PRINT_STRING, len, 0, 0, (uint8_t *)str, len);
}
#endif
static void ConfigClocks(void) {
// we are using a 16 MHz crystal as the basis for everything
// slow clock runs at 32kHz typical regardless of crystal
// enable system clock and USB clock
AT91C_BASE_PMC->PMC_SCER |= AT91C_PMC_PCK | AT91C_PMC_UDP;
// enable the clock to the following peripherals
AT91C_BASE_PMC->PMC_PCER =
(1 << AT91C_ID_PIOA) |
(1 << AT91C_ID_ADC) |
(1 << AT91C_ID_SPI) |
(1 << AT91C_ID_SSC) |
(1 << AT91C_ID_PWMC) |
(1 << AT91C_ID_UDP);
mck_from_slck_to_pll();
}
static void Fatal(void) {
for (;;) {};
}
static uint32_t flash_size_from_cidr(uint32_t cidr) {
uint8_t nvpsiz = (cidr & 0xF00) >> 8;
switch (nvpsiz) {
case 0:
return 0;
case 1:
return 8 * 1024;
case 2:
return 16 * 1024;
case 3:
return 32 * 1024;
case 5:
return 64 * 1024;
case 7:
return 128 * 1024;
case 9:
return 256 * 1024;
case 10:
return 512 * 1024;
case 12:
return 1024 * 1024;
case 14:
default: // for 'reserved' values, guess 2MB
return 2048 * 1024;
}
}
static uint32_t get_flash_size(void) {
return flash_size_from_cidr(*AT91C_DBGU_CIDR);
}
static void UsbPacketReceived(uint8_t *packet) {
bool ack = true;
PacketCommandOLD *c = (PacketCommandOLD *)packet;
//if ( len != sizeof(PacketCommandOLD`)) Fatal();
uint32_t arg0 = (uint32_t)c->arg[0];
switch (c->cmd) {
case CMD_DEVICE_INFO: {
ack = false;
arg0 = 0;
arg0 = DEVICE_INFO_FLAG_BOOTROM_PRESENT |
DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM |
DEVICE_INFO_FLAG_UNDERSTANDS_START_FLASH |
DEVICE_INFO_FLAG_UNDERSTANDS_CHIP_INFO |
DEVICE_INFO_FLAG_UNDERSTANDS_VERSION |
DEVICE_INFO_FLAG_UNDERSTANDS_READ_MEM;
if (g_common_area.flags.osimage_present) {
arg0 |= DEVICE_INFO_FLAG_OSIMAGE_PRESENT;
}
reply_old(CMD_DEVICE_INFO, arg0, 1, 2, 0, 0);
}
break;
case CMD_CHIP_INFO: {
ack = false;
arg0 = *(AT91C_DBGU_CIDR);
reply_old(CMD_CHIP_INFO, arg0, 0, 0, 0, 0);
}
break;
case CMD_BL_VERSION: {
ack = false;
arg0 = BL_VERSION_1_0_0;
reply_old(CMD_BL_VERSION, arg0, 0, 0, 0, 0);
}
break;
case CMD_READ_MEM_DOWNLOAD: {
ack = false;
LED_B_ON();
size_t offset = (size_t) c->arg[0];
size_t count = (size_t) c->arg[1];
uint32_t flags = (uint32_t) c->arg[2];
bool isok = true;
uint8_t *base = NULL;
bool raw_address_mode = ((flags & READ_MEM_DOWNLOAD_FLAG_RAW) == READ_MEM_DOWNLOAD_FLAG_RAW);
if (!raw_address_mode) {
base = (uint8_t *) _flash_start;
size_t flash_size = get_flash_size();
// Boundary check the offset.
if (offset > flash_size)
isok = false;
// Clip the length if it goes past the end of the flash memory.
count = MIN(count, flash_size - offset);
} else {
// Allow reading from any memory address and length in special 'raw' mode.
base = NULL;
// Boundary check against end of addressable space.
