Philippe Teuwen 4ed57c7c4d make style
2020-08-13 12:25:04 +02:00

856 lines
19 KiB
C

//-----------------------------------------------------------------------------
// Willok, June 2018
// Edits by Iceman, July 2018
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// The main i2c code, for communications with smart card module
//-----------------------------------------------------------------------------
#include "i2c.h"
#include "proxmark3_arm.h"
#include "cmd.h"
#include "BigBuf.h"
#include "ticks.h"
#include "dbprint.h"
#include "util.h"
#include "string.h"
#define GPIO_RST AT91C_PIO_PA1
#define GPIO_SCL AT91C_PIO_PA5
#define GPIO_SDA AT91C_PIO_PA7
#define SCL_H HIGH(GPIO_SCL)
#define SCL_L LOW(GPIO_SCL)
#define SDA_H HIGH(GPIO_SDA)
#define SDA_L LOW(GPIO_SDA)
#define SCL_read ((AT91C_BASE_PIOA->PIO_PDSR & GPIO_SCL) == GPIO_SCL)
#define SDA_read ((AT91C_BASE_PIOA->PIO_PDSR & GPIO_SDA) == GPIO_SDA)
#define I2C_ERROR "I2C_WaitAck Error"
static volatile uint32_t c;
// Direct use the loop to delay. 6 instructions loop, Masterclock 48MHz,
// delay=1 is about 200kbps
// timer.
// I2CSpinDelayClk(4) = 12.31us
// I2CSpinDelayClk(1) = 3.07us
static void __attribute__((optimize("O0"))) I2CSpinDelayClk(uint16_t delay) {
for (c = delay * 2; c; c--) {};
}
#define I2C_DELAY_1CLK I2CSpinDelayClk(1)
#define I2C_DELAY_2CLK I2CSpinDelayClk(2)
#define I2C_DELAY_XCLK(x) I2CSpinDelayClk((x))
#define I2C_DELAY_100us I2CSpinDelayClk( 100 / 3)
#define I2C_DELAY_600us I2CSpinDelayClk( 600 / 3)
#define I2C_DELAY_10ms I2CSpinDelayClk( 10 * 1000 / 3 )
#define I2C_DELAY_30ms I2CSpinDelayClk( 30 * 1000 / 3 )
#define I2C_DELAY_100ms I2CSpinDelayClk( 100 * 1000 / 3)
#define ISO7618_MAX_FRAME 255
// try i2c bus recovery at 100kHz = 5us high, 5us low
void I2C_recovery(void) {
DbpString("Performing i2c bus recovery");
// reset I2C
SDA_H;
SCL_H;
//9nth cycle acts as NACK
for (int i = 0; i < 10; i++) {
SCL_H;
WaitUS(5);
SCL_L;
WaitUS(5);
}
//a STOP signal (SDA from low to high while CLK is high)
SDA_L;
WaitUS(5);
SCL_H;
WaitUS(2);
SDA_H;
WaitUS(2);
bool isok = (SCL_read && SDA_read);
if (!SDA_read)
DbpString("I2C bus recovery error: SDA still LOW");
if (!SCL_read)
DbpString("I2C bus recovery error: SCL still LOW");
if (isok)
DbpString("I2C bus recovery complete");
}
void I2C_init(void) {
// Configure reset pin, close up pull up, push-pull output, default high
AT91C_BASE_PIOA->PIO_PPUDR = GPIO_RST;
AT91C_BASE_PIOA->PIO_MDDR = GPIO_RST;
// Configure I2C pin, open up, open leakage
AT91C_BASE_PIOA->PIO_PPUER |= (GPIO_SCL | GPIO_SDA);
AT91C_BASE_PIOA->PIO_MDER |= (GPIO_SCL | GPIO_SDA);
// default three lines all pull up
AT91C_BASE_PIOA->PIO_SODR |= (GPIO_SCL | GPIO_SDA | GPIO_RST);
AT91C_BASE_PIOA->PIO_OER |= (GPIO_SCL | GPIO_SDA | GPIO_RST);
AT91C_BASE_PIOA->PIO_PER |= (GPIO_SCL | GPIO_SDA | GPIO_RST);
bool isok = (SCL_read && SDA_read);
if (!isok)
I2C_recovery();
}
// set the reset state
void I2C_SetResetStatus(uint8_t LineRST, uint8_t LineSCK, uint8_t LineSDA) {
if (LineRST)
HIGH(GPIO_RST);
else
LOW(GPIO_RST);
if (LineSCK)
HIGH(GPIO_SCL);
else
LOW(GPIO_SCL);
if (LineSDA)
HIGH(GPIO_SDA);
else
LOW(GPIO_SDA);
}
// Reset the SIM_Adapter, then enter the main program
// Note: the SIM_Adapter will not enter the main program after power up. Please run this function before use SIM_Adapter.
