RRG-Proxmark3/common/commonutil.c
2023-10-01 13:05:08 +02:00

530 lines
17 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// Utility functions used in many places, not specific to any piece of code.
//-----------------------------------------------------------------------------
#include "commonutil.h"
#include <string.h>
/* Similar to FpgaGatherVersion this formats stored version information
* into a string representation. It takes a pointer to the struct version_information_t,
* verifies the magic properties, then stores a formatted string, prefixed by
* prefix in dst.
*/
void FormatVersionInformation(char *dst, int len, const char *prefix, const void *version_info) {
const struct version_information_t *v = (const struct version_information_t *)version_info;
dst[0] = 0;
strncat(dst, prefix, len - 1);
if (v->magic != VERSION_INFORMATION_MAGIC) {
strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1);
return;
}
if (v->versionversion != 1) {
strncat(dst, "Version information not understood", len - strlen(dst) - 1);
return;
}
if (!v->present) {
strncat(dst, "Version information not available", len - strlen(dst) - 1);
return;
}
strncat(dst, v->gitversion, len - strlen(dst) - 1);
if (v->clean == 0) {
strncat(dst, "-unclean", len - strlen(dst) - 1);
} else if (v->clean == 2) {
strncat(dst, "-suspect", len - strlen(dst) - 1);
}
strncat(dst, " ", len - strlen(dst) - 1);
strncat(dst, v->buildtime, len - strlen(dst) - 1);
strncat(dst, " ", len - strlen(dst) - 1);
strncat(dst, v->armsrc, len - strlen(dst) - 1);
}
void format_version_information_short(char *dst, int len, const void *version_info) {
const struct version_information_t *v = (const struct version_information_t *)version_info;
dst[0] = 0;
if (v->magic != VERSION_INFORMATION_MAGIC) {
strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1);
return;
}
if (v->versionversion != 1) {
strncat(dst, "Version information not understood", len - strlen(dst) - 1);
return;
}
if (!v->present) {
strncat(dst, "Version information not available", len - strlen(dst) - 1);
return;
}
strncat(dst, v->gitversion, len - strlen(dst) - 1);
strncat(dst, " ", len - strlen(dst) - 1);
strncat(dst, v->buildtime, len - strlen(dst) - 1);
}
/*
ref http://www.csm.ornl.gov/~dunigan/crc.html
Returns the value v with the bottom b [0,32] bits reflected.
Example: reflect(0x3e23L,3) == 0x3e26
*/
uint32_t reflect(uint32_t v, int b) {
uint32_t t = v;
for (int i = 0; i < b; ++i) {
if (t & 1)
v |= BITMASK((b - 1) - i);
else
v &= ~BITMASK((b - 1) - i);
t >>= 1;
}
return v;
}
// https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
// Reverse the bits in a byte with 3 operations (64-bit multiply and modulus division):
uint8_t reflect8(uint8_t b) {
return (b * 0x0202020202ULL & 0x010884422010ULL) % 1023;
}
// Reverse the bits in a byte with 4 operations (64-bit multiply, no division):
/*
uint8_t reflect8(uint8_t b) {
return ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
}
*/
uint16_t reflect16(uint16_t b) {
uint16_t v = 0;
v |= (b & 0x8000) >> 15;
v |= (b & 0x4000) >> 13;
v |= (b & 0x2000) >> 11;
v |= (b & 0x1000) >> 9;
v |= (b & 0x0800) >> 7;
v |= (b & 0x0400) >> 5;
v |= (b & 0x0200) >> 3;
v |= (b & 0x0100) >> 1;
v |= (b & 0x0080) << 1;
v |= (b & 0x0040) << 3;
v |= (b & 0x0020) << 5;
v |= (b & 0x0010) << 7;
v |= (b & 0x0008) << 9;
v |= (b & 0x0004) << 11;
v |= (b & 0x0002) << 13;
v |= (b & 0x0001) << 15;
return v;
}
uint32_t reflect32(uint32_t b) {
// https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
uint32_t v = b; // 32-bit word to reverse bit order
// swap odd and even bits
v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1);
// swap consecutive pairs
v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2);
// swap nibbles ...
