RRG-Proxmark3/armsrc/mifarecmd.c

3347 lines
100 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Gerhard de Koning Gans - May 2008
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
#include "mifarecmd.h"
#include "pmflash.h"
#include "proxmark3_arm.h"
#include "string.h"
#include "mifareutil.h"
#include "protocols.h"
#include "parity.h"
#include "BigBuf.h"
#include "cmd.h"
#include "flashmem.h"
#include "fpgaloader.h"
#include "iso14443a.h"
#include "mifaredesfire.h"
#include "util.h"
#include "commonutil.h"
#include "crc16.h"
#include "dbprint.h"
#include "ticks.h"
#include "usb_cdc.h" // usb_poll_validate_length
#include "spiffs.h" // spiffs
#include "appmain.h" // print_stack_usage
#ifndef HARDNESTED_AUTHENTICATION_TIMEOUT
# define HARDNESTED_AUTHENTICATION_TIMEOUT 848 // card times out 1ms after wrong authentication (according to NXP documentation)
#endif
#ifndef HARDNESTED_PRE_AUTHENTICATION_LEADTIME
# define HARDNESTED_PRE_AUTHENTICATION_LEADTIME 400 // some (non standard) cards need a pause after select before they are ready for first authentication
#endif
// send an incomplete dummy response in order to trigger the card's authentication failure timeout
#ifndef CHK_TIMEOUT
# define CHK_TIMEOUT(void) { \
ReaderTransmit(&dummy_answer, 1, NULL); \
uint32_t timeout = GetCountSspClk() + HARDNESTED_AUTHENTICATION_TIMEOUT; \
while (GetCountSspClk() < timeout) {}; \
}
#endif
static uint8_t dummy_answer = 0;
// magic uid card generation 1 commands
static uint8_t wupC1[] = { MIFARE_MAGICWUPC1 };
static uint8_t wupC2[] = { MIFARE_MAGICWUPC2 };
static uint8_t wipeC[] = { MIFARE_MAGICWIPEC };
// GDM alt magic wakeup
static uint8_t wupGDM1[] = { MIFARE_MAGIC_GDM_WUPC1 };
static uint8_t wupGDM2[] = { MIFARE_MAGIC_GDM_WUPC2 };
static bool mifare_wakeup_auth(struct Crypto1State *pcs, MifareWakeupType wakeup, uint8_t key_auth_cmd, uint8_t *key, uint8_t block_no) {
uint32_t cuid = 0;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
switch (wakeup) {
case MF_WAKE_NONE:
break;
case MF_WAKE_WUPA:
if (!iso14443a_select_cardEx(NULL, NULL, &cuid, true, 0, true, &WUPA_POLLING_PARAMETERS)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
return false;
};
break;
case MF_WAKE_REQA:
if (!iso14443a_select_cardEx(NULL, NULL, &cuid, true, 0, true, &REQA_POLLING_PARAMETERS)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
return false;
};
break;
case MF_WAKE_GEN1A:
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error");
return false;
}
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]");
}
break;
case MF_WAKE_GEN1B:
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error");
return false;
}
break;
case MF_WAKE_GDM_ALT:
ReaderTransmitBitsPar(wupGDM1, 7, NULL, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupGDM1 error");
return false;
}
ReaderTransmit(wupGDM2, sizeof(wupGDM2), NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_INFO) Dbprintf("wupGDM2 error");
// maybe this is fine on some tags?
}
break;
}
if (key_auth_cmd != 0) {
uint64_t ui64key = bytes_to_num(key, 6);
if (mifare_classic_authex_cmd(pcs, cuid, block_no, key_auth_cmd, ui64key, AUTH_FIRST, NULL, NULL, NULL)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Select, Authenticate, Read a MIFARE tag.
// wakeup determines the type of wakeup
// key_auth_cmd is usually one of MIFARE_AUTH_KEYA, MIFARE_AUTH_KEYB, MIFARE_MAGIC_GDM_AUTH_KEY or 0 to disable auth
// read_cmd is usually one of ISO14443A_CMD_READBLOCK, MIFARE_MAGIC_GDM_READBLOCK, or MIFARE_MAGIC_GDM_READ_CFG
// block_data must be 16*count bytes large
// block_no through block_no+count-1 normally needs to be within the same sector
//-----------------------------------------------------------------------------
int16_t mifare_cmd_readblocks(MifareWakeupType wakeup, uint8_t key_auth_cmd, uint8_t *key, uint8_t read_cmd, uint8_t block_no, uint8_t count, uint8_t *block_data) {
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs = (key_auth_cmd == 0) ? NULL : &mpcs;;
uint32_t timeout = iso14a_get_timeout();
int retval = PM3_SUCCESS;
if (mifare_wakeup_auth(pcs, wakeup, key_auth_cmd, key, block_no) == false) {
retval = PM3_ESOFT;
goto OUT;
}
// frame waiting time (FWT) in 1/fc
uint32_t fwt = 256 * 16 * (1 << 7);
iso14a_set_timeout(fwt / (8 * 16));
for (uint8_t i = 0; i < count; i++) {
if (mifare_classic_readblock_ex(pcs, block_no + i, block_data + (i * 16), read_cmd)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Read block error");
retval = PM3_ESOFT;
goto OUT;
};
}
if (mifare_classic_halt(pcs)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
retval = PM3_ESOFT;
goto OUT;
};
OUT:
crypto1_deinit(pcs);
iso14a_set_timeout(timeout);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
BigBuf_free();
return retval;
}
//-----------------------------------------------------------------------------
// Select, Authenticate, Write a MIFARE tag.
// wakeup determines the type of wakeup
// key_auth_cmd is usually one of MIFARE_AUTH_KEYA, MIFARE_AUTH_KEYB, MIFARE_MAGIC_GDM_AUTH_KEY or 0 to disable auth
// write_cmd is usually one of ISO14443A_CMD_WRITEBLOCK, MIFARE_MAGIC_GDM_WRITEBLOCK, or MIFARE_MAGIC_GDM_WRITE_CFG
// block_data must be 16*count bytes large
// block_no through block_no+count-1 normally needs to be within the same sector
//-----------------------------------------------------------------------------
int16_t mifare_cmd_writeblocks(MifareWakeupType wakeup, uint8_t key_auth_cmd, uint8_t *key, uint8_t write_cmd, uint8_t block_no, uint8_t count, uint8_t *block_data) {
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs = (key_auth_cmd == 0) ? NULL : &mpcs;;
int retval = PM3_SUCCESS;
if (mifare_wakeup_auth(pcs, wakeup, key_auth_cmd, key, block_no) == false) {
retval = PM3_ESOFT;
goto OUT;
}
for (uint8_t i = 0; i < count; i++) {
int res = mifare_classic_writeblock_ex(pcs, block_no + i, block_data + (i * 16), write_cmd);
if (res == PM3_ETEAROFF) {
retval = PM3_ETEAROFF;
goto OUT;
} else if (res != PM3_SUCCESS) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
retval = PM3_ESOFT;
goto OUT;
}
}
if (mifare_classic_halt(pcs)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
retval = PM3_ESOFT;
goto OUT;
};
OUT:
crypto1_deinit(pcs);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
BigBuf_free();
return retval;
}
//-----------------------------------------------------------------------------
// Select, Authenticate, Read a MIFARE tag.
// read sector (data = 4 x 16 bytes = 64 bytes, or 16 x 16 bytes = 256 bytes)
//-----------------------------------------------------------------------------
void MifareReadSector(uint8_t sector_no, uint8_t key_type, uint8_t *key) {
uint8_t block_no = FirstBlockOfSector(sector_no);
uint8_t num_blocks = NumBlocksPerSector(sector_no);
uint8_t outbuf[16 * 16];
int16_t retval = mifare_cmd_readblocks(MF_WAKE_WUPA, MIFARE_AUTH_KEYA + (key_type & 1), key, ISO14443A_CMD_READBLOCK, block_no, num_blocks, outbuf);
reply_old(CMD_ACK, retval == PM3_SUCCESS, 0, 0, outbuf, 16 * num_blocks);
}
void MifareUC_Auth(uint8_t arg0, uint8_t *keybytes) {
bool turnOffField = (arg0 == 1);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
OnError(0);
return;
};
if (!mifare_ultra_auth(keybytes)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Authentication failed");
OnError(1);
return;
}
if (turnOffField) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
}
void MifareUL_AES_Auth(bool turn_off_field, uint8_t keyno, uint8_t *keybytes) {
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
reply_ng(CMD_HF_MIFAREULAES_AUTH, PM3_ESOFT, NULL, 0);
return;
};
if (!mifare_ultra_aes_auth(keyno, keybytes)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Authentication failed");
reply_ng(CMD_HF_MIFAREULAES_AUTH, PM3_ESOFT, NULL, 0);
return;
}
if (turn_off_field) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
reply_ng(CMD_HF_MIFAREULAES_AUTH, PM3_SUCCESS, NULL, 0);
}
// Arg0 = BlockNo,
// Arg1 = UsePwd bool
// datain = PWD bytes,
void MifareUReadBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) {
uint8_t blockNo = arg0;
uint8_t dataout[16] = {0x00};
bool useKey = (arg1 == 1); //UL_C
bool usePwd = (arg1 == 2); //UL_EV1/NTAG
LEDsoff();
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true);
if (!len) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card (RC:%02X)", len);
OnError(1);
return;
}
// UL-C authentication
if (useKey) {
uint8_t key[16] = {0x00};
memcpy(key, datain, sizeof(key));
if (!mifare_ultra_auth(key)) {
OnError(1);
return;
}
}
// UL-EV1 / NTAG authentication
if (usePwd) {
uint8_t pwd[4] = {0x00};
memcpy(pwd, datain, 4);
uint8_t pack[4] = {0, 0, 0, 0};
if (!mifare_ul_ev1_auth(pwd, pack)) {
OnError(1);
return;
}
}
if (mifare_ultra_readblock(blockNo, dataout)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Read block error");
OnError(2);
return;
}
if (mifare_ultra_halt()) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
OnError(3);
return;
}
reply_mix(CMD_ACK, 1, 0, 0, dataout, 16);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
// arg0 = blockNo (start)
// arg1 = Pages (number of blocks)
// arg2 = useKey
// datain = KEY bytes
void MifareUReadCard(uint8_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain) {
LEDsoff();
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// free eventually allocated BigBuf memory
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
// params
uint8_t blockNo = arg0;
uint16_t blocks = arg1;
bool useKey = (arg2 == 1); // UL_C
bool usePwd = (arg2 == 2); // UL_EV1/NTAG
uint32_t countblocks = 0;
uint8_t *dataout = BigBuf_malloc(CARD_MEMORY_SIZE);
if (dataout == NULL) {
Dbprintf("out of memory");
OnError(1);
return;
}
int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true);
if (!len) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card (RC:%d)", len);
OnError(1);
return;
}
// UL-C authentication
if (useKey) {
uint8_t key[16] = {0x00};
memcpy(key, datain, sizeof(key));
if (!mifare_ultra_auth(key)) {
OnError(1);
return;
}
}
// UL-EV1 / NTAG authentication
if (usePwd) {
uint8_t pwd[4] = {0x00};
memcpy(pwd, datain, sizeof(pwd));
uint8_t pack[4] = {0, 0, 0, 0};
if (!mifare_ul_ev1_auth(pwd, pack)) {
OnError(1);
return;
}
}
for (int i = 0; i < blocks; i++) {
if ((i * 4) + 4 >= CARD_MEMORY_SIZE) {
Dbprintf("Data exceeds buffer!!");
break;
}
len = mifare_ultra_readblock(blockNo + i, dataout + (4 * i));
if (len) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Read block %d error", i);
// if no blocks read - error out
if (i == 0) {
OnError(2);
return;
} else {
//stop at last successful read block and return what we got
break;
}
} else {
countblocks++;
}
}
len = mifare_ultra_halt();
if (len) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
OnError(3);
return;
}
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Blocks read %d", countblocks);
countblocks *= 4;
reply_mix(CMD_ACK, 1, countblocks, dataout - BigBuf_get_addr(), 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
BigBuf_free();
set_tracing(false);
}
void MifareValue(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) {
// params
uint8_t blockNo = arg0;
uint8_t keyType = arg1;
uint8_t transferKeyType = arg2;
uint64_t ui64Key = 0;
uint64_t transferUi64Key = 0;
uint8_t blockdata[16] = {0x00};
ui64Key = bytes_to_num(datain, 6);
memcpy(blockdata, datain + 11, 16);
transferUi64Key = bytes_to_num(datain + 27, 6);
// variables
uint8_t action = datain[9];
uint8_t transferBlk = datain[10];
bool needAuth = datain[33];
uint8_t isOK = 0;
uint8_t uid[10] = {0x00};
uint32_t cuid = 0;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t len = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
while (true) {
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
break;
};
if (mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
break;
};
if (mifare_classic_value(pcs, blockNo, blockdata, action) != PM3_SUCCESS) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
break;
};
if (needAuth) {
// transfer to other sector
if (mifare_classic_auth(pcs, cuid, transferBlk, transferKeyType, transferUi64Key, AUTH_NESTED)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Nested auth error");
break;
}
}
// send transfer (commit the change)
len = mifare_sendcmd_short(pcs, 1, MIFARE_CMD_TRANSFER, (transferBlk != 0) ? transferBlk : blockNo, receivedAnswer, NULL, NULL);
if (len != 1 && receivedAnswer[0] != 0x0A) { // 0x0a - ACK
if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error in transfer: %02x", receivedAnswer[0]);
break;
}
if (mifare_classic_halt(pcs)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
break;
};
isOK = 1;
break;
}
crypto1_deinit(pcs);
if (g_dbglevel >= 2) DbpString("WRITE BLOCK FINISHED");
reply_mix(CMD_ACK, isOK, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
// Arg0 : Block to write to.
