2019-03-10 11:20:22 +01:00

615 lines
18 KiB
C

/*
* CTR_DRBG implementation based on AES-256 (NIST SP 800-90)
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: GPL-2.0
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
/*
* The NIST SP 800-90 DRBGs are described in the following publication.
*
* http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
*/
#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#if defined(MBEDTLS_CTR_DRBG_C)
#include "mbedtls/ctr_drbg.h"
#include "mbedtls/platform_util.h"
#include <string.h>
#if defined(MBEDTLS_FS_IO)
#include <stdio.h>
#endif
#if defined(MBEDTLS_SELF_TEST)
#if defined(MBEDTLS_PLATFORM_C)
#include "mbedtls/platform.h"
#else
#include <stdio.h>
#define mbedtls_printf printf
#endif /* MBEDTLS_PLATFORM_C */
#endif /* MBEDTLS_SELF_TEST */
/*
* CTR_DRBG context initialization
*/
void mbedtls_ctr_drbg_init(mbedtls_ctr_drbg_context *ctx) {
memset(ctx, 0, sizeof(mbedtls_ctr_drbg_context));
#if defined(MBEDTLS_THREADING_C)
mbedtls_mutex_init(&ctx->mutex);
#endif
}
/*
* Non-public function wrapped by mbedtls_ctr_drbg_seed(). Necessary to allow
* NIST tests to succeed (which require known length fixed entropy)
*/
int mbedtls_ctr_drbg_seed_entropy_len(
mbedtls_ctr_drbg_context *ctx,
int (*f_entropy)(void *, unsigned char *, size_t),
void *p_entropy,
const unsigned char *custom,
size_t len,
size_t entropy_len) {
int ret;
unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE];
memset(key, 0, MBEDTLS_CTR_DRBG_KEYSIZE);
mbedtls_aes_init(&ctx->aes_ctx);
ctx->f_entropy = f_entropy;
ctx->p_entropy = p_entropy;
ctx->entropy_len = entropy_len;
ctx->reseed_interval = MBEDTLS_CTR_DRBG_RESEED_INTERVAL;
/*
* Initialize with an empty key
*/
if ((ret = mbedtls_aes_setkey_enc(&ctx->aes_ctx, key, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
return (ret);
}
if ((ret = mbedtls_ctr_drbg_reseed(ctx, custom, len)) != 0) {
return (ret);
}
return (0);
}
int mbedtls_ctr_drbg_seed(mbedtls_ctr_drbg_context *ctx,
int (*f_entropy)(void *, unsigned char *, size_t),
void *p_entropy,
const unsigned char *custom,
size_t len) {
return (mbedtls_ctr_drbg_seed_entropy_len(ctx, f_entropy, p_entropy, custom, len,
MBEDTLS_CTR_DRBG_ENTROPY_LEN));
}
void mbedtls_ctr_drbg_free(mbedtls_ctr_drbg_context *ctx) {
if (ctx == NULL)
return;
#if defined(MBEDTLS_THREADING_C)
mbedtls_mutex_free(&ctx->mutex);
#endif
mbedtls_aes_free(&ctx->aes_ctx);
mbedtls_platform_zeroize(ctx, sizeof(mbedtls_ctr_drbg_context));
}
void mbedtls_ctr_drbg_set_prediction_resistance(mbedtls_ctr_drbg_context *ctx, int resistance) {
ctx->prediction_resistance = resistance;
}
void mbedtls_ctr_drbg_set_entropy_len(mbedtls_ctr_drbg_context *ctx, size_t len) {
ctx->entropy_len = len;
}
void mbedtls_ctr_drbg_set_reseed_interval(mbedtls_ctr_drbg_context *ctx, int interval) {
ctx->reseed_interval = interval;
}
static int block_cipher_df(unsigned char *output,
const unsigned char *data, size_t data_len) {
unsigned char buf[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT + MBEDTLS_CTR_DRBG_BLOCKSIZE + 16];
unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN];
unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE];
unsigned char chain[MBEDTLS_CTR_DRBG_BLOCKSIZE];
unsigned char *p, *iv;
mbedtls_aes_context aes_ctx;
int ret = 0;
int i, j;
size_t buf_len, use_len;
if (data_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT)
return (MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG);
memset(buf, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT + MBEDTLS_CTR_DRBG_BLOCKSIZE + 16);
mbedtls_aes_init(&aes_ctx);
/*
* Construct IV (16 bytes) and S in buffer
* IV = Counter (in 32-bits) padded to 16 with zeroes
* S = Length input string (in 32-bits) || Length of output (in 32-bits) ||
* data || 0x80
* (Total is padded to a multiple of 16-bytes with zeroes)
*/
p = buf + MBEDTLS_CTR_DRBG_BLOCKSIZE;
*p++ = (data_len >> 24) & 0xff;
*p++ = (data_len >> 16) & 0xff;
*p++ = (data_len >> 8) & 0xff;
*p++ = (data_len) & 0xff;
p += 3;
*p++ = MBEDTLS_CTR_DRBG_SEEDLEN;
memcpy(p, data, data_len);
p[data_len] = 0x80;
buf_len = MBEDTLS_CTR_DRBG_BLOCKSIZE + 8 + data_len + 1;
for (i = 0; i < MBEDTLS_CTR_DRBG_KEYSIZE; i++)
key[i] = i;
if ((ret = mbedtls_aes_setkey_enc(&aes_ctx, key, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
goto exit;
}
/*
* Reduce data to MBEDTLS_CTR_DRBG_SEEDLEN bytes of data
*/
for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) {
p = buf;
memset(chain, 0, MBEDTLS_CTR_DRBG_BLOCKSIZE);
use_len = buf_len;
while (use_len > 0) {
for (i = 0; i < MBEDTLS_CTR_DRBG_BLOCKSIZE; i++)
chain[i] ^= p[i];
p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
use_len -= (use_len >= MBEDTLS_CTR_DRBG_BLOCKSIZE) ?
MBEDTLS_CTR_DRBG_BLOCKSIZE : use_len;
if ((ret = mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT, chain, chain)) != 0) {
goto exit;
}
}
memcpy(tmp + j, chain, MBEDTLS_CTR_DRBG_BLOCKSIZE);
/*
* Update IV
*/
buf[3]++;
}
/*
* Do final encryption with reduced data
*/
if ((ret = mbedtls_aes_setkey_enc(&aes_ctx, tmp, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
goto exit;
}
iv = tmp + MBEDTLS_CTR_DRBG_KEYSIZE;
p = output;
for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) {
if ((ret = mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT, iv, iv)) != 0) {
goto exit;
}
memcpy(p, iv, MBEDTLS_CTR_DRBG_BLOCKSIZE);
p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
}
exit:
mbedtls_aes_free(&aes_ctx);
/*
* tidy up the stack
*/
mbedtls_platform_zeroize(buf, sizeof(buf));
mbedtls_platform_zeroize(tmp, sizeof(tmp));
mbedtls_platform_zeroize(key, sizeof(key));
mbedtls_platform_zeroize(chain, sizeof(chain));
if (0 != ret) {
/*
* wipe partial seed from memory
*/
mbedtls_platform_zeroize(output, MBEDTLS_CTR_DRBG_SEEDLEN);
}
return (ret);
}
static int ctr_drbg_update_internal(mbedtls_ctr_drbg_context *ctx,
const unsigned char data[MBEDTLS_CTR_DRBG_SEEDLEN]) {
unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN];
unsigned char *p = tmp;
int i, j;
int ret = 0;
memset(tmp, 0, MBEDTLS_CTR_DRBG_SEEDLEN);
for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) {