v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4);
// swap bytes
v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8);
// swap 2-byte long pairs
v = (v >> 16) | (v << 16);
return v;
}
void num_to_bytes(uint64_t n, size_t len, uint8_t *dest) {
while (len--) {
dest[len] = (uint8_t) n;
n >>= 8;
}
}
uint64_t bytes_to_num(const uint8_t *src, size_t len) {
uint64_t num = 0;
while (len--) {
num = (num << 8) | (*src);
src++;
}
return num;
}
uint16_t MemLeToUint2byte(const uint8_t *data) {
return (uint16_t)(
(((uint16_t)(data[1])) << (8 * 1)) +
(((uint16_t)(data[0])) << (8 * 0))
);
}
uint32_t MemLeToUint3byte(const uint8_t *data) {
return (uint32_t)(
(((uint32_t)(data[2])) << (8 * 2)) +
(((uint32_t)(data[1])) << (8 * 1)) +
(((uint32_t)(data[0])) << (8 * 0))
);
}
uint32_t MemLeToUint4byte(const uint8_t *data) {
return (uint32_t)(
(((uint32_t)(data[3])) << (8 * 3)) +
(((uint32_t)(data[2])) << (8 * 2)) +
(((uint32_t)(data[1])) << (8 * 1)) +
(((uint32_t)(data[0])) << (8 * 0))
);
}
uint64_t MemLeToUint5byte(const uint8_t *data) {
return (uint64_t)(
(((uint64_t)(data[4])) << (8 * 4)) +
(((uint64_t)(data[3])) << (8 * 3)) +
(((uint64_t)(data[2])) << (8 * 2)) +
(((uint64_t)(data[1])) << (8 * 1)) +
(((uint64_t)(data[0])) << (8 * 0))
);
}
uint64_t MemLeToUint6byte(const uint8_t *data) {
return (uint64_t)(
(((uint64_t)(data[5])) << (8 * 5)) +
(((uint64_t)(data[4])) << (8 * 4)) +
(((uint64_t)(data[3])) << (8 * 3)) +
(((uint64_t)(data[2])) << (8 * 2)) +
(((uint64_t)(data[1])) << (8 * 1)) +
(((uint64_t)(data[0])) << (8 * 0))
);
}
uint64_t MemLeToUint7byte(const uint8_t *data) {
return (uint64_t)(
(((uint64_t)(data[6])) << (8 * 6)) +
(((uint64_t)(data[5])) << (8 * 5)) +
(((uint64_t)(data[4])) << (8 * 4)) +
(((uint64_t)(data[3])) << (8 * 3)) +
(((uint64_t)(data[2])) << (8 * 2)) +
(((uint64_t)(data[1])) << (8 * 1)) +
(((uint64_t)(data[0])) << (8 * 0))
);
}
uint64_t MemLeToUint8byte(const uint8_t *data) {
return (uint64_t)(
(((uint64_t)(data[7])) << (8 * 7)) +
(((uint64_t)(data[6])) << (8 * 6)) +
(((uint64_t)(data[5])) << (8 * 5)) +
(((uint64_t)(data[4])) << (8 * 4)) +
(((uint64_t)(data[3])) << (8 * 3)) +
(((uint64_t)(data[2])) << (8 * 2)) +
(((uint64_t)(data[1])) << (8 * 1)) +
(((uint64_t)(data[0])) << (8 * 0))
);
}
uint16_t MemBeToUint2byte(const uint8_t *data) {
return (uint16_t)(
(((uint16_t)(data[0])) << (8 * 1)) +
(((uint16_t)(data[1])) << (8 * 0))
);
}
uint32_t MemBeToUint3byte(const uint8_t *data) {
return (uint32_t)(
(((uint32_t)(data[0])) << (8 * 2)) +
(((uint32_t)(data[1])) << (8 * 1)) +
(((uint32_t)(data[2])) << (8 * 0))
);
}
uint32_t MemBeToUint4byte(const uint8_t *data) {
return (uint32_t)(
(((uint32_t)(data[0])) << (8 * 3)) +
(((uint32_t)(data[1])) << (8 * 2)) +
(((uint32_t)(data[2])) << (8 * 1)) +
(((uint32_t)(data[3])) << (8 * 0))
);
}
uint64_t MemBeToUint5byte(const uint8_t *data) {
return (uint64_t)(
(((uint64_t)(data[0])) << (8 * 4)) +
(((uint64_t)(data[1])) << (8 * 3)) +
(((uint64_t)(data[2])) << (8 * 2)) +
(((uint64_t)(data[3])) << (8 * 1)) +
(((uint64_t)(data[4])) << (8 * 0))
);
}
uint64_t MemBeToUint6byte(const uint8_t *data) {
return (uint64_t)(
(((uint64_t)(data[0])) << (8 * 5)) +