if (offset > 0)
count = MIN(count, -offset);
}
if (isok) {
for (size_t pos = 0; pos < count; pos += PM3_CMD_DATA_SIZE) {
size_t len = MIN((count - pos), PM3_CMD_DATA_SIZE);
isok = 0 == reply_old(CMD_READ_MEM_DOWNLOADED, pos, len, 0, &base[offset + pos], len);
if (!isok)
break;
}
}
if (isok)
reply_old(CMD_ACK, 1, 0, 0, 0, 0);
else
reply_old(CMD_NACK, 0, 0, 0, 0, 0);
LED_B_OFF();
break;
}
case CMD_FINISH_WRITE: {
#if defined ICOPYX
if (c->arg[1] == 0xff && c->arg[2] == 0x1fd) {
#endif
for (int j = 0; j < 2; j++) {
uint32_t flash_address = arg0 + (0x100 * j);
AT91PS_EFC efc_bank = AT91C_BASE_EFC0;
int offset = 0;
uint32_t page_n = (flash_address - (uint32_t)_flash_start) / AT91C_IFLASH_PAGE_SIZE;
if (page_n >= AT91C_IFLASH_NB_OF_PAGES / 2) {
page_n -= AT91C_IFLASH_NB_OF_PAGES / 2;
efc_bank = AT91C_BASE_EFC1;
// We need to offset the writes or it will not fill the correct bank write buffer.
offset = (AT91C_IFLASH_NB_OF_PAGES / 2) * AT91C_IFLASH_PAGE_SIZE / sizeof(uint32_t);
}
for (int i = 0 + (64 * j); i < 64 + (64 * j); i++) {
_flash_start[offset + i] = c->d.asDwords[i];
}
/* Check that the address that we are supposed to write to is within our allowed region */
if (((flash_address + AT91C_IFLASH_PAGE_SIZE - 1) >= end_addr) || (flash_address < start_addr)) {
/* Disallow write */
ack = false;
reply_old(CMD_NACK, 0, 0, 0, 0, 0);
} else {
efc_bank->EFC_FCR = MC_FLASH_COMMAND_KEY |
MC_FLASH_COMMAND_PAGEN(page_n) |
AT91C_MC_FCMD_START_PROG;
}
// Wait until flashing of page finishes
uint32_t sr;
while (!((sr = efc_bank->EFC_FSR) & AT91C_MC_FRDY));
if (sr & (AT91C_MC_LOCKE | AT91C_MC_PROGE)) {
ack = false;
reply_old(CMD_NACK, sr, 0, 0, 0, 0);
}
}
#if defined ICOPYX
}
#endif
}
break;
case CMD_HARDWARE_RESET: {
usb_disable();
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
}
break;
case CMD_START_FLASH: {
if (c->arg[2] == START_FLASH_MAGIC)
bootrom_unlocked = true;
else
bootrom_unlocked = false;
uint32_t cmd_start = c->arg[0];
uint32_t cmd_end = c->arg[1];
/* Only allow command if the bootrom is unlocked, or the parameters are outside of the protected
* bootrom area. In any case they must be within the flash area.
*/
if ((bootrom_unlocked || ((cmd_start >= (uint32_t)_bootrom_end) || (cmd_end < (uint32_t)_bootrom_start))) &&
(cmd_start >= (uint32_t)_flash_start) &&
(cmd_end <= (uint32_t)_flash_end)) {
start_addr = cmd_start;
end_addr = cmd_end;
} else {
start_addr = end_addr = 0;
ack = false;
reply_old(CMD_NACK, 0, 0, 0, 0, 0);
}
}
break;
default: {
Fatal();
}
break;
}
if (ack) {
reply_old(CMD_ACK, arg0, 0, 0, 0, 0);
}
}
// delay_loop(1) = 3.07us
static volatile uint32_t ccc;
static void __attribute__((optimize("O0"))) delay_loop(uint32_t delay) {
for (ccc = delay * 2; ccc; ccc--) {};
}
static void flash_mode(void) {
start_addr = 0;
end_addr = 0;
bootrom_unlocked = false;
uint8_t rx[sizeof(PacketCommandOLD)];
g_common_area.command = COMMON_AREA_COMMAND_NONE;
if (!g_common_area.flags.button_pressed && BUTTON_PRESS()) {
g_common_area.flags.button_pressed = 1;
}
#ifdef WITH_FLASH
if (FlashInit()) { // checks for existence of flash also ... OK because bootrom was built for devices with flash
uint64_t flash_uniqueID = 0;
Flash_UniqueID((uint8_t *)&flash_uniqueID);
FlashStop();
usb_update_serial(flash_uniqueID);
}
#endif
usb_enable();
// wait for reset to be complete?
