RRG-Proxmark3/armsrc/spiffs_nucleus.h
2022-01-06 02:20:38 +01:00

860 lines
26 KiB
C

//-----------------------------------------------------------------------------
// Borrowed initially from https://github.com/pellepl/spiffs
// Copyright (c) 2013-2017 Peter Andersson (pelleplutt1976 at gmail.com)
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
/* SPIFFS layout
*
* spiffs is designed for following spi flash characteristics:
* - only big areas of data (blocks) can be erased
* - erasing resets all bits in a block to ones
* - writing pulls ones to zeroes
* - zeroes cannot be pulled to ones, without erase
* - wear leveling
*
* spiffs is also meant to be run on embedded, memory constraint devices.
*
* Entire area is divided in blocks. Entire area is also divided in pages.
* Each block contains same number of pages. A page cannot be erased, but a
* block can be erased.
*
* Entire area must be block_size * x
* page_size must be block_size / (2^y) where y > 2
*
* ex: area = 1024*1024 bytes, block size = 65536 bytes, page size = 256 bytes
*
* BLOCK 0 PAGE 0 object lookup 1
* PAGE 1 object lookup 2
* ...
* PAGE n-1 object lookup n
* PAGE n object data 1
* PAGE n+1 object data 2
* ...
* PAGE n+m-1 object data m
*
* BLOCK 1 PAGE n+m object lookup 1
* PAGE n+m+1 object lookup 2
* ...
* PAGE 2n+m-1 object lookup n
* PAGE 2n+m object data 1
* PAGE 2n+m object data 2
* ...
* PAGE 2n+2m-1 object data m
* ...
*
* n is number of object lookup pages, which is number of pages needed to index all pages
* in a block by object id
* : block_size / page_size * sizeof(obj_id) / page_size
* m is number data pages, which is number of pages in block minus number of lookup pages
* : block_size / page_size - block_size / page_size * sizeof(obj_id) / page_size
* thus, n+m is total number of pages in a block
* : block_size / page_size
*
* ex: n = 65536/256*2/256 = 2, m = 65536/256 - 2 = 254 => n+m = 65536/256 = 256
*
* Object lookup pages contain object id entries. Each entry represent the corresponding
* data page.
* Assuming a 16 bit object id, an object id being 0xffff represents a free page.
* An object id being 0x0000 represents a deleted page.
*
* ex: page 0 : lookup : 0008 0001 0aaa ffff ffff ffff ffff ffff ..
* page 1 : lookup : ffff ffff ffff ffff ffff ffff ffff ffff ..
* page 2 : data : data for object id 0008
* page 3 : data : data for object id 0001
* page 4 : data : data for object id 0aaa
* ...
*
*
* Object data pages can be either object index pages or object content.
* All object data pages contains a data page header, containing object id and span index.
* The span index denotes the object page ordering amongst data pages with same object id.
* This applies to both object index pages (when index spans more than one page of entries),
* and object data pages.
* An object index page contains page entries pointing to object content page. The entry index
* in a object index page correlates to the span index in the actual object data page.
* The first object index page (span index 0) is called object index header page, and also
* contains object flags (directory/file), size, object name etc.
*
* ex:
* BLOCK 1
* PAGE 256: objectl lookup page 1
* [*123] [ 123] [ 123] [ 123]
* [ 123] [*123] [ 123] [ 123]
* [free] [free] [free] [free] ...
* PAGE 257: objectl lookup page 2
* [free] [free] [free] [free] ...