void I2C_Reset_EnterMainProgram(void) {
StartTicks();
I2C_init();
I2C_SetResetStatus(0, 0, 0);
I2C_DELAY_30ms;
I2C_SetResetStatus(1, 0, 0);
I2C_DELAY_30ms;
I2C_SetResetStatus(1, 1, 1);
I2C_DELAY_10ms;
}
// Reset the SIM_Adapter, then enter the bootloader program
// Reserve for firmware update.
void I2C_Reset_EnterBootloader(void) {
StartTicks();
I2C_init();
I2C_SetResetStatus(0, 1, 1);
I2C_DELAY_100ms;
I2C_SetResetStatus(1, 1, 1);
I2C_DELAY_10ms;
}
// Wait for the clock to go High.
static bool WaitSCL_H_delay(uint32_t delay) {
while (delay--) {
if (SCL_read) {
return true;
}
I2C_DELAY_1CLK;
}
return false;
}
// 5000 * 3.07us = 15350us. 15.35ms
// 15000 * 3.07us = 46050us. 46.05ms
static bool WaitSCL_H(void) {
return WaitSCL_H_delay(15000);
}
static bool WaitSCL_L_delay(uint32_t delay) {
while (delay--) {
if (!SCL_read) {
return true;
}
I2C_DELAY_1CLK;
}
return false;
}
// 5000 * 3.07us = 15350us. 15.35ms
static bool WaitSCL_L(void) {
return WaitSCL_L_delay(15000);
}
// Wait max 1800ms or until SCL goes LOW.
// It timeout reading response from card
// Which ever comes first
static bool WaitSCL_L_timeout(void) {
volatile uint32_t delay = 18000;
while (delay--) {
// exit on SCL LOW
if (!SCL_read)
return true;
I2C_DELAY_100us;
}
return (delay == 0);
}
static bool I2C_Start(void) {
I2C_DELAY_XCLK(4);
SDA_H;
I2C_DELAY_1CLK;
SCL_H;
if (!WaitSCL_H()) return false;
I2C_DELAY_2CLK;
if (!SCL_read) return false;
if (!SDA_read) return false;
SDA_L;
I2C_DELAY_2CLK;
return true;
}
static bool I2C_WaitForSim(void) {
// wait for data from card
if (!WaitSCL_L_timeout())
return false;
// 8051 speaks with smart card.
// 1000*50*3.07 = 153.5ms
// 1byte transfer == 1ms with max frame being 256bytes
if (!WaitSCL_H_delay(30 * 1000 * 50))
return false;
return true;
}
// send i2c STOP
static void I2C_Stop(void) {
SCL_L;
I2C_DELAY_2CLK;
SDA_L;
I2C_DELAY_2CLK;
SCL_H;
I2C_DELAY_2CLK;
if (!WaitSCL_H()) return;
SDA_H;
I2C_DELAY_XCLK(8);
}
// Send i2c ACK
static void I2C_Ack(void) {
SCL_L;
I2C_DELAY_2CLK;
SDA_L;
I2C_DELAY_2CLK;
SCL_H;
I2C_DELAY_2CLK;
if (!WaitSCL_H()) return;
SCL_L;
I2C_DELAY_2CLK;
}
// Send i2c NACK
static void I2C_NoAck(void) {
SCL_L;
I2C_DELAY_2CLK;
SDA_H;
I2C_DELAY_2CLK;
SCL_H;
I2C_DELAY_2CLK;
if (!WaitSCL_H()) return;
SCL_L;
I2C_DELAY_2CLK;
}
static bool I2C_WaitAck(void) {
SCL_L;
I2C_DELAY_1CLK;
SDA_H;
I2C_DELAY_1CLK;
SCL_H;
if (!WaitSCL_H())
return false;
I2C_DELAY_2CLK;
I2C_DELAY_2CLK;
if (SDA_read) {
SCL_L;
return false;
}
SCL_L;
return true;
}
static void I2C_SendByte(uint8_t data) {
uint8_t bits = 8;
while (bits--) {
SCL_L;
I2C_DELAY_1CLK;
if (data & 0x80)
SDA_H;
else
SDA_L;
data <<= 1;
I2C_DELAY_1CLK;
SCL_H;
if (!WaitSCL_H())
return;
I2C_DELAY_2CLK;
}
SCL_L;
}
static int16_t I2C_ReadByte(void) {
uint8_t bits = 8, b = 0;
SDA_H;
while (bits--) {
b <<= 1;
SCL_L;
if (!WaitSCL_L()) return -2;
I2C_DELAY_1CLK;
SCL_H;
if (!WaitSCL_H()) return -1;
I2C_DELAY_1CLK;
if (SDA_read)
b |= 0x01;
}
SCL_L;
return b;
}
// Sends one byte ( command to be written, SlaveDevice address)
bool I2C_WriteCmd(uint8_t device_cmd, uint8_t device_address) {
bool bBreak = true;
do {
if (!I2C_Start())
return false;
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
I2C_SendByte(device_cmd);
if (!I2C_WaitAck())
break;
bBreak = false;
} while (false);
I2C_Stop();
if (bBreak) {
if (DBGLEVEL > 3) DbpString(I2C_ERROR);
return false;
}
return true;
}
// Sends 1 byte data (Data to be written, command to be written , SlaveDevice address ).