// Arg1 : 0 = use no authentication.
// 1 = use 0x1A authentication.
// 2 = use 0x1B authentication.
// datain : 4 first bytes is data to be written.
// : 4/16 next bytes is authentication key.
static void MifareUWriteBlockEx(uint8_t arg0, uint8_t arg1, uint8_t *datain, bool reply) {
uint8_t blockNo = arg0;
bool useKey = (arg1 == 1); //UL_C
bool usePwd = (arg1 == 2); //UL_EV1/NTAG
uint8_t blockdata[4] = {0x00};
memcpy(blockdata, datain, 4);
LEDsoff();
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
OnError(0);
return;
};
// UL-C authentication
if (useKey) {
uint8_t key[16] = {0x00};
memcpy(key, datain + 4, sizeof(key));
if (!mifare_ultra_auth(key)) {
OnError(1);
return;
}
}
// UL-EV1 / NTAG authentication
if (usePwd) {
uint8_t pwd[4] = {0x00};
memcpy(pwd, datain + 4, 4);
uint8_t pack[4] = {0, 0, 0, 0};
if (!mifare_ul_ev1_auth(pwd, pack)) {
OnError(1);
return;
}
}
if (mifare_ultra_writeblock(blockNo, blockdata) != PM3_SUCCESS) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
OnError(0);
return;
};
if (mifare_ultra_halt()) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
OnError(0);
return;
};
if (g_dbglevel >= 2) DbpString("WRITE BLOCK FINISHED");
if (reply)
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) {
MifareUWriteBlockEx(arg0, arg1, datain, true);
}
// Arg0 : Block to write to.
// Arg1 : 0 = use no authentication.
// 1 = use 0x1A authentication.
// 2 = use 0x1B authentication.
// datain : 16 first bytes is data to be written.
// : 4/16 next bytes is authentication key.
void MifareUWriteBlockCompat(uint8_t arg0, uint8_t arg1, uint8_t *datain) {
uint8_t blockNo = arg0;
bool useKey = (arg1 == 1); //UL_C
bool usePwd = (arg1 == 2); //UL_EV1/NTAG
uint8_t blockdata[16] = {0x00};
memcpy(blockdata, datain, 16);
LEDsoff();
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
OnError(0);
return;
};
// UL-C authentication
if (useKey) {
uint8_t key[16] = {0x00};
memcpy(key, datain + 16, sizeof(key));
if (!mifare_ultra_auth(key)) {
OnError(1);
return;
}
}
// UL-EV1 / NTAG authentication
if (usePwd) {
uint8_t pwd[4] = {0x00};
memcpy(pwd, datain + 16, 4);
uint8_t pack[4] = {0, 0, 0, 0};
if (!mifare_ul_ev1_auth(pwd, pack)) {
OnError(1);
return;
}
}
if (mifare_ultra_writeblock_compat(blockNo, blockdata) != PM3_SUCCESS) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
OnError(0);
return;
};
if (mifare_ultra_halt()) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
OnError(0);
return;
};
if (g_dbglevel >= 2) DbpString("WRITE BLOCK FINISHED");
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
void MifareUSetPwd(uint8_t arg0, uint8_t *datain) {
uint8_t pwd[16] = {0x00};
uint8_t blockdata[4] = {0x00};
memcpy(pwd, datain, 16);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
OnError(0);
return;
};
blockdata[0] = pwd[7];
blockdata[1] = pwd[6];
blockdata[2] = pwd[5];
blockdata[3] = pwd[4];
if (mifare_ultra_writeblock(44, blockdata) != PM3_SUCCESS) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
OnError(44);
return;
};
blockdata[0] = pwd[3];
blockdata[1] = pwd[2];
blockdata[2] = pwd[1];
blockdata[3] = pwd[0];
if (mifare_ultra_writeblock(45, blockdata) != PM3_SUCCESS) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
OnError(45);
return;
};
blockdata[0] = pwd[15];
blockdata[1] = pwd[14];
blockdata[2] = pwd[13];
blockdata[3] = pwd[12];
if (mifare_ultra_writeblock(46, blockdata) != PM3_SUCCESS) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
OnError(46);
return;
};
blockdata[0] = pwd[11];
blockdata[1] = pwd[10];
blockdata[2] = pwd[9];
blockdata[3] = pwd[8];
if (mifare_ultra_writeblock(47, blockdata) != PM3_SUCCESS) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
OnError(47);
return;
};
if (mifare_ultra_halt()) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
OnError(0);
return;
};
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
// Return 1 if the nonce is invalid else return 0
static int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, const uint8_t *parity) {
return (
(oddparity8((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ BIT(Ks1, 16))) && \
(oddparity8((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ BIT(Ks1, 8))) && \
(oddparity8((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ BIT(Ks1, 0)))
) ? 1 : 0;
}
void MifareAcquireNonces(uint32_t arg0, uint32_t flags) {
uint8_t uid[10] = {0x00};
uint8_t answer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t par[1] = {0x00};
uint8_t buf[PM3_CMD_DATA_SIZE] = {0x00};
uint32_t cuid = 0;
int16_t isOK = 0;
uint16_t num_nonces = 0;
uint8_t cascade_levels = 0;
uint8_t blockNo = arg0 & 0xff;
uint8_t keyType = (arg0 >> 8) & 0xff;
bool initialize = flags & 0x0001;
bool field_off = flags & 0x0004;
bool have_uid = false;
LED_A_ON();
LED_C_OFF();
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
if (initialize)
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
LED_C_ON();
while (num_nonces < PM3_CMD_DATA_SIZE / 4) {
// Test if the action was cancelled
if (BUTTON_PRESS()) {
isOK = 2;
field_off = true;
break;
}
if (!have_uid) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info;
if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == 0) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireNonces: Can't select card (ALL)");
continue;
}
switch (card_info.uidlen) {
case 4 :
cascade_levels = 1;
break;
case 7 :
cascade_levels = 2;
break;
case 10:
cascade_levels = 3;
break;
default:
break;
}
have_uid = true;
} else { // no need for anticollision. We can directly select the card
if (iso14443a_fast_select_card(uid, cascade_levels) == 0) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireNonces: Can't select card (UID)");
continue;
}
}
// Transmit MIFARE_CLASSIC_AUTH
uint8_t dcmd[4] = {0x60 + (keyType & 0x01), blockNo, 0x00, 0x00};
AddCrc14A(dcmd, 2);
ReaderTransmit(dcmd, sizeof(dcmd), NULL);
int len = ReaderReceive(answer, par);
// wait for the card to become ready again
CHK_TIMEOUT();
if (len != 4) {
if (g_dbglevel >= 2) Dbprintf("AcquireNonces: Auth1 error");
continue;
}
// Save the tag nonce (nt)
memcpy(buf + num_nonces * 4, answer, 4);
num_nonces++;
}
LED_C_OFF();
LED_B_ON();
reply_old(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
LED_B_OFF();
if (g_dbglevel >= 3) DbpString("AcquireNonces finished");
if (field_off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
}
//-----------------------------------------------------------------------------
// acquire encrypted nonces in order to perform the attack described in
// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain) {
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t uid[10] = {0x00};
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t par_enc[1] = {0x00};
uint8_t buf[PM3_CMD_DATA_SIZE] = {0x00};
uint64_t ui64Key = bytes_to_num(datain, 6);
uint32_t cuid = 0;
int16_t isOK = PM3_SUCCESS;
uint16_t num_nonces = 0;
uint8_t nt_par_enc = 0;
uint8_t cascade_levels = 0;
uint8_t blockNo = arg0 & 0xff;
uint8_t keyType = (arg0 >> 8) & 0xff;
uint8_t targetBlockNo = arg1 & 0xff;
uint8_t targetKeyType = (arg1 >> 8) & 0xff;
bool initialize = flags & 0x0001;
bool slow = flags & 0x0002;
bool field_off = flags & 0x0004;
bool have_uid = false;
LED_A_ON();
LED_C_OFF();
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(false);
if (initialize)
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
LED_C_ON();
uint8_t prev_enc_nt[] = {0, 0, 0, 0};
uint8_t prev_counter = 0;
for (uint16_t i = 0; i <= PM3_CMD_DATA_SIZE - 9;) {
// Test if the action was cancelled
if (BUTTON_PRESS()) {
isOK = PM3_EOPABORTED;
field_off = true;
break;
}
if (have_uid == false) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info;
if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == 0) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Can't select card (ALL)");
continue;
}
switch (card_info.uidlen) {
case 4 :
cascade_levels = 1;
break;
case 7 :
cascade_levels = 2;
break;
case 10:
cascade_levels = 3;
break;
default:
break;
}
have_uid = true;
} else { // no need for anticollision. We can directly select the card
if (iso14443a_fast_select_card(uid, cascade_levels) == 0) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Can't select card (UID)");
continue;
}
}
if (slow)
SpinDelayUs(HARDNESTED_PRE_AUTHENTICATION_LEADTIME);
uint32_t nt1 = 0;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Auth1 error");
continue;
}
// nested authentication
uint16_t len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par_enc, NULL);
// wait for the card to become ready again
CHK_TIMEOUT();
if (len != 4) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Auth2 error len=%d", len);
continue;
}
num_nonces++;
if (num_nonces % 2) {
memcpy(buf + i, receivedAnswer, 4);
nt_par_enc = par_enc[0] & 0xf0;
} else {
nt_par_enc |= par_enc[0] >> 4;
memcpy(buf + i + 4, receivedAnswer, 4);
memcpy(buf + i + 8, &nt_par_enc, 1);
i += 9;
}
if (prev_enc_nt[0] == receivedAnswer[0] &&
prev_enc_nt[1] == receivedAnswer[1] &&
prev_enc_nt[2] == receivedAnswer[2] &&
prev_enc_nt[3] == receivedAnswer[3]
) {
prev_counter++;
}
memcpy(prev_enc_nt, receivedAnswer, 4);
if (prev_counter == 5) {
if (g_dbglevel >= DBG_EXTENDED) {
DbpString("Static encrypted nonce detected, exiting...");
uint32_t a = bytes_to_num(prev_enc_nt, 4);
uint32_t b = bytes_to_num(receivedAnswer, 4);
Dbprintf("( %08x vs %08x )", a, b);
}
isOK = PM3_ESTATIC_NONCE;
break;
}
}
LED_C_OFF();
crypto1_deinit(pcs);
LED_B_ON();
reply_old(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
LED_B_OFF();
if (field_off) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
}
//-----------------------------------------------------------------------------
// MIFARE nested authentication.