* PAGE 258: object index page (header)
* obj.id:0123 span.ix:0000 flags:INDEX
* size:1600 name:ex.txt type:file
* [259] [260] [261] [262]
* PAGE 259: object data page
* obj.id:0123 span.ix:0000 flags:DATA
* PAGE 260: object data page
* obj.id:0123 span.ix:0001 flags:DATA
* PAGE 261: object data page
* obj.id:0123 span.ix:0002 flags:DATA
* PAGE 262: object data page
* obj.id:0123 span.ix:0003 flags:DATA
* PAGE 263: object index page
* obj.id:0123 span.ix:0001 flags:INDEX
* [264] [265] [fre] [fre]
* [fre] [fre] [fre] [fre]
* PAGE 264: object data page
* obj.id:0123 span.ix:0004 flags:DATA
* PAGE 265: object data page
* obj.id:0123 span.ix:0005 flags:DATA
*
*/
#ifndef SPIFFS_NUCLEUS_H_
#define SPIFFS_NUCLEUS_H_
#include "common.h"
#include "string.h"
#include "spiffs.h"
#define _SPIFFS_ERR_CHECK_FIRST (SPIFFS_ERR_INTERNAL - 1)
#define SPIFFS_ERR_CHECK_OBJ_ID_MISM (SPIFFS_ERR_INTERNAL - 1)
#define SPIFFS_ERR_CHECK_SPIX_MISM (SPIFFS_ERR_INTERNAL - 2)
#define SPIFFS_ERR_CHECK_FLAGS_BAD (SPIFFS_ERR_INTERNAL - 3)
#define _SPIFFS_ERR_CHECK_LAST (SPIFFS_ERR_INTERNAL - 4)
// visitor result, continue searching
#define SPIFFS_VIS_COUNTINUE (SPIFFS_ERR_INTERNAL - 20)
// visitor result, continue searching after reloading lu buffer
#define SPIFFS_VIS_COUNTINUE_RELOAD (SPIFFS_ERR_INTERNAL - 21)
// visitor result, stop searching
#define SPIFFS_VIS_END (SPIFFS_ERR_INTERNAL - 22)
// updating an object index contents
#define SPIFFS_EV_IX_UPD (0)
// creating a new object index
#define SPIFFS_EV_IX_NEW (1)
// deleting an object index
#define SPIFFS_EV_IX_DEL (2)
// moving an object index without updating contents
#define SPIFFS_EV_IX_MOV (3)
// updating an object index header data only, not the table itself
#define SPIFFS_EV_IX_UPD_HDR (4)
#define SPIFFS_OBJ_ID_IX_FLAG ((spiffs_obj_id)(1<<(8*sizeof(spiffs_obj_id)-1)))
#define SPIFFS_UNDEFINED_LEN (u32_t)(-1)
#define SPIFFS_OBJ_ID_DELETED ((spiffs_obj_id)0)
#define SPIFFS_OBJ_ID_FREE ((spiffs_obj_id)-1)
#if defined(__GNUC__) || defined(__clang__) || defined(__TI_COMPILER_VERSION__)
/* For GCC, clang and TI compilers */
#define SPIFFS_PACKED __attribute__((packed))
#elif defined(__ICCARM__) || defined(__CC_ARM)
/* For IAR ARM and Keil MDK-ARM compilers */
#define SPIFFS_PACKED
#else
/* Unknown compiler */
#define SPIFFS_PACKED
#endif
#if SPIFFS_USE_MAGIC
#if !SPIFFS_USE_MAGIC_LENGTH
#define SPIFFS_MAGIC(fs, bix) \
((spiffs_obj_id)(0x20140529 ^ SPIFFS_CFG_LOG_PAGE_SZ(fs)))
#else // SPIFFS_USE_MAGIC_LENGTH
#define SPIFFS_MAGIC(fs, bix) \
((spiffs_obj_id)(0x20140529 ^ SPIFFS_CFG_LOG_PAGE_SZ(fs) ^ ((fs)->block_count - (bix))))
#endif // SPIFFS_USE_MAGIC_LENGTH
#endif // SPIFFS_USE_MAGIC
#define SPIFFS_CONFIG_MAGIC (0x20090315)
#if SPIFFS_SINGLETON == 0
#define SPIFFS_CFG_LOG_PAGE_SZ(fs) \
((fs)->cfg.log_page_size)
#define SPIFFS_CFG_LOG_BLOCK_SZ(fs) \
((fs)->cfg.log_block_size)
#define SPIFFS_CFG_PHYS_SZ(fs) \
