RRG-Proxmark3/armsrc/optimized_ikeys.c
2020-07-10 16:37:56 +02:00

325 lines
10 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, or, at your option, any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
****************************************************************************/
/**
From "Dismantling iclass":
This section describes in detail the built-in key diversification algorithm of iClass.
Besides the obvious purpose of deriving a card key from a master key, this
algorithm intends to circumvent weaknesses in the cipher by preventing the
usage of certain weak keys. In order to compute a diversified key, the iClass
reader first encrypts the card identity id with the master key K, using single
DES. The resulting ciphertext is then input to a function called hash0 which
outputs the diversified key k.
k = hash0(DES enc (id, K))
Here the DES encryption of id with master key K outputs a cryptogram c
of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] ∈ F 82 × F 82 × (F 62 ) 8
which is used as input to the hash0 function. This function introduces some
obfuscation by performing a number of permutations, complement and modulo
operations, see Figure 2.5. Besides that, it checks for and removes patterns like
similar key bytes, which could produce a strong bias in the cipher. Finally, the
output of hash0 is the diversified card key k = k [0] , . . . , k [7] ∈ (F 82 ) 8 .
**/
#include "optimized_ikeys.h"
#include <stdint.h>
#include <stdbool.h>
#include <inttypes.h>
#include "mbedtls/des.h"
#include "optimized_cipherutils.h"
uint8_t pi[35] = {
0x0F, 0x17, 0x1B, 0x1D, 0x1E, 0x27, 0x2B, 0x2D,
0x2E, 0x33, 0x35, 0x39, 0x36, 0x3A, 0x3C, 0x47,
0x4B, 0x4D, 0x4E, 0x53, 0x55, 0x56, 0x59, 0x5A,
0x5C, 0x63, 0x65, 0x66, 0x69, 0x6A, 0x6C, 0x71,
0x72, 0x74, 0x78
};
static mbedtls_des_context ctx_enc;
/**
* @brief The key diversification algorithm uses 6-bit bytes.
* This implementation uses 64 bit uint to pack seven of them into one
* variable. When they are there, they are placed as follows:
* XXXX XXXX N0 .... N7, occupying the last 48 bits.
*
* This function picks out one from such a collection
* @param all
* @param n bitnumber
* @return
*/
static uint8_t getSixBitByte(uint64_t c, int n) {
return (c >> (42 - 6 * n)) & 0x3F;
}
/**
* @brief Puts back a six-bit 'byte' into a uint64_t.
* @param c buffer
* @param z the value to place there
* @param n bitnumber.
*/
static void pushbackSixBitByte(uint64_t *c, uint8_t z, int n) {
//0x XXXX YYYY ZZZZ ZZZZ ZZZZ
// ^z0 ^z7
//z0: 1111 1100 0000 0000
uint64_t masked = z & 0x3F;
uint64_t eraser = 0x3F;
masked <<= 42 - 6 * n;
eraser <<= 42 - 6 * n;
//masked <<= 6*n;
//eraser <<= 6*n;
eraser = ~eraser;
(*c) &= eraser;
(*c) |= masked;
}
/**
* @brief Swaps the z-values.
* If the input value has format XYZ0Z1...Z7, the output will have the format
* XYZ7Z6...Z0 instead
* @param c
* @return
*/
static uint64_t swapZvalues(uint64_t c) {
uint64_t newz = 0;
pushbackSixBitByte(&newz, getSixBitByte(c, 0), 7);
pushbackSixBitByte(&newz, getSixBitByte(c, 1), 6);
pushbackSixBitByte(&newz, getSixBitByte(c, 2), 5);
pushbackSixBitByte(&newz, getSixBitByte(c, 3), 4);
pushbackSixBitByte(&newz, getSixBitByte(c, 4), 3);
pushbackSixBitByte(&newz, getSixBitByte(c, 5), 2);
pushbackSixBitByte(&newz, getSixBitByte(c, 6), 1);
pushbackSixBitByte(&newz, getSixBitByte(c, 7), 0);
newz |= (c & 0xFFFF000000000000);
return newz;
}
/**
* @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
*/
static uint64_t ck(int i, int j, uint64_t z) {
if (i == 1 && j == -1) {
// ck(1, 1, z [0] . . . z [3] ) = z [0] . . . z [3]
return z;
} else if (j == -1) {
// ck(i, 1, z [0] . . . z [3] ) = ck(i 1, i 2, z [0] . . . z [3] )
return ck(i - 1, i - 2, z);
}
if (getSixBitByte(z, i) == getSixBitByte(z, j)) {
//ck(i, j 1, z [0] . . . z [i] ← j . . . z [3] )
uint64_t newz = 0;
int c;
for (c = 0; c < 4; c++) {
uint8_t val = getSixBitByte(z, c);
if (c == i)
pushbackSixBitByte(&newz, j, c);
else
pushbackSixBitByte(&newz, val, c);
}
return ck(i, j - 1, newz);
} else {
return ck(i, j - 1, z);
}
}
/**
Definition 8.
