RRG-Proxmark3/armsrc/mifaresim.c

1425 lines
67 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Gerhard de Koning Gans - May 2008
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// Mifare Classic Card Simulation
//-----------------------------------------------------------------------------
// Verbose Mode:
// DBG_NONE 0
// DBG_ERROR 1
// DBG_INFO 2
// DBG_DEBUG 3
// DBG_EXTENDED 4
// /!\ Printing Debug message is disrupting emulation,
// Only use with caution during debugging
#include "mifaresim.h"
#include <inttypes.h>
#include "iso14443a.h"
#include "BigBuf.h"
#include "string.h"
#include "mifareutil.h"
#include "fpgaloader.h"
#include "proxmark3_arm.h"
#include "cmd.h"
#include "protocols.h"
#include "appmain.h"
#include "util.h"
#include "commonutil.h"
#include "crc16.h"
#include "dbprint.h"
#include "ticks.h"
#include "parity.h"
static bool IsKeyBReadable(uint8_t blockNo) {
uint8_t sector_trailer[16];
emlGetMem(sector_trailer, SectorTrailer(blockNo), 1);
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
| ((sector_trailer[8] >> 2) & 0x02)
| ((sector_trailer[8] >> 7) & 0x01);
return (AC == 0x00 || AC == 0x01 || AC == 0x02);
}
static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
uint8_t sector_trailer[16];
emlGetMem(sector_trailer, blockNo, 1);
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
| ((sector_trailer[8] >> 2) & 0x02)
| ((sector_trailer[8] >> 7) & 0x01);
switch (action) {
case AC_KEYA_READ: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_KEYA_READ");
return false;
}
case AC_KEYA_WRITE: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_KEYA_WRITE");
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
}
case AC_KEYB_READ: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_KEYB_READ");
return (keytype == AUTHKEYA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
}
case AC_KEYB_WRITE: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_KEYB_WRITE");
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
}
case AC_AC_READ: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_AC_READ");
return ((keytype == AUTHKEYA)
|| (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
}
case AC_AC_WRITE: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsTrailerAccessAllowed: AC_AC_WRITE");
return ((keytype == AUTHKEYA && (AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05)));
}
default:
return false;
}
}
static bool IsDataAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
uint8_t sector_trailer[16];
emlGetMem(sector_trailer, SectorTrailer(blockNo), 1);
uint8_t sector_block;
if (blockNo <= MIFARE_2K_MAXBLOCK) {
sector_block = blockNo & 0x03;
} else {
sector_block = (blockNo & 0x0f) / 5;
}
uint8_t AC;
switch (sector_block) {
case 0x00: {
AC = ((sector_trailer[7] >> 2) & 0x04)
| ((sector_trailer[8] << 1) & 0x02)
| ((sector_trailer[8] >> 4) & 0x01);
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed: case 0x00 - %02x", AC);
break;
}
case 0x01: {
AC = ((sector_trailer[7] >> 3) & 0x04)
| ((sector_trailer[8] >> 0) & 0x02)
| ((sector_trailer[8] >> 5) & 0x01);
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed: case 0x01 - %02x", AC);
break;
}
case 0x02: {
AC = ((sector_trailer[7] >> 4) & 0x04)
| ((sector_trailer[8] >> 1) & 0x02)
| ((sector_trailer[8] >> 6) & 0x01);
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed: case 0x02 - %02x", AC);
break;
}
default:
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed: Error");
return false;
}
switch (action) {
case AC_DATA_READ: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed - AC_DATA_READ: OK");
return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07))
|| (keytype == AUTHKEYB && !(AC == 0x07)));
}
case AC_DATA_WRITE: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed - AC_DATA_WRITE: OK");
return ((keytype == AUTHKEYA && (AC == 0x00))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
}
case AC_DATA_INC: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("IsDataAccessAllowed - AC_DATA_INC: OK");
return ((keytype == AUTHKEYA && (AC == 0x00))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06)));
}
case AC_DATA_DEC_TRANS_REST: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("AC_DATA_DEC_TRANS_REST: OK");
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01))
|| (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
}
}
return false;
}
static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
if (IsSectorTrailer(blockNo)) {
return IsTrailerAccessAllowed(blockNo, keytype, action);
} else {
return IsDataAccessAllowed(blockNo, keytype, action);
}
}
static uint8_t MifareMaxSector(uint16_t flags) {
if (IS_FLAG_MF_SIZE(flags, MIFARE_MINI_MAX_BYTES)) {
return MIFARE_MINI_MAXSECTOR;
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_1K_MAX_BYTES)) {
return MIFARE_1K_MAXSECTOR;
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_2K_MAX_BYTES)) {
return MIFARE_2K_MAXSECTOR;
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_4K_MAX_BYTES)) {
return MIFARE_4K_MAXSECTOR;
} else {
return MIFARE_4K_MAXSECTOR;
}
}