((fs)->cfg.phys_size)
#define SPIFFS_CFG_PHYS_ERASE_SZ(fs) \
((fs)->cfg.phys_erase_block)
#define SPIFFS_CFG_PHYS_ADDR(fs) \
((fs)->cfg.phys_addr)
#endif
// total number of pages
#define SPIFFS_MAX_PAGES(fs) \
( SPIFFS_CFG_PHYS_SZ(fs)/SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// total number of pages per block, including object lookup pages
#define SPIFFS_PAGES_PER_BLOCK(fs) \
( SPIFFS_CFG_LOG_BLOCK_SZ(fs)/SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// number of object lookup pages per block
#define SPIFFS_OBJ_LOOKUP_PAGES(fs) \
(MAX(1, (SPIFFS_PAGES_PER_BLOCK(fs) * sizeof(spiffs_obj_id)) / SPIFFS_CFG_LOG_PAGE_SZ(fs)) )
// checks if page index belongs to object lookup
#define SPIFFS_IS_LOOKUP_PAGE(fs,pix) \
(((pix) % SPIFFS_PAGES_PER_BLOCK(fs)) < SPIFFS_OBJ_LOOKUP_PAGES(fs))
// number of object lookup entries in all object lookup pages
#define SPIFFS_OBJ_LOOKUP_MAX_ENTRIES(fs) \
(SPIFFS_PAGES_PER_BLOCK(fs)-SPIFFS_OBJ_LOOKUP_PAGES(fs))
// converts a block to physical address
#define SPIFFS_BLOCK_TO_PADDR(fs, block) \
( SPIFFS_CFG_PHYS_ADDR(fs) + (block)* SPIFFS_CFG_LOG_BLOCK_SZ(fs) )
// converts a object lookup entry to page index
#define SPIFFS_OBJ_LOOKUP_ENTRY_TO_PIX(fs, block, entry) \
((block)*SPIFFS_PAGES_PER_BLOCK(fs) + (SPIFFS_OBJ_LOOKUP_PAGES(fs) + entry))
// converts a object lookup entry to physical address of corresponding page
#define SPIFFS_OBJ_LOOKUP_ENTRY_TO_PADDR(fs, block, entry) \
(SPIFFS_BLOCK_TO_PADDR(fs, block) + (SPIFFS_OBJ_LOOKUP_PAGES(fs) + entry) * SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// converts a page to physical address
#define SPIFFS_PAGE_TO_PADDR(fs, page) \
( SPIFFS_CFG_PHYS_ADDR(fs) + (page) * SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// converts a physical address to page
#define SPIFFS_PADDR_TO_PAGE(fs, addr) \
( ((addr) - SPIFFS_CFG_PHYS_ADDR(fs)) / SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// gives index in page for a physical address
#define SPIFFS_PADDR_TO_PAGE_OFFSET(fs, addr) \
( ((addr) - SPIFFS_CFG_PHYS_ADDR(fs)) % SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// returns containing block for given page
#define SPIFFS_BLOCK_FOR_PAGE(fs, page) \
( (page) / SPIFFS_PAGES_PER_BLOCK(fs) )
// returns starting page for block
#define SPIFFS_PAGE_FOR_BLOCK(fs, block) \
( (block) * SPIFFS_PAGES_PER_BLOCK(fs) )
// converts page to entry in object lookup page
#define SPIFFS_OBJ_LOOKUP_ENTRY_FOR_PAGE(fs, page) \
( (page) % SPIFFS_PAGES_PER_BLOCK(fs) - SPIFFS_OBJ_LOOKUP_PAGES(fs) )
// returns data size in a data page
#define SPIFFS_DATA_PAGE_SIZE(fs) \
( SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_page_header) )
// returns physical address for block's erase count,
// always in the physical last entry of the last object lookup page
#define SPIFFS_ERASE_COUNT_PADDR(fs, bix) \