/*
* Increase counter
*/
for (i = MBEDTLS_CTR_DRBG_BLOCKSIZE; i > 0; i--)
if (++ctx->counter[i - 1] != 0)
break;
/*
* Crypt counter block
*/
if ((ret = mbedtls_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT, ctx->counter, p)) != 0) {
return (ret);
}
p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
}
for (i = 0; i < MBEDTLS_CTR_DRBG_SEEDLEN; i++)
tmp[i] ^= data[i];
/*
* Update key and counter
*/
if ((ret = mbedtls_aes_setkey_enc(&ctx->aes_ctx, tmp, MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
return (ret);
}
memcpy(ctx->counter, tmp + MBEDTLS_CTR_DRBG_KEYSIZE, MBEDTLS_CTR_DRBG_BLOCKSIZE);
return (0);
}
void mbedtls_ctr_drbg_update(mbedtls_ctr_drbg_context *ctx,
const unsigned char *additional, size_t add_len) {
unsigned char add_input[MBEDTLS_CTR_DRBG_SEEDLEN];
if (add_len > 0) {
/* MAX_INPUT would be more logical here, but we have to match
* block_cipher_df()'s limits since we can't propagate errors */
if (add_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT)
add_len = MBEDTLS_CTR_DRBG_MAX_SEED_INPUT;
block_cipher_df(add_input, additional, add_len);
ctr_drbg_update_internal(ctx, add_input);
}
}
int mbedtls_ctr_drbg_reseed(mbedtls_ctr_drbg_context *ctx,
const unsigned char *additional, size_t len) {
unsigned char seed[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT];
size_t seedlen = 0;
int ret;
if (ctx->entropy_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT ||
len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT - ctx->entropy_len)
return (MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG);
memset(seed, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT);
/*
* Gather entropy_len bytes of entropy to seed state
*/
if (0 != ctx->f_entropy(ctx->p_entropy, seed,
ctx->entropy_len)) {
return (MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED);
}
seedlen += ctx->entropy_len;
/*
* Add additional data
*/
if (additional && len) {
memcpy(seed + seedlen, additional, len);
seedlen += len;
}
/*
* Reduce to 384 bits
*/
if ((ret = block_cipher_df(seed, seed, seedlen)) != 0) {
return (ret);
}
/*
* Update state
*/
if ((ret = ctr_drbg_update_internal(ctx, seed)) != 0) {
return (ret);
}
ctx->reseed_counter = 1;
return (0);
}
int mbedtls_ctr_drbg_random_with_add(void *p_rng,
unsigned char *output, size_t output_len,
const unsigned char *additional, size_t add_len) {
int ret = 0;
mbedtls_ctr_drbg_context *ctx = (mbedtls_ctr_drbg_context *) p_rng;
unsigned char add_input[MBEDTLS_CTR_DRBG_SEEDLEN];
unsigned char *p = output;
unsigned char tmp[MBEDTLS_CTR_DRBG_BLOCKSIZE];
int i;
size_t use_len;
if (output_len > MBEDTLS_CTR_DRBG_MAX_REQUEST)
return (MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG);
if (add_len > MBEDTLS_CTR_DRBG_MAX_INPUT)
return (MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG);
memset(add_input, 0, MBEDTLS_CTR_DRBG_SEEDLEN);
if (ctx->reseed_counter > ctx->reseed_interval ||
ctx->prediction_resistance) {
if ((ret = mbedtls_ctr_drbg_reseed(ctx, additional, add_len)) != 0) {
return (ret);
}
add_len = 0;
}
if (add_len > 0) {