bool I2C_WriteByte(uint8_t data, uint8_t device_cmd, uint8_t device_address) {
bool bBreak = true;
do {
if (!I2C_Start())
return false;
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
I2C_SendByte(device_cmd);
if (!I2C_WaitAck())
break;
I2C_SendByte(data);
if (!I2C_WaitAck())
break;
bBreak = false;
} while (false);
I2C_Stop();
if (bBreak) {
if (DBGLEVEL > 3) DbpString(I2C_ERROR);
return false;
}
return true;
}
//Sends array of data (Array, length, command to be written , SlaveDevice address ).
// len = uint8 (max buffer to write 256bytes)
bool I2C_BufferWrite(uint8_t *data, uint8_t len, uint8_t device_cmd, uint8_t device_address) {
bool bBreak = true;
do {
if (!I2C_Start())
return false;
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
I2C_SendByte(device_cmd);
if (!I2C_WaitAck())
break;
while (len) {
I2C_SendByte(*data);
if (!I2C_WaitAck())
break;
len--;
data++;
}
if (len == 0)
bBreak = false;
} while (false);
I2C_Stop();
if (bBreak) {
if (DBGLEVEL > 3) DbpString(I2C_ERROR);
return false;
}
return true;
}
// read one array of data (Data array, Readout length, command to be written , SlaveDevice address ).
// len = uint8 (max buffer to read 256bytes)
int16_t I2C_BufferRead(uint8_t *data, uint8_t len, uint8_t device_cmd, uint8_t device_address) {
if (!data || len == 0)
return 0;
// extra wait 500us (514us measured)
// 200us (xx measured)
// WaitUS(600);
I2C_DELAY_600us;
bool bBreak = true;
uint16_t readcount = 0;
do {
if (!I2C_Start())
return 0;
// 0xB0 / 0xC0 == i2c write
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
I2C_SendByte(device_cmd);
if (!I2C_WaitAck())
break;
// 0xB1 / 0xC1 == i2c read
I2C_Start();
I2C_SendByte(device_address | 1);
if (!I2C_WaitAck())
break;
bBreak = false;
} while (false);
if (bBreak) {
I2C_Stop();
if (DBGLEVEL > 3) DbpString(I2C_ERROR);
return 0;
}
while (len) {
int16_t tmp = I2C_ReadByte();
if (tmp < 0)
return tmp;
*data = (uint8_t)tmp & 0xFF;
len--;
// The first byte in response is the message length
if (!readcount && (len > *data)) {
len = *data;
} else {
data++;
}
readcount++;
// acknowledgements. After last byte send NACK.
if (len == 0)
I2C_NoAck();
else
I2C_Ack();
}
I2C_Stop();
// return bytecount - first byte (which is length byte)
return --readcount;
}
int16_t I2C_ReadFW(uint8_t *data, uint8_t len, uint8_t msb, uint8_t lsb, uint8_t device_address) {
//START, 0xB0, 0x00, 0x00, START, 0xB1, xx, yy, zz, ......, STOP
bool bBreak = true;
uint8_t readcount = 0;
// sending
do {
if (!I2C_Start())
return 0;
// 0xB0 / 0xC0 i2c write
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
I2C_SendByte(msb);
if (!I2C_WaitAck())
break;
I2C_SendByte(lsb);
if (!I2C_WaitAck())
break;
// 0xB1 / 0xC1 i2c read
I2C_Start();
I2C_SendByte(device_address | 1);
if (!I2C_WaitAck())
break;
bBreak = false;
} while (false);
if (bBreak) {
I2C_Stop();
if (DBGLEVEL > 3) DbpString(I2C_ERROR);
return 0;
}
// reading
while (len) {
int16_t tmp = I2C_ReadByte();
if (tmp < 0)
return tmp;
*data = (uint8_t)tmp & 0xFF;
data++;
readcount++;
len--;
// acknowledgements. After last byte send NACK.