( SPIFFS_BLOCK_TO_PADDR(fs, bix) + SPIFFS_OBJ_LOOKUP_PAGES(fs) * SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_obj_id) )
// returns physical address for block's magic,
// always in the physical second last entry of the last object lookup page
#define SPIFFS_MAGIC_PADDR(fs, bix) \
( SPIFFS_BLOCK_TO_PADDR(fs, bix) + SPIFFS_OBJ_LOOKUP_PAGES(fs) * SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_obj_id)*2 )
// checks if there is any room for magic in the object luts
#define SPIFFS_CHECK_MAGIC_POSSIBLE(fs) \
( (SPIFFS_OBJ_LOOKUP_MAX_ENTRIES(fs) % (SPIFFS_CFG_LOG_PAGE_SZ(fs)/sizeof(spiffs_obj_id))) * sizeof(spiffs_obj_id) \
<= (SPIFFS_CFG_LOG_PAGE_SZ(fs)-sizeof(spiffs_obj_id)*2) )
// define helpers object
// entries in an object header page index
#define SPIFFS_OBJ_HDR_IX_LEN(fs) \
((SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_page_object_ix_header))/sizeof(spiffs_page_ix))
// entries in an object page index
#define SPIFFS_OBJ_IX_LEN(fs) \
((SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_page_object_ix))/sizeof(spiffs_page_ix))
// object index entry for given data span index
#define SPIFFS_OBJ_IX_ENTRY(fs, spix) \
((spix) < SPIFFS_OBJ_HDR_IX_LEN(fs) ? (spix) : (((spix)-SPIFFS_OBJ_HDR_IX_LEN(fs))%SPIFFS_OBJ_IX_LEN(fs)))
// object index span index number for given data span index or entry
#define SPIFFS_OBJ_IX_ENTRY_SPAN_IX(fs, spix) \
((spix) < SPIFFS_OBJ_HDR_IX_LEN(fs) ? 0 : (1+((spix)-SPIFFS_OBJ_HDR_IX_LEN(fs))/SPIFFS_OBJ_IX_LEN(fs)))
// get data span index for object index span index
#define SPIFFS_DATA_SPAN_IX_FOR_OBJ_IX_SPAN_IX(fs, spix) \
( (spix) == 0 ? 0 : (SPIFFS_OBJ_HDR_IX_LEN(fs) + (((spix)-1) * SPIFFS_OBJ_IX_LEN(fs))) )
#if SPIFFS_FILEHDL_OFFSET
#define SPIFFS_FH_OFFS(fs, fh) ((fh) != 0 ? ((fh) + (fs)->cfg.fh_ix_offset) : 0)
#define SPIFFS_FH_UNOFFS(fs, fh) ((fh) != 0 ? ((fh) - (fs)->cfg.fh_ix_offset) : 0)
#else
#define SPIFFS_FH_OFFS(fs, fh) (fh)
#define SPIFFS_FH_UNOFFS(fs, fh) (fh)
#endif
#define SPIFFS_OP_T_OBJ_LU (0<<0)
#define SPIFFS_OP_T_OBJ_LU2 (1<<0)
#define SPIFFS_OP_T_OBJ_IX (2<<0)
#define SPIFFS_OP_T_OBJ_DA (3<<0)
#define SPIFFS_OP_C_DELE (0<<2)
#define SPIFFS_OP_C_UPDT (1<<2)
#define SPIFFS_OP_C_MOVS (2<<2)
#define SPIFFS_OP_C_MOVD (3<<2)
#define SPIFFS_OP_C_FLSH (4<<2)
#define SPIFFS_OP_C_READ (5<<2)
#define SPIFFS_OP_C_WRTHRU (6<<2)
#define SPIFFS_OP_TYPE_MASK (3<<0)
#define SPIFFS_OP_COM_MASK (7<<2)
// if 0, this page is written to, else clean
#define SPIFFS_PH_FLAG_USED (1<<0)
// if 0, writing is finalized, else under modification
#define SPIFFS_PH_FLAG_FINAL (1<<1)
// if 0, this is an index page, else a data page
#define SPIFFS_PH_FLAG_INDEX (1<<2)
// if 0, page is deleted, else valid
#define SPIFFS_PH_FLAG_DELET (1<<7)
// if 0, this index header is being deleted
#define SPIFFS_PH_FLAG_IXDELE (1<<6)
#define SPIFFS_CHECK_MOUNT(fs) \
((fs)->mounted != 0)
#define SPIFFS_CHECK_CFG(fs) \
((fs)->config_magic == SPIFFS_CONFIG_MAGIC)