delay_loop(100000);
for (;;) {
WDT_HIT();
// Check if there is a usb packet available
if (usb_poll_validate_length()) {
if (usb_read(rx, sizeof(rx))) {
UsbPacketReceived(rx);
}
}
bool button_state = BUTTON_PRESS();
// ~10ms, prevent jitter
delay_loop(3333);
if (button_state != BUTTON_PRESS()) {
// in jitter state, ignore
continue;
}
if (g_common_area.flags.button_pressed && button_state == false) {
g_common_area.flags.button_pressed = 0;
}
if (!g_common_area.flags.button_pressed && button_state) {
/* Perform a reset to leave flash mode */
g_common_area.flags.button_pressed = 1;
usb_disable();
LED_B_ON();
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
for (;;) {};
}
}
}
void BootROM(void);
void BootROM(void) {
/* Set up (that is: clear) BSS. */
uint32_t *bss_dst = __bss_start__;
while (bss_dst < __bss_end__) *bss_dst++ = 0;
//------------
// First set up all the I/O pins; GPIOs configured directly, other ones
// just need to be assigned to the appropriate peripheral.
// Kill all the pullups, especially the one on USB D+; leave them for
// the unused pins, though.
AT91C_BASE_PIOA->PIO_PPUDR =
GPIO_USB_PU |
GPIO_LED_A |
GPIO_LED_B |
GPIO_LED_C |
GPIO_LED_D |
GPIO_FPGA_DIN |
GPIO_FPGA_DOUT |
GPIO_FPGA_CCLK |
GPIO_FPGA_NINIT |
GPIO_FPGA_NPROGRAM |
GPIO_FPGA_DONE |
GPIO_MUXSEL_HIPKD |
GPIO_MUXSEL_HIRAW |
GPIO_MUXSEL_LOPKD |
GPIO_MUXSEL_LORAW |
GPIO_RELAY |
GPIO_NVDD_ON;
// (and add GPIO_FPGA_ON)
// These pins are outputs
AT91C_BASE_PIOA->PIO_OER =
GPIO_LED_A |
GPIO_LED_B |
GPIO_LED_C |
GPIO_LED_D |
GPIO_RELAY |
GPIO_NVDD_ON;
// PIO controls the following pins
AT91C_BASE_PIOA->PIO_PER =
GPIO_USB_PU |
GPIO_LED_A |
GPIO_LED_B |
GPIO_LED_C |
GPIO_LED_D;
// USB_D_PLUS_PULLUP_OFF();
usb_disable();
LED_D_OFF();
LED_C_ON();
LED_B_OFF();
LED_A_OFF();
// Set the first 256KB memory flashspeed
AT91C_BASE_EFC0->EFC_FMR = AT91C_MC_FWS_1FWS | MC_FLASH_MODE_MASTER_CLK_IN_MHZ(48);
// 9 = 256, 10+ is 512KB
uint8_t id = (*(AT91C_DBGU_CIDR) & 0xF00) >> 8;
if (id > 9)
AT91C_BASE_EFC1->EFC_FMR = AT91C_MC_FWS_1FWS | MC_FLASH_MODE_MASTER_CLK_IN_MHZ(48);
// Initialize all system clocks
ConfigClocks();
LED_A_ON();
int g_common_area_present = 0;
switch (AT91C_BASE_RSTC->RSTC_RSR & AT91C_RSTC_RSTTYP) {
case AT91C_RSTC_RSTTYP_WATCHDOG:
case AT91C_RSTC_RSTTYP_SOFTWARE:
case AT91C_RSTC_RSTTYP_USER:
/* In these cases the g_common_area in RAM should be ok, retain it if it's there */
if (g_common_area.magic == COMMON_AREA_MAGIC && g_common_area.version == 1)
g_common_area_present = 1;
break;
default: /* Otherwise, initialize it from scratch */
break;
}
if (!g_common_area_present) {
/* Common area not ok, initialize it */
size_t i;
/* Makeshift memset, no need to drag util.c into this */
for (i = 0; i < sizeof(g_common_area); i++)
((char *)&g_common_area)[i] = 0;
g_common_area.magic = COMMON_AREA_MAGIC;
g_common_area.version = 1;
}
g_common_area.flags.bootrom_present = 1;
if ((g_common_area.command == COMMON_AREA_COMMAND_ENTER_FLASH_MODE) ||
(!g_common_area.flags.button_pressed && BUTTON_PRESS()) ||
(*_osimage_entry == 0xffffffffU)) {
flash_mode();
} else {
// clear button status, even if button still pressed
g_common_area.flags.button_pressed = 0;
// jump to Flash address of the osimage entry point (LSBit set for thumb mode)
__asm("bx %0\n" : : "r"(((uint32_t)_osimage_entry) | 0x1));
}
}