if (len == 0)
I2C_NoAck();
else
I2C_Ack();
}
I2C_Stop();
return readcount;
}
bool I2C_WriteFW(uint8_t *data, uint8_t len, uint8_t msb, uint8_t lsb, uint8_t device_address) {
//START, 0xB0, 0x00, 0x00, xx, yy, zz, ......, STOP
bool bBreak = true;
do {
if (!I2C_Start())
return false;
// 0xB0 == i2c write
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
I2C_SendByte(msb);
if (!I2C_WaitAck())
break;
I2C_SendByte(lsb);
if (!I2C_WaitAck())
break;
while (len) {
I2C_SendByte(*data);
if (!I2C_WaitAck())
break;
len--;
data++;
}
if (len == 0)
bBreak = false;
} while (false);
I2C_Stop();
if (bBreak) {
if (DBGLEVEL > 3) DbpString(I2C_ERROR);
return false;
}
return true;
}
void I2C_print_status(void) {
DbpString(_CYAN_("Smart card module (ISO 7816)"));
uint8_t maj, min;
if (I2C_get_version(&maj, &min) == PM3_SUCCESS)
Dbprintf(" version................." _YELLOW_("v%x.%02d"), maj, min);
else
DbpString(" version................." _RED_("FAILED"));
}
int I2C_get_version(uint8_t *maj, uint8_t *min) {
uint8_t resp[] = {0, 0, 0, 0};
I2C_Reset_EnterMainProgram();
uint8_t len = I2C_BufferRead(resp, sizeof(resp), I2C_DEVICE_CMD_GETVERSION, I2C_DEVICE_ADDRESS_MAIN);
if (len > 0) {
*maj = resp[0];
*min = resp[1];
return PM3_SUCCESS;
}
return PM3_EDEVNOTSUPP;
}
// Will read response from smart card module, retries 3 times to get the data.
bool sc_rx_bytes(uint8_t *dest, uint8_t *destlen) {
uint8_t i = 3;
int16_t len = 0;
while (i--) {
I2C_WaitForSim();
len = I2C_BufferRead(dest, *destlen, I2C_DEVICE_CMD_READ, I2C_DEVICE_ADDRESS_MAIN);
if (len > 1) {
break;
} else if (len == 1) {
continue;
} else if (len <= 0) {
return false;
}
}
// after three
if (len <= 1)
return false;
*destlen = (uint8_t)len & 0xFF;
return true;
}
bool GetATR(smart_card_atr_t *card_ptr, bool verbose) {
if (!card_ptr)
return false;
card_ptr->atr_len = 0;
memset(card_ptr->atr, 0, sizeof(card_ptr->atr));
// Send ATR
// start [C0 01] stop start C1 len aa bb cc stop]
I2C_WriteCmd(I2C_DEVICE_CMD_GENERATE_ATR, I2C_DEVICE_ADDRESS_MAIN);
//wait for sim card to answer.
// 1byte = 1ms , max frame 256bytes. Should wait 256ms atleast just in case.
if (I2C_WaitForSim() == false)
return false;
// read bytes from module
uint8_t len = sizeof(card_ptr->atr);
if (sc_rx_bytes(card_ptr->atr, &len) == false)
return false;
uint8_t pos_td = 1;
if ((card_ptr->atr[1] & 0x10) == 0x10) pos_td++;
if ((card_ptr->atr[1] & 0x20) == 0x20) pos_td++;
if ((card_ptr->atr[1] & 0x40) == 0x40) pos_td++;
// T0 indicate presence T=0 vs T=1. T=1 has checksum TCK
if ((card_ptr->atr[1] & 0x80) == 0x80) {
pos_td++;
// 1 == T1 , presence of checksum TCK
if ((card_ptr->atr[pos_td] & 0x01) == 0x01) {
uint8_t chksum = 0;
// xor property. will be zero when xored with chksum.