#define SPIFFS_CHECK_RES(res) \
do { \
if ((res) < SPIFFS_OK) return (res); \
} while (0);
#define SPIFFS_API_CHECK_MOUNT(fs) \
if (!SPIFFS_CHECK_MOUNT((fs))) { \
(fs)->err_code = SPIFFS_ERR_NOT_MOUNTED; \
return SPIFFS_ERR_NOT_MOUNTED; \
}
#define SPIFFS_API_CHECK_CFG(fs) \
if (!SPIFFS_CHECK_CFG((fs))) { \
(fs)->err_code = SPIFFS_ERR_NOT_CONFIGURED; \
return SPIFFS_ERR_NOT_CONFIGURED; \
}
#define SPIFFS_API_CHECK_RES(fs, res) \
if ((res) < SPIFFS_OK) { \
(fs)->err_code = (res); \
return (res); \
}
#define SPIFFS_API_CHECK_RES_UNLOCK(fs, res) \
if ((res) < SPIFFS_OK) { \
(fs)->err_code = (res); \
SPIFFS_UNLOCK(fs); \
return (res); \
}
#define SPIFFS_VALIDATE_OBJIX(ph, objid, spix) \
if (((ph).flags & SPIFFS_PH_FLAG_USED) != 0) return SPIFFS_ERR_IS_FREE; \
if (((ph).flags & SPIFFS_PH_FLAG_DELET) == 0) return SPIFFS_ERR_DELETED; \
if (((ph).flags & SPIFFS_PH_FLAG_FINAL) != 0) return SPIFFS_ERR_NOT_FINALIZED; \
if (((ph).flags & SPIFFS_PH_FLAG_INDEX) != 0) return SPIFFS_ERR_NOT_INDEX; \
if (((objid) & SPIFFS_OBJ_ID_IX_FLAG) == 0) return SPIFFS_ERR_NOT_INDEX; \
if ((ph).span_ix != (spix)) return SPIFFS_ERR_INDEX_SPAN_MISMATCH;
//if ((spix) == 0 && ((ph).flags & SPIFFS_PH_FLAG_IXDELE) == 0) return SPIFFS_ERR_DELETED;
#define SPIFFS_VALIDATE_DATA(ph, objid, spix) \
if (((ph).flags & SPIFFS_PH_FLAG_USED) != 0) return SPIFFS_ERR_IS_FREE; \
if (((ph).flags & SPIFFS_PH_FLAG_DELET) == 0) return SPIFFS_ERR_DELETED; \
if (((ph).flags & SPIFFS_PH_FLAG_FINAL) != 0) return SPIFFS_ERR_NOT_FINALIZED; \
if (((ph).flags & SPIFFS_PH_FLAG_INDEX) == 0) return SPIFFS_ERR_IS_INDEX; \
if ((objid) & SPIFFS_OBJ_ID_IX_FLAG) return SPIFFS_ERR_IS_INDEX; \
if ((ph).span_ix != (spix)) return SPIFFS_ERR_DATA_SPAN_MISMATCH;
// check id, only visit matching objec ids
#define SPIFFS_VIS_CHECK_ID (1<<0)
// report argument object id to visitor - else object lookup id is reported
#define SPIFFS_VIS_CHECK_PH (1<<1)
// stop searching at end of all look up pages
#define SPIFFS_VIS_NO_WRAP (1<<2)
#if SPIFFS_HAL_CALLBACK_EXTRA
#define SPIFFS_HAL_WRITE(_fs, _paddr, _len, _src) \
(_fs)->cfg.hal_write_f((_fs), (_paddr), (_len), (_src))
#define SPIFFS_HAL_READ(_fs, _paddr, _len, _dst) \
(_fs)->cfg.hal_read_f((_fs), (_paddr), (_len), (_dst))
#define SPIFFS_HAL_ERASE(_fs, _paddr, _len) \
(_fs)->cfg.hal_erase_f((_fs), (_paddr), (_len))
#else // SPIFFS_HAL_CALLBACK_EXTRA
#define SPIFFS_HAL_WRITE(_fs, _paddr, _len, _src) \
(_fs)->cfg.hal_write_f((_paddr), (_len), (_src))
#define SPIFFS_HAL_READ(_fs, _paddr, _len, _dst) \
(_fs)->cfg.hal_read_f((_paddr), (_len), (_dst))
#define SPIFFS_HAL_ERASE(_fs, _paddr, _len) \
(_fs)->cfg.hal_erase_f((_paddr), (_len))
#endif // SPIFFS_HAL_CALLBACK_EXTRA
#if SPIFFS_CACHE
#define SPIFFS_CACHE_FLAG_DIRTY (1<<0)
#define SPIFFS_CACHE_FLAG_WRTHRU (1<<1)
#define SPIFFS_CACHE_FLAG_OBJLU (1<<2)
#define SPIFFS_CACHE_FLAG_OBJIX (1<<3)
#define SPIFFS_CACHE_FLAG_DATA (1<<4)