(((uint64_t)(data[1])) << (8 * 4)) +
(((uint64_t)(data[2])) << (8 * 3)) +
(((uint64_t)(data[3])) << (8 * 2)) +
(((uint64_t)(data[4])) << (8 * 1)) +
(((uint64_t)(data[5])) << (8 * 0))
);
}
uint64_t MemBeToUint7byte(const uint8_t *data) {
return (uint64_t)(
(((uint64_t)(data[0])) << (8 * 6)) +
(((uint64_t)(data[1])) << (8 * 5)) +
(((uint64_t)(data[2])) << (8 * 4)) +
(((uint64_t)(data[3])) << (8 * 3)) +
(((uint64_t)(data[4])) << (8 * 2)) +
(((uint64_t)(data[5])) << (8 * 1)) +
(((uint64_t)(data[6])) << (8 * 0))
);
}
uint64_t MemBeToUint8byte(const uint8_t *data) {
return (uint64_t)(
(((uint64_t)(data[0])) << (8 * 7)) +
(((uint64_t)(data[1])) << (8 * 6)) +
(((uint64_t)(data[2])) << (8 * 5)) +
(((uint64_t)(data[3])) << (8 * 4)) +
(((uint64_t)(data[4])) << (8 * 3)) +
(((uint64_t)(data[5])) << (8 * 2)) +
(((uint64_t)(data[6])) << (8 * 1)) +
(((uint64_t)(data[7])) << (8 * 0))
);
}
void Uint2byteToMemLe(uint8_t *data, uint16_t value) {
data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu);
}
void Uint3byteToMemLe(uint8_t *data, uint32_t value) {
data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu);
}
void Uint4byteToMemLe(uint8_t *data, uint32_t value) {
data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu);
}
void Uint5byteToMemLe(uint8_t *data, uint64_t value) {
data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu);
data[4] = (uint8_t)((value >> (8 * 4)) & 0xffu);
}
void Uint6byteToMemLe(uint8_t *data, uint64_t value) {
data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu);
data[4] = (uint8_t)((value >> (8 * 4)) & 0xffu);
data[5] = (uint8_t)((value >> (8 * 5)) & 0xffu);
}
void Uint7byteToMemLe(uint8_t *data, uint64_t value) {
data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu);
data[4] = (uint8_t)((value >> (8 * 4)) & 0xffu);
data[5] = (uint8_t)((value >> (8 * 5)) & 0xffu);
data[6] = (uint8_t)((value >> (8 * 6)) & 0xffu);
}
void Uint8byteToMemLe(uint8_t *data, uint64_t value) {
data[0] = (uint8_t)((value >> (8 * 0)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu);
data[4] = (uint8_t)((value >> (8 * 4)) & 0xffu);
data[5] = (uint8_t)((value >> (8 * 5)) & 0xffu);
data[6] = (uint8_t)((value >> (8 * 6)) & 0xffu);
data[7] = (uint8_t)((value >> (8 * 7)) & 0xffu);
}
void Uint2byteToMemBe(uint8_t *data, uint16_t value) {
data[0] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 0)) & 0xffu);
}
void Uint3byteToMemBe(uint8_t *data, uint32_t value) {
data[0] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 0)) & 0xffu);
}
void Uint4byteToMemBe(uint8_t *data, uint32_t value) {
data[0] = (uint8_t)((value >> (8 * 3)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[3] = (uint8_t)((value >> (8 * 0)) & 0xffu);
}
void Uint5byteToMemBe(uint8_t *data, uint64_t value) {
data[0] = (uint8_t)((value >> (8 * 4)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 3)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[3] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[4] = (uint8_t)((value >> (8 * 0)) & 0xffu);
}
void Uint6byteToMemBe(uint8_t *data, uint64_t value) {
data[0] = (uint8_t)((value >> (8 * 5)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 4)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 3)) & 0xffu);