//
//-----------------------------------------------------------------------------
void MifareNested(uint8_t blockNo, uint8_t keyType, uint8_t targetBlockNo, uint8_t targetKeyType, bool calibrate, uint8_t *key) {
uint64_t ui64Key = 0;
ui64Key = bytes_to_num(key, 6);
// variables
uint16_t i, j, len;
static uint16_t dmin, dmax;
uint8_t par[1] = {0x00};
uint8_t par_array[4] = {0x00};
uint8_t uid[10] = {0x00};
uint32_t cuid = 0, nt1, nt2, nttest, ks1;
uint32_t target_nt[2] = {0x00}, target_ks[2] = {0x00};
uint16_t ncount = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint32_t auth1_time, auth2_time;
static uint16_t delta_time = 0;
LED_A_ON();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// free eventually allocated BigBuf memory
BigBuf_free();
BigBuf_Clear_ext(false);
if (calibrate)
clear_trace();
set_tracing(true);
// statistics on nonce distance
int16_t isOK = PM3_SUCCESS;
#define NESTED_MAX_TRIES 12
if (calibrate) { // calibrate: for first call only. Otherwise reuse previous calibration
LED_B_ON();
WDT_HIT();
uint32_t prev_enc_nt = 0;
uint8_t prev_counter = 0;
uint16_t unsuccessful_tries = 0;
uint16_t davg = 0;
dmax = 0;
dmin = 2000;
delta_time = 0;
uint16_t rtr;
for (rtr = 0; rtr < 17; rtr++) {
// Test if the action was cancelled
if (BUTTON_PRESS() || data_available()) {
isOK = PM3_EOPABORTED;
break;
}
// prepare next select. No need to power down the card.
if (mifare_classic_halt(pcs)) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Halt error");
rtr--;
continue;
}
if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == 0) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Can't select card");
rtr--;
continue;
};
auth1_time = 0;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth1 error");
rtr--;
continue;
};
auth2_time = (delta_time) ? auth1_time + delta_time : 0;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2, &auth2_time)) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth2 error");
rtr--;
continue;
};
// cards with fixed nonce
// NXP Mifare is typical around 840,but for some unlicensed/compatible mifare card this can be 160
uint32_t nttmp = prng_successor(nt1, 100);
for (i = 101; i < 1200; i++) {
nttmp = prng_successor(nttmp, 1);
if (nttmp == nt2) break;
}
if (i != 1200) {
if (rtr != 0) {
davg += i;
dmin = MIN(dmin, i);
dmax = MAX(dmax, i);
} else {
// allow some slack for proper timing
delta_time = auth2_time - auth1_time + 32;
}
if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nested: calibrating... ntdist=%d", i);
} else {
unsuccessful_tries++;
// card isn't vulnerable to nested attack (random numbers are not predictable)
if (unsuccessful_tries > NESTED_MAX_TRIES) {
isOK = PM3_EFAILED;
}
}
if (nt1 == nt2) {
prev_counter++;
}
prev_enc_nt = nt2;
if (prev_counter == 5) {
if (g_dbglevel >= DBG_EXTENDED) {
DbpString("Static encrypted nonce detected, exiting...");
Dbprintf("( %08x vs %08x )", prev_enc_nt, nt2);
}
isOK = PM3_ESTATIC_NONCE;
break;
}
}
if (rtr > 1)
davg = (davg + (rtr - 1) / 2) / (rtr - 1);
if (g_dbglevel >= DBG_DEBUG) Dbprintf("rtr=%d isOK=%d min=%d max=%d avg=%d, delta_time=%d", rtr, isOK, dmin, dmax, davg, delta_time);
dmin = davg - 2;
dmax = davg + 2;
LED_B_OFF();
}
// -------------------------------------------------------------------------------------------------
LED_C_ON();
// get crypted nonces for target sector
for (i = 0; ((i < 2) && (isOK == PM3_SUCCESS)); i++) {
// look for exactly two different nonces
target_nt[i] = 0;
// continue until we have an unambiguous nonce
while (target_nt[i] == 0) {
// Test if the action was cancelled
if (BUTTON_PRESS() || data_available()) {
isOK = PM3_EOPABORTED;
break;
}
// prepare next select. No need to power down the card.
if (mifare_classic_halt(pcs)) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Halt error");
continue;
}
if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Can't select card");
continue;
};
auth1_time = 0;
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth1 error");
continue;
};
// nested authentication
auth2_time = auth1_time + delta_time;
len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, &auth2_time);
if (len != 4) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth2 error len=%d", len);
continue;
};
nt2 = bytes_to_num(receivedAnswer, 4);
if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i + 1, nt1, nt2, par[0]);
// Parity validity check
for (j = 0; j < 4; j++) {
par_array[j] = (oddparity8(receivedAnswer[j]) != ((par[0] >> (7 - j)) & 0x01));
}
ncount = 0;
nttest = prng_successor(nt1, dmin - 1);
for (j = dmin; j < dmax + 1; j++) {
nttest = prng_successor(nttest, 1);
ks1 = nt2 ^ nttest;
if (valid_nonce(nttest, nt2, ks1, par_array)) {
if (ncount > 0) { // we are only interested in disambiguous nonces, try again
if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#%d: dismissed (ambiguous), ntdist=%d", i + 1, j);
target_nt[i] = 0;
break;
}
target_nt[i] = nttest;
target_ks[i] = ks1;
ncount++;
if (i == 1 && target_nt[1] == target_nt[0]) { // we need two different nonces
target_nt[i] = 0;
if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#2: dismissed (= nonce#1), ntdist=%d", j);
break;
}
if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#%d: valid, ntdist=%d", i + 1, j);
}
}
if (target_nt[i] == 0 && j == dmax + 1 && g_dbglevel >= 3) Dbprintf("Nonce#%d: dismissed (all invalid)", i + 1);
}
}
LED_C_OFF();
crypto1_deinit(pcs);
struct p {
int16_t isOK;
uint8_t block;
uint8_t keytype;
uint8_t cuid[4];
uint8_t nt_a[4];
uint8_t ks_a[4];
uint8_t nt_b[4];
uint8_t ks_b[4];
} PACKED payload;
payload.isOK = isOK;
payload.block = targetBlockNo;
payload.keytype = targetKeyType;
memcpy(payload.cuid, &cuid, 4);
memcpy(payload.nt_a, &target_nt[0], 4);
memcpy(payload.ks_a, &target_ks[0], 4);
memcpy(payload.nt_b, &target_nt[1], 4);
memcpy(payload.ks_b, &target_ks[1], 4);
LED_B_ON();
reply_ng(CMD_HF_MIFARE_NESTED, PM3_SUCCESS, (uint8_t *)&payload, sizeof(payload));
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
void MifareStaticNested(uint8_t blockNo, uint8_t keyType, uint8_t targetBlockNo, uint8_t targetKeyType, uint8_t *key) {
LEDsoff();
uint64_t ui64Key = bytes_to_num(key, 6);
uint16_t len;
uint8_t uid[10] = { 0x00 };
uint32_t cuid = 0, nt1 = 0, nt2 = 0, nt3 = 0;
uint32_t target_nt[2] = {0x00}, target_ks[2] = {0x00};
uint8_t par[1] = { 0x00 };
uint8_t receivedAnswer[10] = { 0x00 };
struct Crypto1State mpcs = { 0, 0 };
struct Crypto1State *pcs;
pcs = &mpcs;
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// free eventually allocated BigBuf memory
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
int16_t isOK = PM3_ESOFT;
LED_C_ON();
// Main loop - get crypted nonces for target sector
for (uint8_t rtr = 0; rtr < 2; rtr++) {
if (mifare_classic_halt(pcs)) {
continue;
}
if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) {
continue;
};
// first collection
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) {
continue;
};
// pre-generate nonces
if (targetKeyType == 1 && nt1 == 0x009080A2) {
target_nt[0] = prng_successor(nt1, 161);
target_nt[1] = prng_successor(nt1, 321);
} else {
target_nt[0] = prng_successor(nt1, 160);
target_nt[1] = prng_successor(nt1, 320);
}
len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, NULL);
if (len != 4) {
continue;
};
nt2 = bytes_to_num(receivedAnswer, 4);
target_ks[0] = nt2 ^ target_nt[0];
// second collection
if (mifare_classic_halt(pcs)) {
continue;
}
if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) {
continue;
};
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) {
continue;
};
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, NULL, NULL)) {
continue;
};
len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, NULL);
if (len != 4) {
continue;
};
nt3 = bytes_to_num(receivedAnswer, 4);
target_ks[1] = nt3 ^ target_nt[1];
isOK = PM3_SUCCESS;
}
LED_C_OFF();
crypto1_deinit(pcs);
struct p {
uint8_t block;
uint8_t keytype;
uint8_t cuid[4];
uint8_t nt_a[4];
uint8_t ks_a[4];
uint8_t nt_b[4];
uint8_t ks_b[4];
} PACKED payload;
payload.block = targetBlockNo;
payload.keytype = targetKeyType;
memcpy(payload.cuid, &cuid, 4);
memcpy(payload.nt_a, &target_nt[0], 4);
memcpy(payload.ks_a, &target_ks[0], 4);
memcpy(payload.nt_b, &target_nt[1], 4);
memcpy(payload.ks_b, &target_ks[1], 4);
LED_B_ON();
reply_ng(CMD_HF_MIFARE_STATIC_NESTED, isOK, (uint8_t *)&payload, sizeof(payload));
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
//-----------------------------------------------------------------------------
// MIFARE check keys. key count up to 85.