#define SPIFFS_CACHE_FLAG_TYPE_WR (1<<7)
#define SPIFFS_CACHE_PAGE_SIZE(fs) \
(sizeof(spiffs_cache_page) + SPIFFS_CFG_LOG_PAGE_SZ(fs))
#define spiffs_get_cache(fs) \
((spiffs_cache *)((fs)->cache))
#define spiffs_get_cache_page_hdr(fs, c, ix) \
((spiffs_cache_page *)(&((c)->cpages[(ix) * SPIFFS_CACHE_PAGE_SIZE(fs)])))
#define spiffs_get_cache_page(fs, c, ix) \
((u8_t *)(&((c)->cpages[(ix) * SPIFFS_CACHE_PAGE_SIZE(fs)])) + sizeof(spiffs_cache_page))
// cache page struct
typedef struct {
// cache flags
u8_t flags;
// cache page index
u8_t ix;
// last access of this cache page
u32_t last_access;
union {
// type read cache
struct spix {
// read cache page index
spiffs_page_ix pix;
} spix;
#if SPIFFS_CACHE_WR
// type write cache
struct swrc {
// write cache
spiffs_obj_id obj_id;
// offset in cache page
u32_t offset;
// size of cache page
u16_t size;
} swrc;
#endif
} ucache;
} spiffs_cache_page;
// cache struct
typedef struct {
u8_t cpage_count;
u32_t last_access;
u32_t cpage_use_map;
u32_t cpage_use_mask;
u8_t *cpages;
} spiffs_cache;
#endif
// spiffs nucleus file descriptor
typedef struct {
// the filesystem of this descriptor
spiffs *fs;
// number of file descriptor - if 0, the file descriptor is closed
spiffs_file file_nbr;
// object id - if SPIFFS_OBJ_ID_ERASED, the file was deleted
spiffs_obj_id obj_id;
// size of the file
u32_t size;
// cached object index header page index
spiffs_page_ix objix_hdr_pix;
// cached offset object index page index
spiffs_page_ix cursor_objix_pix;
// cached offset object index span index
spiffs_span_ix cursor_objix_spix;
// current absolute offset
u32_t offset;
// current file descriptor offset (cached)
u32_t fdoffset;
// fd flags
spiffs_flags flags;
#if SPIFFS_CACHE_WR
spiffs_cache_page *cache_page;
#endif
#if SPIFFS_TEMPORAL_FD_CACHE
// djb2 hash of filename
u32_t name_hash;
// hit score (score == 0 indicates never used fd)
u16_t score;
#endif
#if SPIFFS_IX_MAP
// spiffs index map, if 0 it means unmapped
spiffs_ix_map *ix_map;
#endif
} spiffs_fd;
// object structs
// page header, part of each page except object lookup pages
// NB: this is always aligned when the data page is an object index,
// as in this case struct spiffs_page_object_ix is used
typedef struct SPIFFS_PACKED {
// object id
spiffs_obj_id obj_id;
// object span index
spiffs_span_ix span_ix;
// flags
u8_t flags;
} spiffs_page_header;
// object index header page header
typedef struct SPIFFS_PACKED
#if SPIFFS_ALIGNED_OBJECT_INDEX_TABLES
__attribute((aligned(sizeof(spiffs_page_ix))))
#endif
{
// common page header
spiffs_page_header p_hdr;
// alignment
u8_t _align[4 - ((sizeof(spiffs_page_header) & 3) == 0 ? 4 : (sizeof(spiffs_page_header) & 3))];
// size of object
u32_t size;
// type of object
spiffs_obj_type type;
// name of object
u8_t name[SPIFFS_OBJ_NAME_LEN];
#if SPIFFS_OBJ_META_LEN
// metadata. not interpreted by SPIFFS in any way.