if ((ret = block_cipher_df(add_input, additional, add_len)) != 0) {
return (ret);
}
if ((ret = ctr_drbg_update_internal(ctx, add_input)) != 0) {
return (ret);
}
}
while (output_len > 0) {
/*
* Increase counter
*/
for (i = MBEDTLS_CTR_DRBG_BLOCKSIZE; i > 0; i--)
if (++ctx->counter[i - 1] != 0)
break;
/*
* Crypt counter block
*/
if ((ret = mbedtls_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT, ctx->counter, tmp)) != 0) {
return (ret);
}
use_len = (output_len > MBEDTLS_CTR_DRBG_BLOCKSIZE) ? MBEDTLS_CTR_DRBG_BLOCKSIZE :
output_len;
/*
* Copy random block to destination
*/
memcpy(p, tmp, use_len);
p += use_len;
output_len -= use_len;
}
if ((ret = ctr_drbg_update_internal(ctx, add_input)) != 0) {
return (ret);
}
ctx->reseed_counter++;
return (0);
}
int mbedtls_ctr_drbg_random(void *p_rng, unsigned char *output, size_t output_len) {
int ret;
mbedtls_ctr_drbg_context *ctx = (mbedtls_ctr_drbg_context *) p_rng;
#if defined(MBEDTLS_THREADING_C)
if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0)
return (ret);
#endif
ret = mbedtls_ctr_drbg_random_with_add(ctx, output, output_len, NULL, 0);
#if defined(MBEDTLS_THREADING_C)
if (mbedtls_mutex_unlock(&ctx->mutex) != 0)
return (MBEDTLS_ERR_THREADING_MUTEX_ERROR);
#endif
return (ret);
}
#if defined(MBEDTLS_FS_IO)
int mbedtls_ctr_drbg_write_seed_file(mbedtls_ctr_drbg_context *ctx, const char *path) {
int ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
FILE *f;
unsigned char buf[ MBEDTLS_CTR_DRBG_MAX_INPUT ];
if ((f = fopen(path, "wb")) == NULL)
return (MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR);
if ((ret = mbedtls_ctr_drbg_random(ctx, buf, MBEDTLS_CTR_DRBG_MAX_INPUT)) != 0)
goto exit;
if (fwrite(buf, 1, MBEDTLS_CTR_DRBG_MAX_INPUT, f) != MBEDTLS_CTR_DRBG_MAX_INPUT)
ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
else
ret = 0;
exit:
mbedtls_platform_zeroize(buf, sizeof(buf));
fclose(f);
return (ret);
}
int mbedtls_ctr_drbg_update_seed_file(mbedtls_ctr_drbg_context *ctx, const char *path) {
int ret = 0;
FILE *f;
size_t n;
unsigned char buf[ MBEDTLS_CTR_DRBG_MAX_INPUT ];
if ((f = fopen(path, "rb")) == NULL)
return (MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR);
fseek(f, 0, SEEK_END);
n = (size_t) ftell(f);
fseek(f, 0, SEEK_SET);
if (n > MBEDTLS_CTR_DRBG_MAX_INPUT) {
fclose(f);
return (MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG);
}
if (fread(buf, 1, n, f) != n)
ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
else
mbedtls_ctr_drbg_update(ctx, buf, n);
fclose(f);
mbedtls_platform_zeroize(buf, sizeof(buf));
if (ret != 0)
return (ret);
return (mbedtls_ctr_drbg_write_seed_file(ctx, path));
}
#endif /* MBEDTLS_FS_IO */
#if defined(MBEDTLS_SELF_TEST)
static const unsigned char entropy_source_pr[96] = {
0xc1, 0x80, 0x81, 0xa6, 0x5d, 0x44, 0x02, 0x16,
0x19, 0xb3, 0xf1, 0x80, 0xb1, 0xc9, 0x20, 0x02,
0x6a, 0x54, 0x6f, 0x0c, 0x70, 0x81, 0x49, 0x8b,
0x6e, 0xa6, 0x62, 0x52, 0x6d, 0x51, 0xb1, 0xcb,
0x58, 0x3b, 0xfa, 0xd5, 0x37, 0x5f, 0xfb, 0xc9,
0xff, 0x46, 0xd2, 0x19, 0xc7, 0x22, 0x3e, 0x95,