//
//-----------------------------------------------------------------------------
typedef struct sector_t {
uint8_t keyA[6];
uint8_t keyB[6];
} sector_t;
typedef struct chk_t {
uint64_t key;
uint32_t cuid;
uint8_t cl;
uint8_t block;
uint8_t keyType;
uint8_t *uid;
struct Crypto1State *pcs;
} chk_t;
// checks one key.
// fast select, tries 5 times to select
//
// return:
// 2 = failed to select.
// 1 = wrong key
// 0 = correct key
static uint8_t chkKey(struct chk_t *c) {
uint8_t i = 0, res = 2;
while (i < 5) {
// this part is from Piwi's faster nonce collecting part in Hardnested.
// assume: fast select
if (!iso14443a_fast_select_card(c->uid, c->cl)) {
++i;
continue;
}
res = mifare_classic_authex(c->pcs, c->cuid, c->block, c->keyType, c->key, AUTH_FIRST, NULL, NULL);
// CHK_TIMEOUT();
// if successful auth, send HALT
// if ( !res )
// mifare_classic_halt(c->pcs);
break;
}
return res;
}
static uint8_t chkKey_readb(struct chk_t *c, uint8_t *keyb) {
if (!iso14443a_fast_select_card(c->uid, c->cl))
return 2;
if (mifare_classic_authex(c->pcs, c->cuid, c->block, 0, c->key, AUTH_FIRST, NULL, NULL))
return 1;
uint8_t data[16] = {0x00};
uint8_t res = mifare_classic_readblock(c->pcs, c->block, data);
// successful read
if (!res) {
// data was something else than zeros.
if (memcmp(data + 10, "\x00\x00\x00\x00\x00\x00", 6) != 0) {
memcpy(keyb, data + 10, 6);
res = 0;
} else {
res = 3;
}
mifare_classic_halt(c->pcs);
}
return res;
}
static void chkKey_scanA(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, const uint8_t *sectorcnt, uint8_t *foundkeys) {
for (uint8_t s = 0; s < *sectorcnt; s++) {
// skip already found A keys
if (found[(s * 2)])
continue;
c->block = FirstBlockOfSector(s);
if (chkKey(c) == 0) {
num_to_bytes(c->key, 6, k_sector[s].keyA);
found[(s * 2)] = 1;
++*foundkeys;
if (g_dbglevel >= 3) Dbprintf("ChkKeys_fast: Scan A found (%d)", c->block);
}
}
}
static void chkKey_scanB(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, const uint8_t *sectorcnt, uint8_t *foundkeys) {
for (uint8_t s = 0; s < *sectorcnt; s++) {
// skip already found B keys
if (found[(s * 2) + 1])
continue;
c->block = FirstBlockOfSector(s);
if (chkKey(c) == 0) {
num_to_bytes(c->key, 6, k_sector[s].keyB);
found[(s * 2) + 1] = 1;
++*foundkeys;
if (g_dbglevel >= 3) Dbprintf("ChkKeys_fast: Scan B found (%d)", c->block);
}
}
}
// loop all A keys,
// when A is found but not B, try to read B.
static void chkKey_loopBonly(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, uint8_t *sectorcnt, uint8_t *foundkeys) {
// read Block B, if A is found.
for (uint8_t s = 0; s < *sectorcnt; ++s) {
if (found[(s * 2)] && found[(s * 2) + 1])
continue;
c->block = (FirstBlockOfSector(s) + NumBlocksPerSector(s) - 1);
// A but not B
if (found[(s * 2)] && !found[(s * 2) + 1]) {
c->key = bytes_to_num(k_sector[s].keyA, 6);
uint8_t status = chkKey_readb(c, k_sector[s].keyB);
if (status == 0) {
found[(s * 2) + 1] = 1;
++*foundkeys;
if (g_dbglevel >= 3) Dbprintf("ChkKeys_fast: Reading B found (%d)", c->block);
// try quick find all B?
// assume: keys comes in groups. Find one B, test against all B.
c->key = bytes_to_num(k_sector[s].keyB, 6);
c->keyType = 1;
chkKey_scanB(c, k_sector, found, sectorcnt, foundkeys);
}
}
}
}
// get Chunks of keys, to test authentication against card.
// arg0 = antal sectorer
// arg0 = first time
// arg1 = clear trace
// arg2 = antal nycklar i keychunk
// datain = keys as array
void MifareChkKeys_fast(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
// first call or
uint8_t sectorcnt = arg0 & 0xFF; // 16;
uint8_t firstchunk = (arg0 >> 8) & 0xF;
uint8_t lastchunk = (arg0 >> 12) & 0xF;
uint8_t strategy = arg1 & 0xFF;
uint8_t use_flashmem = (arg1 >> 8) & 0xFF;
uint16_t keyCount = arg2 & 0xFF;
uint8_t status = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
struct chk_t chk_data;
uint8_t allkeys = sectorcnt << 1;
static uint32_t cuid = 0;
static uint8_t cascade_levels = 0;
static uint8_t foundkeys = 0;
static sector_t k_sector[80];
static uint8_t found[80];
static uint8_t *uid;
int oldbg = g_dbglevel;
#ifdef WITH_FLASH
if (use_flashmem) {
BigBuf_free();
uint16_t isok = 0;
uint8_t size[2] = {0x00, 0x00};
isok = Flash_ReadData(DEFAULT_MF_KEYS_OFFSET, size, 2);
if (isok != 2)
goto OUT;
keyCount = size[1] << 8 | size[0];
if (keyCount == 0)
goto OUT;
// limit size of available for keys in bigbuff
// a key is 6bytes
uint16_t key_mem_available = MIN(BigBuf_get_size(), keyCount * 6);
keyCount = key_mem_available / 6;
datain = BigBuf_malloc(key_mem_available);
if (datain == NULL)
goto OUT;
isok = Flash_ReadData(DEFAULT_MF_KEYS_OFFSET + 2, datain, key_mem_available);
if (isok != key_mem_available)
goto OUT;
}
#endif
if (uid == NULL || firstchunk) {
uid = BigBuf_malloc(10);
if (uid == NULL)
goto OUT;
}
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
LEDsoff();
LED_A_ON();
if (firstchunk) {
clear_trace();
set_tracing(false);
memset(k_sector, 0x00, 480 + 10);
memset(found, 0x00, sizeof(found));
foundkeys = 0;
iso14a_card_select_t card_info;
if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("ChkKeys_fast: Can't select card (ALL)");
goto OUT;
}
switch (card_info.uidlen) {
case 4 :
cascade_levels = 1;
break;
case 7 :
cascade_levels = 2;
break;
case 10:
cascade_levels = 3;
break;
default:
break;
}
CHK_TIMEOUT();
}
// clear debug level. We are expecting lots of authentication failures...
g_dbglevel = DBG_NONE;
// set check struct.
chk_data.uid = uid;
chk_data.cuid = cuid;
chk_data.cl = cascade_levels;
chk_data.pcs = pcs;
chk_data.block = 0;
// keychunk loop - depth first one sector.
if (strategy == 1 || use_flashmem) {
uint8_t newfound = foundkeys;
uint16_t lastpos = 0;
uint16_t s_point = 0;
// Sector main loop
// keep track of how many sectors on card.
for (uint8_t s = 0; s < sectorcnt; ++s) {
if (found[(s * 2)] && found[(s * 2) + 1])
continue;
for (uint16_t i = s_point; i < keyCount; ++i) {
// Allow button press / usb cmd to interrupt device
if (BUTTON_PRESS() || data_available()) {
goto OUT;
}
// found all keys?
if (foundkeys == allkeys)
goto OUT;
WDT_HIT();
// assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector
chk_data.block = FirstBlockOfSector(s);
// new key
chk_data.key = bytes_to_num(datain + i * 6, 6);
// skip already found A keys
if (!found[(s * 2)]) {
chk_data.keyType = 0;
status = chkKey(&chk_data);
if (status == 0) {
memcpy(k_sector[s].keyA, datain + i * 6, 6);
found[(s * 2)] = 1;
++foundkeys;
chkKey_scanA(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
// read Block B, if A is found.
chkKey_loopBonly(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
chk_data.keyType = 1;
chkKey_scanB(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
chk_data.keyType = 0;
chk_data.block = FirstBlockOfSector(s);
if (use_flashmem) {
if (lastpos != i && lastpos != 0) {
if (i - lastpos < 0xF) {
s_point = i & 0xFFF0;
}
} else {
lastpos = i;
}
}
}
}
// skip already found B keys
if (!found[(s * 2) + 1]) {
chk_data.keyType = 1;
status = chkKey(&chk_data);
if (status == 0) {
memcpy(k_sector[s].keyB, datain + i * 6, 6);
found[(s * 2) + 1] = 1;
++foundkeys;
chkKey_scanB(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
if (use_flashmem) {
if (lastpos != i && lastpos != 0) {
if (i - lastpos < 0xF)
s_point = i & 0xFFF0;
} else {
lastpos = i;
}
}
}
}
if (found[(s * 2)] && found[(s * 2) + 1])
break;
} // end keys test loop - depth first
// assume1. if no keys found in first sector, get next keychunk from client
if (!use_flashmem && (newfound - foundkeys == 0))
goto OUT;
} // end loop - sector
} // end strategy 1
if (foundkeys == allkeys)
goto OUT;
if (strategy == 2 || use_flashmem) {
// Keychunk loop
for (uint16_t i = 0; i < keyCount; i++) {
// Allow button press / usb cmd to interrupt device
if (BUTTON_PRESS() || data_available()) break;
// found all keys?