for (uint8_t i = 1; i < len; ++i)
chksum ^= card_ptr->atr[i];
if (chksum) {
if (DBGLEVEL > 2) DbpString("Wrong ATR checksum");
}
}
}
card_ptr->atr_len = len;
if (verbose) {
LogTrace(card_ptr->atr, card_ptr->atr_len, 0, 0, NULL, false);
}
return true;
}
void SmartCardAtr(void) {
smart_card_atr_t card;
LED_D_ON();
set_tracing(true);
I2C_Reset_EnterMainProgram();
bool isOK = GetATR(&card, true);
reply_mix(CMD_ACK, isOK, sizeof(smart_card_atr_t), 0, &card, sizeof(smart_card_atr_t));
set_tracing(false);
LEDsoff();
}
void SmartCardRaw(uint64_t arg0, uint64_t arg1, uint8_t *data) {
LED_D_ON();
uint8_t len = 0;
uint8_t *resp = BigBuf_malloc(ISO7618_MAX_FRAME);
smartcard_command_t flags = arg0;
if ((flags & SC_CLEARLOG) == SC_CLEARLOG)
clear_trace();
if ((flags & SC_LOG) == SC_LOG)
set_tracing(true);
else
set_tracing(false);
if ((flags & SC_CONNECT)) {
I2C_Reset_EnterMainProgram();
if ((flags & SC_SELECT)) {
smart_card_atr_t card;
bool gotATR = GetATR(&card, true);
//reply_old(CMD_ACK, gotATR, sizeof(smart_card_atr_t), 0, &card, sizeof(smart_card_atr_t));
if (!gotATR)
goto OUT;
}
}
if ((flags & SC_RAW) || (flags & SC_RAW_T0)) {
LogTrace(data, arg1, 0, 0, NULL, true);
// Send raw bytes
// asBytes = A0 A4 00 00 02
// arg1 = len 5
bool res = I2C_BufferWrite(data, arg1, ((flags & SC_RAW_T0) ? I2C_DEVICE_CMD_SEND_T0 : I2C_DEVICE_CMD_SEND), I2C_DEVICE_ADDRESS_MAIN);
if (!res && DBGLEVEL > 3) DbpString(I2C_ERROR);
// read bytes from module
len = ISO7618_MAX_FRAME;
res = sc_rx_bytes(resp, &len);
if (res) {
LogTrace(resp, len, 0, 0, NULL, false);
} else {
len = 0;
}
}
OUT:
reply_mix(CMD_ACK, len, 0, 0, resp, len);
BigBuf_free();
set_tracing(false);
LEDsoff();
}
void SmartCardUpgrade(uint64_t arg0) {
LED_C_ON();
#define I2C_BLOCK_SIZE 128
// write. Sector0, with 11,22,33,44
// erase is 128bytes, and takes 50ms to execute
I2C_Reset_EnterBootloader();
bool isOK = true;
uint16_t length = arg0, pos = 0;
uint8_t *fwdata = BigBuf_get_addr();
uint8_t *verfiydata = BigBuf_malloc(I2C_BLOCK_SIZE);
while (length) {
uint8_t msb = (pos >> 8) & 0xFF;
uint8_t lsb = pos & 0xFF;
Dbprintf("FW %02X%02X", msb, lsb);
size_t size = MIN(I2C_BLOCK_SIZE, length);
// write
int16_t res = I2C_WriteFW(fwdata + pos, size, msb, lsb, I2C_DEVICE_ADDRESS_BOOT);
if (!res) {
DbpString("Writing failed");
isOK = false;
break;
}
// writing takes time.
// WaitMS(50);
I2C_DELAY_100ms;
// read
res = I2C_ReadFW(verfiydata, size, msb, lsb, I2C_DEVICE_ADDRESS_BOOT);
if (res <= 0) {
DbpString("Reading back failed");
isOK = false;
break;
}
// cmp
if (0 != memcmp(fwdata + pos, verfiydata, size)) {
DbpString("not equal data");
isOK = false;
break;
}
length -= size;
pos += size;
}
reply_mix(CMD_ACK, isOK, pos, 0, 0, 0);
LED_C_OFF();
BigBuf_free();
}
void SmartCardSetBaud(uint64_t arg0) {
}
void SmartCardSetClock(uint64_t arg0) {
LED_D_ON();
set_tracing(true);
I2C_Reset_EnterMainProgram();
// Send SIM CLC
// start [C0 05 xx] stop
I2C_WriteByte(arg0, I2C_DEVICE_CMD_SIM_CLC, I2C_DEVICE_ADDRESS_MAIN);
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
set_tracing(false);
LEDsoff();
}