0x45, 0x9d, 0x82, 0xe1, 0xe7, 0x22, 0x9f, 0x63,
0x31, 0x69, 0xd2, 0x6b, 0x57, 0x47, 0x4f, 0xa3,
0x37, 0xc9, 0x98, 0x1c, 0x0b, 0xfb, 0x91, 0x31,
0x4d, 0x55, 0xb9, 0xe9, 0x1c, 0x5a, 0x5e, 0xe4,
0x93, 0x92, 0xcf, 0xc5, 0x23, 0x12, 0xd5, 0x56,
0x2c, 0x4a, 0x6e, 0xff, 0xdc, 0x10, 0xd0, 0x68
};
static const unsigned char entropy_source_nopr[64] = {
0x5a, 0x19, 0x4d, 0x5e, 0x2b, 0x31, 0x58, 0x14,
0x54, 0xde, 0xf6, 0x75, 0xfb, 0x79, 0x58, 0xfe,
0xc7, 0xdb, 0x87, 0x3e, 0x56, 0x89, 0xfc, 0x9d,
0x03, 0x21, 0x7c, 0x68, 0xd8, 0x03, 0x38, 0x20,
0xf9, 0xe6, 0x5e, 0x04, 0xd8, 0x56, 0xf3, 0xa9,
0xc4, 0x4a, 0x4c, 0xbd, 0xc1, 0xd0, 0x08, 0x46,
0xf5, 0x98, 0x3d, 0x77, 0x1c, 0x1b, 0x13, 0x7e,
0x4e, 0x0f, 0x9d, 0x8e, 0xf4, 0x09, 0xf9, 0x2e
};
static const unsigned char nonce_pers_pr[16] = {
0xd2, 0x54, 0xfc, 0xff, 0x02, 0x1e, 0x69, 0xd2,
0x29, 0xc9, 0xcf, 0xad, 0x85, 0xfa, 0x48, 0x6c
};
static const unsigned char nonce_pers_nopr[16] = {
0x1b, 0x54, 0xb8, 0xff, 0x06, 0x42, 0xbf, 0xf5,
0x21, 0xf1, 0x5c, 0x1c, 0x0b, 0x66, 0x5f, 0x3f
};
static const unsigned char result_pr[16] = {
0x34, 0x01, 0x16, 0x56, 0xb4, 0x29, 0x00, 0x8f,
0x35, 0x63, 0xec, 0xb5, 0xf2, 0x59, 0x07, 0x23
};
static const unsigned char result_nopr[16] = {
0xa0, 0x54, 0x30, 0x3d, 0x8a, 0x7e, 0xa9, 0x88,
0x9d, 0x90, 0x3e, 0x07, 0x7c, 0x6f, 0x21, 0x8f
};
static size_t test_offset;
static int ctr_drbg_self_test_entropy(void *data, unsigned char *buf,
size_t len) {
const unsigned char *p = data;
memcpy(buf, p + test_offset, len);
test_offset += len;
return (0);
}
#define CHK( c ) if( (c) != 0 ) \
{ \
if( verbose != 0 ) \
mbedtls_printf( "failed\n" ); \
return( 1 ); \
}
/*
* Checkup routine
*/
int mbedtls_ctr_drbg_self_test(int verbose) {
mbedtls_ctr_drbg_context ctx;
unsigned char buf[16];
mbedtls_ctr_drbg_init(&ctx);
/*
* Based on a NIST CTR_DRBG test vector (PR = True)
*/
if (verbose != 0)
mbedtls_printf(" CTR_DRBG (PR = TRUE) : ");
test_offset = 0;
CHK(mbedtls_ctr_drbg_seed_entropy_len(&ctx, ctr_drbg_self_test_entropy,
(void *) entropy_source_pr, nonce_pers_pr, 16, 32));
mbedtls_ctr_drbg_set_prediction_resistance(&ctx, MBEDTLS_CTR_DRBG_PR_ON);
CHK(mbedtls_ctr_drbg_random(&ctx, buf, MBEDTLS_CTR_DRBG_BLOCKSIZE));
CHK(mbedtls_ctr_drbg_random(&ctx, buf, MBEDTLS_CTR_DRBG_BLOCKSIZE));
CHK(memcmp(buf, result_pr, MBEDTLS_CTR_DRBG_BLOCKSIZE));
mbedtls_ctr_drbg_free(&ctx);
if (verbose != 0)
mbedtls_printf("passed\n");
/*
* Based on a NIST CTR_DRBG test vector (PR = FALSE)
*/
if (verbose != 0)
mbedtls_printf(" CTR_DRBG (PR = FALSE): ");
mbedtls_ctr_drbg_init(&ctx);
test_offset = 0;
CHK(mbedtls_ctr_drbg_seed_entropy_len(&ctx, ctr_drbg_self_test_entropy,
(void *) entropy_source_nopr, nonce_pers_nopr, 16, 32));
CHK(mbedtls_ctr_drbg_random(&ctx, buf, 16));
CHK(mbedtls_ctr_drbg_reseed(&ctx, NULL, 0));
CHK(mbedtls_ctr_drbg_random(&ctx, buf, 16));
CHK(memcmp(buf, result_nopr, 16));
mbedtls_ctr_drbg_free(&ctx);
if (verbose != 0)
mbedtls_printf("passed\n");
if (verbose != 0)
mbedtls_printf("\n");
return (0);
}
#endif /* MBEDTLS_SELF_TEST */
#endif /* MBEDTLS_CTR_DRBG_C */