data[3] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[4] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[5] = (uint8_t)((value >> (8 * 0)) & 0xffu);
}
void Uint7byteToMemBe(uint8_t *data, uint64_t value) {
data[0] = (uint8_t)((value >> (8 * 6)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 5)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 4)) & 0xffu);
data[3] = (uint8_t)((value >> (8 * 3)) & 0xffu);
data[4] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[5] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[6] = (uint8_t)((value >> (8 * 0)) & 0xffu);
}
void Uint8byteToMemBe(uint8_t *data, uint64_t value) {
data[0] = (uint8_t)((value >> (8 * 7)) & 0xffu);
data[1] = (uint8_t)((value >> (8 * 6)) & 0xffu);
data[2] = (uint8_t)((value >> (8 * 5)) & 0xffu);
data[3] = (uint8_t)((value >> (8 * 4)) & 0xffu);
data[4] = (uint8_t)((value >> (8 * 3)) & 0xffu);
data[5] = (uint8_t)((value >> (8 * 2)) & 0xffu);
data[6] = (uint8_t)((value >> (8 * 1)) & 0xffu);
data[7] = (uint8_t)((value >> (8 * 0)) & 0xffu);
}
// RotateLeft - Ultralight, Desfire
void rol(uint8_t *data, const size_t len) {
uint8_t first = data[0];
for (size_t i = 0; i < len - 1; i++) {
data[i] = data[i + 1];
}
data[len - 1] = first;
}
void lsl(uint8_t *data, size_t len) {
for (size_t n = 0; n < len - 1; n++) {
data[n] = (data[n] << 1) | (data[n + 1] >> 7);
}
data[len - 1] <<= 1;
}
// BSWAP24 of array[3]
uint32_t le24toh(const uint8_t data[3]) {
return (data[2] << 16) | (data[1] << 8) | data[0];
}
// BSWAP24, take u32, output array
void htole24(uint32_t val, uint8_t data[3]) {
data[0] = (uint8_t) val;
data[1] = (uint8_t)(val >> 8);
data[2] = (uint8_t)(val >> 16);
}
// ROL on u32
uint32_t rotl(uint32_t a, uint8_t n) {
n &= 31;
return (a << n) | (a >> (32 - n));
}
// ROR on u32
uint32_t rotr(uint32_t a, uint8_t n) {
n &= 31;
return (a >> n) | (a << (32 - n));
}
uint16_t get_sw(const uint8_t *d, uint16_t n) {
if (n < 2)
return 0;
n -= 2;
return (d[n] << 8 | d[n + 1]);
}
// reverse same array
void reverse_array(uint8_t *d, size_t n) {
if (d == NULL || n < 2) {
return;
}
for (int i = 0, j = n - 1; i < j; ++i, --j) {
d[i] ^= d[j];
d[j] ^= d[i];
d[i] ^= d[j];
}
}
// reverse src array into dest array
void reverse_array_copy(const uint8_t *src, int src_len, uint8_t *dest) {
if (src == NULL || src_len == 0 || dest == NULL) {
return;
}
for (int i = 0; i < src_len; i++) {
dest[i] = src[(src_len - 1) - i];
}
}
static int hexchar_to_dec(char ch) {
if (ch >= '0' && ch <= '9') {
return ch - '0';
}
if (ch >= 'a' && ch <= 'f') {
return ch - 'a' + 10;
}
if (ch >= 'A' && ch <= 'F') {
return ch - 'A' + 10;
}
return -1;
}
// no spaces allowed for input hex string
bool hexstr_to_byte_array(const char *hexstr, uint8_t *d, size_t *n) {
size_t hexstr_len = strlen(hexstr);
if (hexstr_len & 1) {
return false;
}
*n = (hexstr_len >> 1);
for (int i = 0; i < *n; i++) {
char c1 = *hexstr++;
char c2 = *hexstr++;
if (c1 == '\0' || c2 == '\0') {
return false;
}
int b = (hexchar_to_dec(c1) << 4) | hexchar_to_dec(c2);
if (b < 0) {
// Error: invalid hex character
return false;
}
d[i] = (uint8_t) b;
}
return true;
}