u8_t meta[SPIFFS_OBJ_META_LEN];
#endif
}
spiffs_page_object_ix_header;
// object index page header
typedef struct SPIFFS_PACKED {
spiffs_page_header p_hdr;
u8_t _align[4 - ((sizeof(spiffs_page_header) & 3) == 0 ? 4 : (sizeof(spiffs_page_header) & 3))];
} spiffs_page_object_ix;
// callback func for object lookup visitor
typedef s32_t (*spiffs_visitor_f)(spiffs *fs, spiffs_obj_id id, spiffs_block_ix bix, int ix_entry,
const void *user_const_p, void *user_var_p);
#if SPIFFS_CACHE
#define _spiffs_rd(fs, op, fh, addr, len, dst) \
spiffs_phys_rd((fs), (op), (fh), (addr), (len), (dst))
#define _spiffs_wr(fs, op, fh, addr, len, src) \
spiffs_phys_wr((fs), (op), (fh), (addr), (len), (src))
#else
#define _spiffs_rd(fs, op, fh, addr, len, dst) \
spiffs_phys_rd((fs), (addr), (len), (dst))
#define _spiffs_wr(fs, op, fh, addr, len, src) \
spiffs_phys_wr((fs), (addr), (len), (src))
#endif
#ifndef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif
#ifndef MAX
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#endif
// ---------------
s32_t spiffs_phys_rd(
spiffs *fs,
#if SPIFFS_CACHE
u8_t op,
spiffs_file fh,
#endif
u32_t addr,
u32_t len,
u8_t *dst);
s32_t spiffs_phys_wr(
spiffs *fs,
#if SPIFFS_CACHE
u8_t op,
spiffs_file fh,
#endif
u32_t addr,
u32_t len,
u8_t *src);
s32_t spiffs_phys_cpy(
spiffs *fs,
spiffs_file fh,
u32_t dst,
u32_t src,
u32_t len);
s32_t spiffs_phys_count_free_blocks(
spiffs *fs);
s32_t spiffs_obj_lu_find_entry_visitor(
spiffs *fs,
spiffs_block_ix starting_block,
int starting_lu_entry,
u8_t flags,
spiffs_obj_id obj_id,
spiffs_visitor_f v,
const void *user_const_p,
void *user_var_p,
spiffs_block_ix *block_ix,
int *lu_entry);
s32_t spiffs_erase_block(
spiffs *fs,
spiffs_block_ix bix);
#if SPIFFS_USE_MAGIC && SPIFFS_USE_MAGIC_LENGTH
s32_t spiffs_probe(
spiffs_config *cfg);
#endif // SPIFFS_USE_MAGIC && SPIFFS_USE_MAGIC_LENGTH
// ---------------
s32_t spiffs_obj_lu_scan(
spiffs *fs);
s32_t spiffs_obj_lu_find_free_obj_id(
spiffs *fs,
spiffs_obj_id *obj_id,
const u8_t *conflicting_name);
s32_t spiffs_obj_lu_find_free(
spiffs *fs,
spiffs_block_ix starting_block,
int starting_lu_entry,
spiffs_block_ix *block_ix,
int *lu_entry);
s32_t spiffs_obj_lu_find_id(
spiffs *fs,
spiffs_block_ix starting_block,
int starting_lu_entry,
spiffs_obj_id obj_id,
spiffs_block_ix *block_ix,
int *lu_entry);
s32_t spiffs_obj_lu_find_id_and_span(
spiffs *fs,
spiffs_obj_id obj_id,
spiffs_span_ix spix,
spiffs_page_ix exclusion_pix,
spiffs_page_ix *pix);
s32_t spiffs_obj_lu_find_id_and_span_by_phdr(
spiffs *fs,
spiffs_obj_id obj_id,
spiffs_span_ix spix,
spiffs_page_ix exclusion_pix,
spiffs_page_ix *pix);
// ---------------
s32_t spiffs_page_allocate_data(
spiffs *fs,
spiffs_obj_id obj_id,
spiffs_page_header *ph,
u8_t *data,
u32_t len,
u32_t page_offs,
u8_t finalize,
spiffs_page_ix *pix);
s32_t spiffs_page_move(
spiffs *fs,
spiffs_file fh,
u8_t *page_data,
spiffs_obj_id obj_id,
spiffs_page_header *page_hdr,
spiffs_page_ix src_pix,
spiffs_page_ix *dst_pix);
s32_t spiffs_page_delete(
spiffs *fs,
spiffs_page_ix pix);
// ---------------
s32_t spiffs_object_create(
spiffs *fs,
spiffs_obj_id obj_id,
const u8_t name[],
const u8_t meta[],
spiffs_obj_type type,