if (foundkeys == allkeys)
goto OUT;
WDT_HIT();
// new key
chk_data.key = bytes_to_num(datain + i * 6, 6);
// Sector main loop
// keep track of how many sectors on card.
for (uint8_t s = 0; s < sectorcnt; ++s) {
if (found[(s * 2)] && found[(s * 2) + 1]) continue;
// found all keys?
if (foundkeys == allkeys)
goto OUT;
// assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector
chk_data.block = FirstBlockOfSector(s);
// skip already found A keys
if (!found[(s * 2)]) {
chk_data.keyType = 0;
status = chkKey(&chk_data);
if (status == 0) {
memcpy(k_sector[s].keyA, datain + i * 6, 6);
found[(s * 2)] = 1;
++foundkeys;
chkKey_scanA(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
// read Block B, if A is found.
chkKey_loopBonly(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
chk_data.block = FirstBlockOfSector(s);
}
}
// skip already found B keys
if (!found[(s * 2) + 1]) {
chk_data.keyType = 1;
status = chkKey(&chk_data);
if (status == 0) {
memcpy(k_sector[s].keyB, datain + i * 6, 6);
found[(s * 2) + 1] = 1;
++foundkeys;
chkKey_scanB(&chk_data, k_sector, found, &sectorcnt, &foundkeys);
}
}
} // end loop sectors
} // end loop keys
} // end loop strategy 2
OUT:
LEDsoff();
crypto1_deinit(pcs);
// All keys found, send to client, or last keychunk from client
if (foundkeys == allkeys || lastchunk) {
uint64_t foo = 0;
for (uint8_t m = 0; m < 64; m++) {
foo |= ((uint64_t)(found[m] & 1) << m);
}
uint16_t bar = 0;
uint8_t j = 0;
for (uint8_t m = 64; m < ARRAYLEN(found); m++) {
bar |= ((uint16_t)(found[m] & 1) << j++);
}
uint8_t *tmp = BigBuf_malloc(480 + 10);
memcpy(tmp, k_sector, sectorcnt * sizeof(sector_t));
num_to_bytes(foo, 8, tmp + 480);
tmp[488] = bar & 0xFF;
tmp[489] = bar >> 8 & 0xFF;
reply_old(CMD_ACK, foundkeys, 0, 0, tmp, 480 + 10);
set_tracing(false);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
BigBuf_free();
BigBuf_Clear_ext(false);
// special trick ecfill
if (use_flashmem && foundkeys == allkeys) {
uint8_t block[16] = {0};
for (int i = 0; i < sectorcnt; i++) {
uint8_t blockno;
if (i < 32) {
blockno = (i * 4) ^ 0x3;
} else {
blockno = (32 * 4 + (i - 32) * 16) ^ 0xF;
}
// get ST
emlGetMem(block, blockno, 1);
memcpy(block, k_sector[i].keyA, 6);
memcpy(block + 10, k_sector[i].keyB, 6);
emlSetMem_xt(block, blockno, 1, sizeof(block));
}
MifareECardLoad(sectorcnt, MF_KEY_A);
MifareECardLoad(sectorcnt, MF_KEY_B);
}
} else {
// partial/none keys found
reply_mix(CMD_ACK, foundkeys, 0, 0, 0, 0);
}
g_dbglevel = oldbg;
}
void MifareChkKeys(uint8_t *datain, uint8_t reserved_mem) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t uid[10] = {0x00};
uint64_t key = 0;
uint32_t cuid = 0;
uint8_t cascade_levels = 0;
struct {
uint8_t key[6];
bool found;
} PACKED keyresult;
keyresult.found = false;
memset(keyresult.key, 0x00, sizeof(keyresult.key));
bool have_uid = false;
uint8_t keyType = datain[0];
uint8_t blockNo = datain[1];
bool clearTrace = datain[2];
uint16_t key_count = (datain[3] << 8) | datain[4];
uint16_t key_mem_available;
if (reserved_mem)
key_mem_available = key_count * 6;
else
key_mem_available = MIN((PM3_CMD_DATA_SIZE - 5), key_count * 6);
key_count = key_mem_available / 6;
datain += 5;
LEDsoff();
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
if (clearTrace)
clear_trace();
int oldbg = g_dbglevel;
g_dbglevel = DBG_NONE;
set_tracing(false);
for (uint16_t i = 0; i < key_count; i++) {
// Iceman: use piwi's faster nonce collecting part in hardnested.
if (have_uid == false) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info;
if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == false) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("ChkKeys: Can't select card (ALL)");
--i; // try same key once again
continue;
}
switch (card_info.uidlen) {
case 4 :
cascade_levels = 1;
break;
case 7 :
cascade_levels = 2;
break;
case 10:
cascade_levels = 3;
break;
default:
break;
}
have_uid = true;
} else { // no need for anticollision. We can directly select the card
if (iso14443a_select_card(uid, NULL, NULL, false, cascade_levels, true) == false) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("ChkKeys: Can't select card (UID)");
--i; // try same key once again
continue;
}
}
key = bytes_to_num(datain + i * 6, 6);
if (mifare_classic_auth(pcs, cuid, blockNo, keyType, key, AUTH_FIRST)) {
// CHK_TIMEOUT();
continue;
}
memcpy(keyresult.key, datain + i * 6, 6);
keyresult.found = true;
break;
}
LED_B_ON();
crypto1_deinit(pcs);
reply_ng(CMD_HF_MIFARE_CHKKEYS, PM3_SUCCESS, (uint8_t *)&keyresult, sizeof(keyresult));
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
g_dbglevel = oldbg;
}
void MifareChkKeys_file(uint8_t *fn) {
#ifdef WITH_FLASH
BigBuf_free();
SpinOff(0);
int changed = rdv40_spiffs_lazy_mount();
uint32_t size = size_in_spiffs((char *)fn);
uint8_t *mem = BigBuf_malloc(size);
rdv40_spiffs_read_as_filetype((char *)fn, mem, size, RDV40_SPIFFS_SAFETY_SAFE);
if (changed) {
rdv40_spiffs_lazy_unmount();
}
SpinOff(0);
MifareChkKeys(mem, true);
BigBuf_free();
#endif
}
//-----------------------------------------------------------------------------
// MIFARE Personalize UID. Only for Mifare Classic EV1 7Byte UID
//-----------------------------------------------------------------------------
void MifarePersonalizeUID(uint8_t keyType, uint8_t perso_option, uint64_t key) {
uint16_t isOK = PM3_EUNDEF;
uint8_t uid[10];
uint32_t cuid;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
LED_A_ON();
while (true) {
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
break;
}
uint8_t block_number = 0;
if (mifare_classic_auth(pcs, cuid, block_number, keyType, key, AUTH_FIRST)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
break;
}
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
int len = mifare_sendcmd_short(pcs, true, MIFARE_EV1_PERSONAL_UID, perso_option, receivedAnswer, receivedAnswerPar, NULL);
if (len != 1 || receivedAnswer[0] != CARD_ACK) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
break;
}
if (mifare_classic_halt(pcs)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
break;
}
isOK = PM3_SUCCESS;
break;
}
crypto1_deinit(pcs);
LED_B_ON();
reply_ng(CMD_HF_MIFARE_PERSONALIZE_UID, isOK, NULL, 0);
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
//-----------------------------------------------------------------------------
// Work with emulator memory
//
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
// involved in dealing with emulator memory. But if it is called later, it might
// destroy the Emulator Memory.
//-----------------------------------------------------------------------------
void MifareEMemClr(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
emlClearMem();
}
void MifareEMemGet(uint8_t blockno, uint8_t blockcnt) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
//
size_t size = blockcnt * 16;
if (size > PM3_CMD_DATA_SIZE) {
reply_ng(CMD_HF_MIFARE_EML_MEMGET, PM3_EMALLOC, NULL, 0);
return;
}
uint8_t *buf = BigBuf_malloc(size);
emlGetMem(buf, blockno, blockcnt); // data, block num, blocks count (max 4)
LED_B_ON();
reply_ng(CMD_HF_MIFARE_EML_MEMGET, PM3_SUCCESS, buf, size);
LED_B_OFF();
BigBuf_free_keep_EM();
}
//-----------------------------------------------------------------------------
// Load a card into the emulator memory
//
//-----------------------------------------------------------------------------
int MifareECardLoadExt(uint8_t sectorcnt, uint8_t keytype) {
int retval = MifareECardLoad(sectorcnt, keytype);
reply_ng(CMD_HF_MIFARE_EML_LOAD, retval, NULL, 0);
return retval;
}
int MifareECardLoad(uint8_t sectorcnt, uint8_t keytype) {
LED_A_ON();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
// variables
bool have_uid = false;
uint8_t cascade_levels = 0;
uint32_t cuid = 0;
uint8_t uid[10] = {0x00};
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
int retval = PM3_SUCCESS;
// increase time-out. Magic card etc are slow
uint32_t timeout = iso14a_get_timeout();
// frame waiting time (FWT) in 1/fc
uint32_t fwt = 256 * 16 * (1 << 6);
iso14a_set_timeout(fwt / (8 * 16));
for (uint8_t s = 0; s < sectorcnt; s++) {
uint64_t ui64Key = emlGetKey(s, keytype);
if (sectorcnt == 18) {
// MFC 1K EV1, skip sector 16 since its lockdown
if (s == 16) {
// unknown sector trailer, keep the keys, set only the AC
uint8_t st[16] = {0x00};
emlGetMem(st, FirstBlockOfSector(s) + 3, 1);
memcpy(st + 6, "\x70\xF0\xF8\x69", 4);
emlSetMem_xt(st, FirstBlockOfSector(s) + 3, 1, 16);
continue;
}
// ICEMAN: ugly hack, we don't want to trigger the partial load message
// MFC 1K EV1 sector 17 don't use key A.