Let the function check : (F 62 ) 8 → (F 62 ) 8 be defined as
check(z [0] . . . z [7] ) = ck(3, 2, z [0] . . . z [3] ) · ck(3, 2, z [4] . . . z [7] )
where ck : N × N × (F 62 ) 4 → (F 62 ) 4 is defined as
ck(1, 1, z [0] . . . z [3] ) = z [0] . . . z [3]
ck(i, 1, z [0] . . . z [3] ) = ck(i 1, i 2, z [0] . . . z [3] )
ck(i, j, z [0] . . . z [3] ) =
ck(i, j 1, z [0] . . . z [i] ← j . . . z [3] ), if z [i] = z [j] ;
ck(i, j 1, z [0] . . . z [3] ), otherwise
otherwise.
**/
static uint64_t check(uint64_t z) {
//These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
// ck(3, 2, z [0] . . . z [3] )
uint64_t ck1 = ck(3, 2, z);
// ck(3, 2, z [4] . . . z [7] )
uint64_t ck2 = ck(3, 2, z << 24);
//The ck function will place the values
// in the middle of z.
ck1 &= 0x00000000FFFFFF000000;
ck2 &= 0x00000000FFFFFF000000;
return ck1 | ck2 >> 24;
}
static void permute(BitstreamIn *p_in, uint64_t z, int l, int r, BitstreamOut *out) {
if (bitsLeft(p_in) == 0)
return;
bool pn = tailBit(p_in);
if (pn) { // pn = 1
uint8_t zl = getSixBitByte(z, l);
push6bits(out, zl + 1);
permute(p_in, z, l + 1, r, out);
} else { // otherwise
uint8_t zr = getSixBitByte(z, r);
push6bits(out, zr);
permute(p_in, z, l, r + 1, out);
}
}
/**
* @brief
*Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
* hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
* z'[i] = (z[i] mod (63-i)) + i i = 0...3
* z'[i+4] = (z[i+4] mod (64-i)) + i i = 0...3
* ẑ = check(z');
* @param c
* @param k this is where the diversified key is put (should be 8 bytes)
* @return
*/
void hash0(uint64_t c, uint8_t k[8]) {
c = swapZvalues(c);
//These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
// x = 8 bits
// y = 8 bits
// z0-z7 6 bits each : 48 bits
uint8_t x = (c & 0xFF00000000000000) >> 56;
uint8_t y = (c & 0x00FF000000000000) >> 48;
uint64_t zP = 0;
for (int n = 0; n < 4 ; n++) {
uint8_t zn = getSixBitByte(c, n);
uint8_t zn4 = getSixBitByte(c, n + 4);
uint8_t _zn = (zn % (63 - n)) + n;
uint8_t _zn4 = (zn4 % (64 - n)) + n;
pushbackSixBitByte(&zP, _zn, n);
pushbackSixBitByte(&zP, _zn4, n + 4);
}
uint64_t zCaret = check(zP);
uint8_t p = pi[x % 35];
if (x & 1) //Check if x7 is 1
p = ~p;
BitstreamIn p_in = { &p, 8, 0 };
uint8_t outbuffer[] = {0, 0, 0, 0, 0, 0, 0, 0};
BitstreamOut out = {outbuffer, 0, 0};
permute(&p_in, zCaret, 0, 4, &out); //returns 48 bits? or 6 8-bytes
//Out is now a buffer containing six-bit bytes, should be 48 bits
// if all went well
//Shift z-values down onto the lower segment
uint64_t zTilde = x_bytes_to_num(outbuffer, sizeof(outbuffer));
zTilde >>= 16;
for (int i = 0; i < 8; i++) {
// the key on index i is first a bit from y
// then six bits from z,
// then a bit from p
// Init with zeroes
k[i] = 0;
// First, place yi leftmost in k
//k[i] |= (y << i) & 0x80 ;
// First, place y(7-i) leftmost in k
k[i] |= (y << (7 - i)) & 0x80 ;
uint8_t zTilde_i = getSixBitByte(zTilde, i);
// zTildeI is now on the form 00XXXXXX
// with one leftshift, it'll be
// 0XXXXXX0
// So after leftshift, we can OR it into k
// However, when doing complement, we need to
// again MASK 0XXXXXX0 (0x7E)
zTilde_i <<= 1;
//Finally, add bit from p or p-mod
//Shift bit i into rightmost location (mask only after complement)
uint8_t p_i = p >> i & 0x1;
if (k[i]) { // yi = 1
k[i] |= ~zTilde_i & 0x7E;
k[i] |= p_i & 1;
k[i] += 1;
} else { // otherwise
k[i] |= zTilde_i & 0x7E;
k[i] |= (~p_i) & 1;
}
}
}
/**
* @brief Performs Elite-class key diversification
* @param csn
* @param key
* @param div_key
*/
void diversifyKey(uint8_t *csn, uint8_t *key, uint8_t *div_key) {
// Prepare the DES key
mbedtls_des_setkey_enc(&ctx_enc, key);
uint8_t crypted_csn[8] = {0};
// Calculate DES(CSN, KEY)
mbedtls_des_crypt_ecb(&ctx_enc, csn, crypted_csn);
//Calculate HASH0(DES))
uint64_t c_csn = x_bytes_to_num(crypted_csn, sizeof(crypted_csn));
hash0(c_csn, div_key);
}