spiffs_page_ix *objix_hdr_pix);
s32_t spiffs_object_update_index_hdr(
spiffs *fs,
spiffs_fd *fd,
spiffs_obj_id obj_id,
spiffs_page_ix objix_hdr_pix,
u8_t *new_objix_hdr_data,
const u8_t name[],
const u8_t meta[],
u32_t size,
spiffs_page_ix *new_pix);
#if SPIFFS_IX_MAP
s32_t spiffs_populate_ix_map(
spiffs *fs,
spiffs_fd *fd,
u32_t vec_entry_start,
u32_t vec_entry_end);
#endif
void spiffs_cb_object_event(
spiffs *fs,
spiffs_page_object_ix *objix,
int ev,
spiffs_obj_id obj_id_raw,
spiffs_span_ix spix,
spiffs_page_ix new_pix,
u32_t new_size);
s32_t spiffs_object_open_by_id(
spiffs *fs,
spiffs_obj_id obj_id,
spiffs_fd *fd,
spiffs_flags flags,
spiffs_mode mode);
s32_t spiffs_object_open_by_page(
spiffs *fs,
spiffs_page_ix pix,
spiffs_fd *fd,
spiffs_flags flags,
spiffs_mode mode);
s32_t spiffs_object_append(
spiffs_fd *fd,
u32_t offset,
u8_t *data,
u32_t len);
s32_t spiffs_object_modify(
spiffs_fd *fd,
u32_t offset,
u8_t *data,
u32_t len);
s32_t spiffs_object_read(
spiffs_fd *fd,
u32_t offset,
u32_t len,
u8_t *dst);
s32_t spiffs_object_truncate(
spiffs_fd *fd,
u32_t new_size,
u8_t remove_full);
s32_t spiffs_object_find_object_index_header_by_name(
spiffs *fs,
const u8_t name[SPIFFS_OBJ_NAME_LEN],
spiffs_page_ix *pix);
// ---------------
s32_t spiffs_gc_check(
spiffs *fs,
u32_t len);
s32_t spiffs_gc_erase_page_stats(
spiffs *fs,
spiffs_block_ix bix);
s32_t spiffs_gc_find_candidate(
spiffs *fs,
spiffs_block_ix **block_candidates,
int *candidate_count,
char fs_crammed);
s32_t spiffs_gc_clean(
spiffs *fs,
spiffs_block_ix bix);
s32_t spiffs_gc_quick(
spiffs *fs, u16_t max_free_pages);
// ---------------
s32_t spiffs_fd_find_new(
spiffs *fs,
spiffs_fd **fd,
const char *name);
s32_t spiffs_fd_return(
spiffs *fs,
spiffs_file f);
s32_t spiffs_fd_get(
spiffs *fs,
spiffs_file f,
spiffs_fd **fd);
#if SPIFFS_TEMPORAL_FD_CACHE
void spiffs_fd_temporal_cache_rehash(
spiffs *fs,
const char *old_path,
const char *new_path);
#endif
#if SPIFFS_CACHE
void spiffs_cache_init(
spiffs *fs);
void spiffs_cache_drop_page(
spiffs *fs,
spiffs_page_ix pix);
#if SPIFFS_CACHE_WR
spiffs_cache_page *spiffs_cache_page_allocate_by_fd(
spiffs *fs,
spiffs_fd *fd);
void spiffs_cache_fd_release(
spiffs *fs,
spiffs_cache_page *cp);
spiffs_cache_page *spiffs_cache_page_get_by_fd(
spiffs *fs,
spiffs_fd *fd);
#endif
#endif
s32_t spiffs_lookup_consistency_check(
spiffs *fs,
u8_t check_all_objects);
s32_t spiffs_page_consistency_check(
spiffs *fs);
s32_t spiffs_object_index_consistency_check(
spiffs *fs);
// memcpy macro,
// checked in test builds, otherwise plain memcpy (unless already defined)
#ifdef _SPIFFS_TEST
#define _SPIFFS_MEMCPY(__d, __s, __l) do { \
intptr_t __a1 = (intptr_t)((u8_t*)(__s)); \
intptr_t __a2 = (intptr_t)((u8_t*)(__s)+(__l)); \
intptr_t __b1 = (intptr_t)((u8_t*)(__d)); \
intptr_t __b2 = (intptr_t)((u8_t*)(__d)+(__l)); \
if (__a1 <= __b2 && __b1 <= __a2) { \
printf("FATAL OVERLAP: memcpy from %lx..%lx to %lx..%lx\n", __a1, __a2, __b1, __b2); \
ERREXIT(); \
} \
memcpy((__d),(__s),(__l)); \
} while (0)
#else
#ifndef _SPIFFS_MEMCPY
#define _SPIFFS_MEMCPY(__d, __s, __l) do{memcpy((__d),(__s),(__l));}while(0)
#endif
#endif //_SPIFFS_TEST
#endif /* SPIFFS_NUCLEUS_H_ */