// not mention we don't save signatures in our MFC dump files.
if (s == 17 && keytype == 0) {
ui64Key = 0x4B791BEA7BCC;
keytype = 1;
}
}
// use fast select
if (have_uid == false) { // need a full select cycle to get the uid first
iso14a_card_select_t card_info;
if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == 0) {
continue;
}
switch (card_info.uidlen) {
case 4 :
cascade_levels = 1;
break;
case 7 :
cascade_levels = 2;
break;
case 10:
cascade_levels = 3;
break;
default:
break;
}
have_uid = true;
} else { // no need for anticollision. We can directly select the card
if (iso14443a_fast_select_card(uid, cascade_levels) == 0) {
continue;
}
}
// Auth
if (mifare_classic_auth(pcs, cuid, FirstBlockOfSector(s), keytype, ui64Key, AUTH_FIRST)) {
retval = PM3_EPARTIAL;
if (g_dbglevel >= DBG_ERROR) {
Dbprintf("Sector %2d - Auth error", s);
}
continue;
}
#define MAX_RETRIES 2
uint8_t data[16] = {0x00};
for (uint8_t b = 0; b < NumBlocksPerSector(s); b++) {
memset(data, 0x00, sizeof(data));
uint8_t tb = FirstBlockOfSector(s) + b;
uint8_t r = 0;
for (; r < MAX_RETRIES; r++) {
int res = mifare_classic_readblock(pcs, tb, data);
if (res == 1) {
retval |= PM3_EPARTIAL;
if (g_dbglevel >= DBG_ERROR) {
Dbprintf("Error No rights reading sector %2d block %2d", s, b);
}
break;
}
// retry if wrong len.
if (res != 0) {
continue;
}
// No need to copy empty
if (memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16) == 0) {
break;
}
if (IsSectorTrailer(b)) {
// sector trailer, keep the keys, set only the AC
uint8_t st[16] = {0x00};
emlGetMem(st, tb, 1);
memcpy(st + 6, data + 6, 4);
emlSetMem_xt(st, tb, 1, 16);
} else {
emlSetMem_xt(data, tb, 1, 16);
}
break;
}
// if we failed all retries, notify client
if (r == MAX_RETRIES) {
retval |= PM3_EPARTIAL;
}
}
}
int res = mifare_classic_halt(pcs);
(void)res;
iso14a_set_timeout(timeout);
crypto1_deinit(pcs);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
return retval;
}
//-----------------------------------------------------------------------------
// Work with "magic Chinese" card (email him: ouyangweidaxian@live.cn)
//
// PARAMS - workFlags
// bit 0 - need get UID
// bit 1 - need wupC
// bit 2 - need HALT after sequence
// bit 3 - need turn on FPGA before sequence
// bit 4 - need turn off FPGA
// bit 5 - need to set datain instead of issuing USB reply (called via ARM for StandAloneMode14a)
// bit 6 - wipe tag.
//-----------------------------------------------------------------------------
void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain) {
// params
uint8_t workFlags = arg0;
uint8_t blockNo = arg1;
// detect 1a/1b
bool is1b = false;
// variables
bool isOK = false; //assume we will get an error
uint8_t errormsg = 0x00;
uint8_t uid[10] = {0x00};
uint8_t data[18] = {0x00};
uint32_t cuid = 0;
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
if (workFlags & MAGIC_INIT) {
LED_A_ON();
LED_B_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
}
//loop doesn't loop just breaks out if error
while (true) {
// read UID and return to client with write
if (workFlags & MAGIC_UID) {
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
errormsg = MAGIC_UID;
mifare_classic_halt(NULL);
break;
}
mifare_classic_halt(NULL);
}
// wipe tag, fill it with zeros
if (workFlags & MAGIC_WIPE) {
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error");
errormsg = MAGIC_WIPE;
break;
}
uint32_t old_timeout = iso14a_get_timeout();
// 2000 ms timeout
// 13560000 / 1000 / (8 * 16) * timeout
iso14a_set_timeout(21190);
ReaderTransmit(wipeC, sizeof(wipeC), NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("wipeC error");
errormsg = MAGIC_WIPE;
break;
}
iso14a_set_timeout(old_timeout);
mifare_classic_halt(NULL);
}
// write block
if (workFlags & MAGIC_WUPC) {
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error");
errormsg = MAGIC_WUPC;
break;
}
if (!is1b) {
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]");
is1b = true;
continue;
}
}
}
if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_WRITEBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 1) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("write block send command error");
errormsg = 4;
break;
}
memcpy(data, datain, 16);
AddCrc14A(data, 16);
ReaderTransmit(data, sizeof(data), NULL);
if ((ReaderReceive(receivedAnswer, receivedAnswerPar) != 1) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("write block send data error");
errormsg = 0;
break;
}
if (workFlags & MAGIC_HALT)
mifare_classic_halt(NULL);
isOK = true;
break;
} // end while
if (isOK)
reply_mix(CMD_ACK, 1, 0, 0, uid, sizeof(uid));
else
OnErrorMagic(errormsg);
if (workFlags & MAGIC_OFF)
OnSuccessMagic();
}
void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain) {
uint8_t workFlags = arg0;
uint8_t blockNo = arg1;
uint8_t errormsg = 0x00;
bool isOK = false; //assume we will get an error
// detect 1a/1b
bool is1b = false;
// variables
uint8_t data[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
memset(data, 0x00, sizeof(data));
if (workFlags & MAGIC_INIT) {
LED_A_ON();
LED_B_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
}
// increase time-out. Magic card etc are slow
uint32_t timeout = iso14a_get_timeout();
// frame waiting time (FWT) in 1/fc
uint32_t fwt = 256 * 16 * (1 << 7);
iso14a_set_timeout(fwt / (8 * 16));
//loop doesn't loop just breaks out if error or done
while (true) {
if (workFlags & MAGIC_WUPC) {
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error");
errormsg = MAGIC_WUPC;
break;
}
if (!is1b) {
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if (!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) {
if (g_dbglevel >= DBG_INFO) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]");
is1b = true;
continue;
}
}
}
// read block
if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_READBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL) != MAX_MIFARE_FRAME_SIZE)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("read block send command error");
errormsg = 0;
break;
}
memcpy(data, receivedAnswer, sizeof(data));
// send HALT
if (workFlags & MAGIC_HALT)
mifare_classic_halt(NULL);
isOK = true;
break;
}
// if MAGIC_DATAIN, the data stays on device side.
if (workFlags & MAGIC_DATAIN) {
if (isOK)
memcpy(datain, data, sizeof(data));
} else {
if (isOK)
reply_old(CMD_ACK, 1, 0, 0, data, sizeof(data));
else
OnErrorMagic(errormsg);
}
if (workFlags & MAGIC_OFF)
OnSuccessMagic();
iso14a_set_timeout(timeout);
}
static void mf_reset_card(void) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(40);
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
}
void MifareCIdent(bool is_mfc, uint8_t keytype, uint8_t *key) {
// variables
uint8_t rec[1] = {0x00};
uint8_t recpar[1] = {0x00};
uint8_t rats[4] = {ISO14443A_CMD_RATS, 0x80, 0x31, 0x73};
uint8_t rdblf0[4] = {ISO14443A_CMD_READBLOCK, 0xF0, 0x8D, 0x5f};
uint8_t rdbl00[4] = {ISO14443A_CMD_READBLOCK, 0x00, 0x02, 0xa8};
uint8_t gen4gdmAuth[4] = {MIFARE_MAGIC_GDM_AUTH_KEY, 0x00, 0x6C, 0x92};
uint8_t gen4gdmGetConf[4] = {MIFARE_MAGIC_GDM_READ_CFG, 0x00, 0x39, 0xF7};
uint8_t gen4GetConf[8] = {GEN_4GTU_CMD, 0x00, 0x00, 0x00, 0x00, GEN_4GTU_GETCNF, 0, 0};
uint8_t superGen1[9] = {0x0A, 0x00, 0x00, 0xA6, 0xB0, 0x00, 0x10, 0x14, 0x1D};
bool isGen2 = false;
uint8_t *par = BigBuf_calloc(MAX_PARITY_SIZE);
uint8_t *buf = BigBuf_calloc(PM3_CMD_DATA_SIZE);
uint8_t *uid = BigBuf_calloc(10);
uint16_t flag = MAGIC_FLAG_NONE;
uint32_t cuid = 0;
int res = 0;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
// Generation 1 test
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
if (ReaderReceive(rec, recpar) && (rec[0] == 0x0A)) {
flag = MAGIC_FLAG_GEN_1A;
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if (ReaderReceive(rec, recpar) && (rec[0] != 0x0A)) {
flag = MAGIC_FLAG_GEN_1B;
}
// check for GDM config
ReaderTransmit(gen4gdmGetConf, sizeof(gen4gdmGetConf), NULL);
res = ReaderReceive(buf, par);
if (res > 1) {
flag |= MAGIC_FLAG_GDM_WUP_40;
}
}
mf_reset_card();
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
if (res) {
// Check for Magic Gen4 GTU with default password:
// Get config should return 30 or 32 bytes
AddCrc14A(gen4GetConf, sizeof(gen4GetConf) - 2);
ReaderTransmit(gen4GetConf, sizeof(gen4GetConf), NULL);
res = ReaderReceive(buf, par);
if (res == 32 || res == 34) {
flag |= MAGIC_FLAG_GEN_4GTU;
}
}
// reset card
mf_reset_card();
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, false);
if (res) {
if (cuid == 0xAA55C396) {
flag |= MAGIC_FLAG_GEN_UNFUSED;
}
ReaderTransmit(rats, sizeof(rats), NULL);
res = ReaderReceive(buf, par);
if (res) {
if (memcmp(buf, "\x09\x78\x00\x91\x02\xDA\xBC\x19\x10", 9) == 0) {
// test for some MFC gen2
isGen2 = true;
flag |= MAGIC_FLAG_GEN_2;
} else if (memcmp(buf, "\x0D\x78\x00\x71\x02\x88\x49\xA1\x30\x20\x15\x06\x08\x56\x3D", 15) == 0) {
// test for some MFC 7b gen2
isGen2 = true;
flag |= MAGIC_FLAG_GEN_2;
} else if (memcmp(buf, "\x0A\x78\x00\x81\x02\xDB\xA0\xC1\x19\x40\x2A\xB5", 12) == 0) {
// test for Ultralight magic gen2
isGen2 = true;
flag |= MAGIC_FLAG_GEN_2;
} else if (memcmp(buf, "\x85\x00\x00\xA0\x00\x00\x0A\xC3\x00\x04\x03\x01\x01\x00\x0B\x03\x41\xDF", 18) == 0) {
// test for Ultralight EV1 magic gen2
isGen2 = true;
flag |= MAGIC_FLAG_GEN_2;
} else if (memcmp(buf, "\x85\x00\x00\xA0\x0A\x00\x0A\xC3\x00\x04\x03\x01\x01\x00\x0B\x03\x16\xD7", 18) == 0) {
// test for some other Ultralight EV1 magic gen2
isGen2 = true;
flag |= MAGIC_FLAG_GEN_2;
} else if (memcmp(buf, "\x85\x00\x00\xA0\x0A\x00\x0A\xB0\x00\x00\x00\x00\x00\x00\x00\x00\x18\x4D", 18) == 0) {
// test for some other Ultralight magic gen2
isGen2 = true;
flag |= MAGIC_FLAG_GEN_2;
} else if (memcmp(buf, "\x85\x00\x00\xA0\x00\x00\x0A\xA5\x00\x04\x04\x02\x01\x00\x0F\x03\x79\x0C", 18) == 0) {
// test for NTAG213 magic gen2
isGen2 = true;
flag |= MAGIC_FLAG_GEN_2;
}
// test for super card
ReaderTransmit(superGen1, sizeof(superGen1), NULL);
res = ReaderReceive(buf, par);
if (res == 22) {
uint8_t isGen = MAGIC_FLAG_SUPER_GEN1;
// check for super card gen2
// not available after RATS, reset card before executing
mf_reset_card();
iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
ReaderTransmit(rdbl00, sizeof(rdbl00), NULL);
res = ReaderReceive(buf, par);
if (res == 18) {
isGen = MAGIC_FLAG_SUPER_GEN2;
}
flag |= isGen;
}
}
if (is_mfc == false) {
// magic ntag test
mf_reset_card();
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
if (res == 2) {
ReaderTransmit(rdblf0, sizeof(rdblf0), NULL);
res = ReaderReceive(buf, par);
if (res == 18) {
flag |= MAGIC_FLAG_NTAG21X;
}
}
} else {
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
// CUID (with default sector 0 B key) test
// regular cards will NAK the WRITEBLOCK(0) command, while DirectWrite will ACK it
// if we do get an ACK, we immediately abort to ensure nothing is ever actually written
// only perform test if we haven't already identified Gen2. No need test if we have a positive identification already
if (isGen2 == false) {
mf_reset_card();
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
if (res) {
uint64_t tmpkey = bytes_to_num(key, 6);
if (mifare_classic_authex(pcs, cuid, 0, keytype, tmpkey, AUTH_FIRST, NULL, NULL) == 0) {
if ((mifare_sendcmd_short(pcs, 1, ISO14443A_CMD_WRITEBLOCK, 0, buf, par, NULL) == 1) && (buf[0] == 0x0A)) {
flag |= MAGIC_FLAG_GEN_2;
// turn off immediately to ensure nothing ever accidentally writes to the block
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
}
crypto1_deinit(pcs);
}
}
// magic MFC Gen3 test 1
mf_reset_card();
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
if (res) {
ReaderTransmit(rdbl00, sizeof(rdbl00), NULL);
res = ReaderReceive(buf, par);
if (res == 18) {
flag |= MAGIC_FLAG_GEN_3;
}
}
// magic MFC Gen4 GDM magic auth test
mf_reset_card();
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
if (res) {
ReaderTransmit(gen4gdmAuth, sizeof(gen4gdmAuth), NULL);
res = ReaderReceive(buf, par);
if (res == 4) {
flag |= MAGIC_FLAG_GDM_AUTH;
}
}
// QL88 test
mf_reset_card();
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
if (res) {
if (mifare_classic_authex(pcs, cuid, 68, MF_KEY_B, 0x707B11FC1481, AUTH_FIRST, NULL, NULL) == 0) {
flag |= MAGIC_FLAG_QL88;
}
crypto1_deinit(pcs);
}
}
};
// GDM alt magic wakeup (20)
ReaderTransmitBitsPar(wupGDM1, 7, NULL, NULL);
if (ReaderReceive(rec, recpar) && (rec[0] == 0x0a)) {
flag |= MAGIC_FLAG_GDM_WUP_20;
}
reply_ng(CMD_HF_MIFARE_CIDENT, PM3_SUCCESS, (uint8_t *)&flag, sizeof(uint16_t));
// turns off
OnSuccessMagic();
BigBuf_free();
}
void MifareHasStaticNonce(void) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// variables
int retval = PM3_SUCCESS;
uint32_t nt = 0;
uint8_t *uid = BigBuf_malloc(10);
memset(uid, 0x00, 10);
uint8_t data[1] = { NONCE_FAIL };
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
uint8_t counter = 0;
for (uint8_t i = 0; i < 3; i++) {
if (!iso14443a_select_card(uid, NULL, NULL, true, 0, true)) {
retval = PM3_ESOFT;
goto OUT;
}
uint8_t rec[4] = {0x00};
uint8_t recpar[1] = {0x00};
// Transmit MIFARE_CLASSIC_AUTH 0x60, block 0
int len = mifare_sendcmd_short(pcs, false, MIFARE_AUTH_KEYA, 0, rec, recpar, NULL);
if (len != 4) {
retval = PM3_ESOFT;
goto OUT;
}
// Save the tag nonce (nt)
if (nt == bytes_to_num(rec, 4)) {
counter++;
}
nt = bytes_to_num(rec, 4);
// some cards with static nonce need to be reset before next query
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
CHK_TIMEOUT();
memset(rec, 0x00, sizeof(rec));
}
if (counter) {
Dbprintf("Static nonce......... " _YELLOW_("%08x"), nt);
data[0] = NONCE_STATIC;
} else {
data[0] = NONCE_NORMAL;
}
OUT:
reply_ng(CMD_HF_MIFARE_STATIC_NONCE, retval, data, sizeof(data));
// turns off
OnSuccessMagic();
BigBuf_free();
crypto1_deinit(pcs);
}
// FUDAN card w static encrypted nonces
// 2B F9 1C 1B D5 08 48 48 03 A4 B1 B1 75 FF 2D 90
// ^^ ^^
void MifareHasStaticEncryptedNonce(uint8_t block_no, uint8_t key_type, uint8_t *key) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
clear_trace();
set_tracing(true);
int retval = PM3_SUCCESS;
uint64_t ui64key = bytes_to_num(key, 6);
uint8_t data[1] = { NONCE_FAIL };
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
uint32_t cuid = 0;
if (iso14443a_select_card(NULL, NULL, &cuid, true, 0, true) == false) {
retval = PM3_ESOFT;
goto OUT;
}
uint8_t key_auth_cmd = MIFARE_AUTH_KEYA + (key_type & 1);
if (mifare_classic_authex_cmd(pcs, cuid, block_no, key_auth_cmd, ui64key, AUTH_FIRST, NULL, NULL, NULL)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
retval = PM3_ESOFT;
goto OUT;
};
uint32_t nt = 0;
uint8_t enc_counter = 0;
uint32_t ntenc = 0;
uint32_t oldntenc = 0;
for (uint8_t i = 0; i < 3; i++) {
if (mifare_classic_authex_cmd(pcs, cuid, block_no, key_auth_cmd, ui64key, AUTH_NESTED, &nt, &ntenc, NULL)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
retval = PM3_ESOFT;
goto OUT;
};
if (g_dbglevel >= DBG_INFO) {
Dbprintf("nt: %x, nt encoded: %x", nt, ntenc);
}
if (oldntenc == 0) {
oldntenc = ntenc;
} else if (ntenc == oldntenc) {
enc_counter++;
}
}
if (enc_counter) {
data[0] = NONCE_STATIC_ENC;
} else {
data[0] = NONCE_NORMAL;
}
OUT:
crypto1_deinit(pcs);
reply_ng(CMD_HF_MIFARE_STATIC_ENCRYPTED_NONCE, retval, data, sizeof(data));
// turns off
OnSuccessMagic();
BigBuf_free();
}
void OnSuccessMagic(void) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
void OnErrorMagic(uint8_t reason) {
// ACK, ISOK, reason,0,0,0
reply_mix(CMD_ACK, 0, reason, 0, 0, 0);
OnSuccessMagic();
}
int DoGen3Cmd(uint8_t *cmd, uint8_t cmd_len) {
int retval = PM3_SUCCESS;
uint8_t *par = BigBuf_calloc(MAX_PARITY_SIZE);
uint8_t *buf = BigBuf_calloc(PM3_CMD_DATA_SIZE);
LED_B_ON();
uint32_t save_iso14a_timeout = iso14a_get_timeout();
iso14a_set_timeout(13560000 / 1000 / (8 * 16) * 2000); // 2 seconds timeout
ReaderTransmit(cmd, cmd_len, NULL);
int res = ReaderReceive(buf, par);
if (res == 4 && memcmp(buf, "\x90\x00\xfd\x07", 4) == 0) {
// timeout for card memory reset
SpinDelay(1000);
} else {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Card operation not completed");
retval = PM3_ESOFT;
}
iso14a_set_timeout(save_iso14a_timeout);
LED_B_OFF();
return retval;
}
void MifareGen3UID(uint8_t uidlen, uint8_t *uid) {
int retval = PM3_SUCCESS;
uint8_t uid_cmd[5] = { 0x90, 0xfb, 0xcc, 0xcc, 0x07 };
uint8_t *old_uid = BigBuf_calloc(10);
uint8_t *cmd = BigBuf_calloc(sizeof(uid_cmd) + uidlen + 2);
iso14a_card_select_t *card_info = (iso14a_card_select_t *) BigBuf_calloc(sizeof(iso14a_card_select_t));
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (iso14443a_select_card(old_uid, card_info, NULL, true, 0, true) == false) {
retval = PM3_ESOFT;
goto OUT;
}
if (card_info->uidlen != uidlen) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Wrong UID length");
retval = PM3_ESOFT;
goto OUT;
}
memcpy(cmd, uid_cmd, sizeof(uid_cmd));
memcpy(&cmd[sizeof(uid_cmd)], uid, uidlen);
AddCrc14A(cmd, sizeof(uid_cmd) + uidlen);
retval = DoGen3Cmd(cmd, sizeof(uid_cmd) + uidlen + 2);
OUT:
reply_ng(CMD_HF_MIFARE_GEN3UID, retval, old_uid, uidlen);
// turns off
OnSuccessMagic();
BigBuf_free();
}
void MifareGen3Blk(uint8_t block_len, uint8_t *block) {
int retval = PM3_SUCCESS;
uint8_t block_cmd[5] = { 0x90, 0xf0, 0xcc, 0xcc, 0x10 };
uint8_t *cmd = BigBuf_calloc(sizeof(block_cmd) + MAX_MIFARE_FRAME_SIZE);
iso14a_card_select_t *card_info = (iso14a_card_select_t *) BigBuf_calloc(sizeof(iso14a_card_select_t));
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (iso14443a_select_card(NULL, card_info, NULL, true, 0, true) == false) {
retval = PM3_ESOFT;
goto OUT;
}
bool doReselect = false;
if (block_len < MIFARE_BLOCK_SIZE) {
if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_READBLOCK, 0, &cmd[sizeof(block_cmd)], NULL, NULL) != MAX_MIFARE_FRAME_SIZE)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Read manufacturer block failed");
retval = PM3_ESOFT;
goto OUT;
}
doReselect = true;
}
if (block_len > 0) {
memcpy(cmd, block_cmd, sizeof(block_cmd));
memcpy(&cmd[sizeof(block_cmd)], block, block_len);
int ofs = sizeof(block_cmd);
if (card_info->uidlen == 4) {
cmd[ofs + 4] = cmd[ofs + 0] ^ cmd[ofs + 1] ^ cmd[ofs + 2] ^ cmd[ofs + 3];
ofs += 5;
} else if (card_info->uidlen == 7) {
ofs += 7;
} else {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Wrong Card UID length");
retval = PM3_ESOFT;
goto OUT;
}
cmd[ofs++] = card_info->sak;
cmd[ofs++] = card_info->atqa[0];
cmd[ofs++] = card_info->atqa[1];
AddCrc14A(cmd, sizeof(block_cmd) + MIFARE_BLOCK_SIZE);
if (doReselect) {
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
retval = PM3_ESOFT;
goto OUT;
}
}
retval = DoGen3Cmd(cmd, sizeof(block_cmd) + MAX_MIFARE_FRAME_SIZE);
}
OUT:
reply_ng(CMD_HF_MIFARE_GEN3BLK, retval, &cmd[sizeof(block_cmd)], MIFARE_BLOCK_SIZE);
// turns off
OnSuccessMagic();
BigBuf_free();
}
void MifareGen3Freez(void) {
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
int retval = PM3_SUCCESS;
uint8_t freeze_cmd[7] = { 0x90, 0xfd, 0x11, 0x11, 0x00, 0xe7, 0x91 };
if (iso14443a_select_card(NULL, NULL, NULL, true, 0, true) == false) {
retval = PM3_ESOFT;
goto OUT;
}
retval = DoGen3Cmd(freeze_cmd, sizeof(freeze_cmd));
OUT:
reply_ng(CMD_HF_MIFARE_GEN3FREEZ, retval, NULL, 0);
// turns off
OnSuccessMagic();
BigBuf_free();
}
void MifareG4ReadBlk(uint8_t blockno, uint8_t *pwd, uint8_t workFlags) {
bool setup = ((workFlags & MAGIC_INIT) == MAGIC_INIT) ;
bool done = ((workFlags & MAGIC_OFF) == MAGIC_OFF) ;
int res = 0;
int retval = PM3_SUCCESS;
uint8_t *buf = BigBuf_malloc(PM3_CMD_DATA_SIZE);
if (buf == NULL) {
retval = PM3_EMALLOC;
goto OUT;
}
uint8_t *par = BigBuf_malloc(MAX_PARITY_SIZE);
if (par == NULL) {
retval = PM3_EMALLOC;
goto OUT;
}
if (setup) {
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (iso14443a_select_card(NULL, NULL, NULL, true, 0, true) == false) {
retval = PM3_ESOFT;
goto OUT;
}
}
LED_B_ON();
static uint32_t save_iso14a_timeout;
if (setup) {
save_iso14a_timeout = iso14a_get_timeout();
iso14a_set_timeout(13560000 / 1000 / (8 * 16) * 1000); // 2 seconds timeout
}
uint8_t cmd[] = { GEN_4GTU_CMD, 0x00, 0x00, 0x00, 0x00, GEN_4GTU_READ, blockno,
0x00, 0x00
};
memcpy(cmd + 1, pwd, 4);
AddCrc14A(cmd, sizeof(cmd) - 2);
ReaderTransmit(cmd, sizeof(cmd), NULL);
res = ReaderReceive(buf, par);
if (res != 18) {
retval = PM3_ESOFT;
}
if (done || retval != 0) {
iso14a_set_timeout(save_iso14a_timeout);
}
LED_B_OFF();
OUT:
reply_ng(CMD_HF_MIFARE_G4_RDBL, retval, buf, res);
// turns off
if (done || retval != 0) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
LEDsoff();
if (done || retval != 0) {
set_tracing(false);
}
BigBuf_free();
}
void MifareG4WriteBlk(uint8_t blockno, uint8_t *pwd, uint8_t *data, uint8_t workFlags) {
bool setup = ((workFlags & MAGIC_INIT) == MAGIC_INIT) ;
bool done = ((workFlags & MAGIC_OFF) == MAGIC_OFF) ;
int res = 0;
int retval = PM3_SUCCESS;
uint8_t *buf = BigBuf_malloc(PM3_CMD_DATA_SIZE);
if (buf == NULL) {
retval = PM3_EMALLOC;
goto OUT;
}
// check args
if (data == NULL) {
retval = PM3_EINVARG;
goto OUT;
}
uint8_t *par = BigBuf_malloc(MAX_PARITY_SIZE);
if (par == NULL) {
retval = PM3_EMALLOC;
goto OUT;
}
if (setup) {
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
if (iso14443a_select_card(NULL, NULL, NULL, true, 0, true) == false) {
retval = PM3_ESOFT;
goto OUT;
}
}
LED_B_ON();
static uint32_t save_iso14a_timeout;
if (setup) {
save_iso14a_timeout = iso14a_get_timeout();
iso14a_set_timeout(13560000 / 1000 / (8 * 16) * 1000); // 2 seconds timeout
}
uint8_t cmd[] = { GEN_4GTU_CMD, 0x00, 0x00, 0x00, 0x00, GEN_4GTU_WRITE, blockno,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00
};
memcpy(cmd + 1, pwd, 4);
memcpy(cmd + 7, data, 16);
AddCrc14A(cmd, sizeof(cmd) - 2);
ReaderTransmit(cmd, sizeof(cmd), NULL);
res = ReaderReceive(buf, par);
if ((res != 4) || (memcmp(buf, "\x90\x00\xfd\x07", 4) != 0)) {
retval = PM3_ESOFT;
}
if (done || retval != 0) {
iso14a_set_timeout(save_iso14a_timeout);
}
LED_B_OFF();
OUT:
reply_ng(CMD_HF_MIFARE_G4_WRBL, retval, buf, res);
// turns off
if (done || retval != 0) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
LEDsoff();
if (done || retval != 0) {
set_tracing(false);
}
BigBuf_free();
}
void MifareSetMod(uint8_t *datain) {
uint8_t mod = datain[0];
uint64_t ui64Key = bytes_to_num(datain + 1, 6);
// variables
uint16_t isOK = PM3_EUNDEF;
uint8_t *uid = BigBuf_calloc(10);
uint32_t cuid = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs = &mpcs;
uint8_t *buf = BigBuf_calloc(MAX_MIFARE_FRAME_SIZE);
uint8_t *par = BigBuf_calloc(MAX_MIFARE_PARITY_SIZE);
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
LED_A_ON();
while (true) {
if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
break;
}
if (mifare_classic_auth(pcs, cuid, 0, 0, ui64Key, AUTH_FIRST)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
break;
}
int respLen;
if (((respLen = mifare_sendcmd_short(pcs, CRYPT_ALL, MIFARE_EV1_SETMOD, mod, buf, par, NULL)) != 1) || (buf[0] != 0x0a)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("SetMod error; response[0]: %hhX, len: %d", buf[0], respLen);
break;
}
if (mifare_classic_halt(pcs)) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
break;
}
isOK = PM3_SUCCESS;
break;
}
crypto1_deinit(pcs);
LED_B_ON();
reply_ng(CMD_HF_MIFARE_SETMOD, isOK, NULL, 0);
LED_B_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
BigBuf_free();
}
//
// DESFIRE
//
void Mifare_DES_Auth1(uint8_t arg0, uint8_t *datain) {
uint8_t dataout[12] = {0x00};
uint32_t cuid = 0;
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
int len = iso14443a_select_card(NULL, NULL, &cuid, true, 0, false);
if (!len) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
OnError(1);
return;
};
if (mifare_desfire_des_auth1(cuid, dataout) != PM3_SUCCESS) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Authentication part1: Fail.");
OnError(4);
return;
}
if (g_dbglevel >= DBG_EXTENDED) DbpString("AUTH 1 FINISHED");
reply_mix(CMD_ACK, 1, cuid, 0, dataout, sizeof(dataout));
}
void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain) {
uint32_t cuid = arg0;
uint8_t key[16] = {0x00};
uint8_t dataout[12] = {0x00};
uint8_t isOK = 0;
memcpy(key, datain, 16);
isOK = mifare_desfire_des_auth2(cuid, key, dataout);
if (isOK != PM3_SUCCESS) {
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Authentication part2: Failed");
OnError(4);
return;
}
if (g_dbglevel >= DBG_EXTENDED) DbpString("AUTH 2 FINISHED");
reply_old(CMD_ACK, isOK, 0, 0, dataout, sizeof(dataout));
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
}
//
// Tear-off attack against MFU.
// - Moebius et al
void MifareU_Otp_Tearoff(uint8_t blno, uint32_t tearoff_time, uint8_t *data_testwrite) {
uint8_t blockNo = blno;
if (g_dbglevel >= DBG_DEBUG) DbpString("Preparing OTP tear-off");
if (tearoff_time > 43000) {
tearoff_time = 43000;
}
g_tearoff_delay_us = tearoff_time;
g_tearoff_enabled = true;
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
// write cmd to send, include CRC
// 1b write, 1b block, 4b data, 2 crc
uint8_t cmd[] = {
MIFARE_ULC_WRITE, blockNo,
data_testwrite[0], data_testwrite[1], data_testwrite[2], data_testwrite[3],
0, 0
};
AddCrc14A(cmd, sizeof(cmd) - 2);
// anticollision / select card
if (iso14443a_select_card(NULL, NULL, NULL, true, 0, true) == false) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
OnError(1);
reply_ng(CMD_HF_MFU_OTP_TEAROFF, PM3_EFAILED, NULL, 0);
return;
};
// send
LED_D_ON();
ReaderTransmit(cmd, sizeof(cmd), NULL);
tearoff_hook();
reply_ng(CMD_HF_MFU_OTP_TEAROFF, PM3_SUCCESS, NULL, 0);
}
//
// Tear-off attack against MFU counter
void MifareU_Counter_Tearoff(uint8_t counter, uint32_t tearoff_time, uint8_t *datain) {
if (tearoff_time > 43000) {
tearoff_time = 43000;
}
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
clear_trace();
set_tracing(true);
// Send MFU counter increase cmd
uint8_t cmd[] = {
MIFARE_ULEV1_INCR_CNT,
counter,
datain[0], // lsb
datain[1],
datain[2], // msb
datain[3], // rfu
0,
0,
};
AddCrc14A(cmd, sizeof(cmd) - 2);
// anticollision / select card
if (iso14443a_select_card(NULL, NULL, NULL, true, 0, true) == false) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
OnError(1);
switch_off();
LEDsoff();
return;
};
// send
ReaderTransmit(cmd, sizeof(cmd), NULL);
LED_D_ON();
SpinDelayUsPrecision(tearoff_time);
switch_off();
LEDsoff();
reply_ng(CMD_HF_MFU_COUNTER_TEAROFF, PM3_SUCCESS, NULL, 0);
}