static bool MifareSimInit(uint16_t flags, uint8_t *uid, uint16_t atqa, uint8_t sak, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t **rats, uint8_t *rats_len) {
uint8_t uid_tmp[10] = {0};
// SPEC: https://www.nxp.com/docs/en/application-note/AN10833.pdf
// ATQA
static uint8_t rATQA_Mini[] = {0x04, 0x00}; // indicate Mifare classic Mini 4Byte UID
static uint8_t rATQA_1k[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID
static uint8_t rATQA_2k[] = {0x04, 0x00}; // indicate Mifare classic 2k 4Byte UID
static uint8_t rATQA_4k[] = {0x02, 0x00}; // indicate Mifare classic 4k 4Byte UID
// SAK
static uint8_t rSAK_Mini = 0x09; // mifare Mini
static uint8_t rSAK_1k = 0x08; // mifare 1k
static uint8_t rSAK_2k = 0x08; // mifare 2k with RATS support
static uint8_t rSAK_4k = 0x18; // mifare 4k
static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
static uint8_t rUIDBCC1b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level, last 4 bytes
static uint8_t rUIDBCC1b3[] = {0x00, 0x00, 0x00}; // UID 1st cascade level, last 3 bytes
static uint8_t rUIDBCC1b2[] = {0x00, 0x00}; // UID 1st cascade level, last 2 bytes
static uint8_t rUIDBCC1b1[] = {0x00}; // UID 1st cascade level, last byte
static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
static uint8_t rUIDBCC2b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 2st cascade level, last 4 bytes
static uint8_t rUIDBCC2b3[] = {0x00, 0x00, 0x00}; // UID 2st cascade level, last 3 bytes
static uint8_t rUIDBCC2b2[] = {0x00, 0x00}; // UID 2st cascade level, last 2 bytes
static uint8_t rUIDBCC2b1[] = {0x00}; // UID 2st cascade level, last byte
static uint8_t rUIDBCC3[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 3nd cascade level
static uint8_t rUIDBCC3b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 3st cascade level, last 4 bytes
static uint8_t rUIDBCC3b3[] = {0x00, 0x00, 0x00}; // UID 3st cascade level, last 3 bytes
static uint8_t rUIDBCC3b2[] = {0x00, 0x00}; // UID 3st cascade level, last 2 bytes
static uint8_t rUIDBCC3b1[] = {0x00}; // UID 3st cascade level, last byte
static uint8_t rATQA[] = {0x00, 0x00}; // Current ATQA
static uint8_t rSAK[] = {0x00, 0x00, 0x00}; // Current SAK, CRC
static uint8_t rSAKuid[] = {0x04, 0xda, 0x17}; // UID incomplete cascade bit, CRC
// RATS answer for 2K NXP mifare classic (with CRC)
static uint8_t rRATS[] = {0x0c, 0x75, 0x77, 0x80, 0x02, 0xc1, 0x05, 0x2f, 0x2f, 0x01, 0xbc, 0xd6, 0x60, 0xd3};
*uid_len = 0;
// By default use 1K tag
memcpy(rATQA, rATQA_1k, sizeof(rATQA));
rSAK[0] = rSAK_1k;
//by default RATS not supported
*rats_len = 0;
*rats = NULL;
// -- Determine the UID
// Can be set from emulator memory or incoming data
// Length: 4,7,or 10 bytes
if (IS_FLAG_UID_IN_EMUL(flags)) {
if (uid == NULL) {
uid = uid_tmp;
}
// Get UID, SAK, ATQA from EMUL
uint8_t block0[16];
emlGet(block0, 0, 16);
// Check for 4 bytes uid: bcc corrected and single size uid bits in ATQA
if ((block0[0] ^ block0[1] ^ block0[2] ^ block0[3]) == block0[4] && (block0[6] & 0xc0) == 0) {
FLAG_SET_UID_IN_DATA(flags, 4);
memcpy(uid, block0, 4);
rSAK[0] = block0[5];
memcpy(rATQA, &block0[6], sizeof(rATQA));
}
// Check for 7 bytes UID: double size uid bits in ATQA
else if ((block0[8] & 0xc0) == 0x40) {
FLAG_SET_UID_IN_DATA(flags, 7);
memcpy(uid, block0, 7);
rSAK[0] = block0[7];
memcpy(rATQA, &block0[8], sizeof(rATQA));
} else {
Dbprintf("ERROR: " _RED_("Invalid dump. UID/SAK/ATQA not found"));
return false;
}
} else {
if (uid == NULL) {
Dbprintf("ERROR: " _RED_("Missing UID"));
return false;
}
}
// Tune tag type, if defined directly
// Otherwise use defined by default or extracted from EMUL
if (IS_FLAG_MF_SIZE(flags, MIFARE_MINI_MAX_BYTES)) {
memcpy(rATQA, rATQA_Mini, sizeof(rATQA));
rSAK[0] = rSAK_Mini;
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare Mini ATQA/SAK");
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_1K_MAX_BYTES)) {
memcpy(rATQA, rATQA_1k, sizeof(rATQA));
rSAK[0] = rSAK_1k;
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 1K ATQA/SAK");
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_2K_MAX_BYTES)) {
memcpy(rATQA, rATQA_2k, sizeof(rATQA));
rSAK[0] = rSAK_2k;
*rats = rRATS;
*rats_len = sizeof(rRATS);
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 2K ATQA/SAK with RATS support");
} else if (IS_FLAG_MF_SIZE(flags, MIFARE_4K_MAX_BYTES)) {
memcpy(rATQA, rATQA_4k, sizeof(rATQA));
rSAK[0] = rSAK_4k;
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 4K ATQA/SAK");
}
// Prepare UID arrays
if (IS_FLAG_UID_IN_DATA(flags, 4)) {
memcpy(rUIDBCC1, uid, 4);
*uid_len = 4;
// save CUID
*cuid = bytes_to_num(rUIDBCC1, 4);
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MifareSimInit - Flags: %04X - BCC1: %02X", flags, rUIDBCC1[4]);
if (g_dbglevel > DBG_NONE) {
Dbprintf("4B UID: %02x%02x%02x%02x", rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
}
// Correct uid size bits in ATQA
rATQA[0] = (rATQA[0] & 0x3f); // single size uid
} else if (IS_FLAG_UID_IN_DATA(flags, 7)) {
memcpy(&rUIDBCC1[1], uid, 3);
memcpy(rUIDBCC2, uid + 3, 4);
*uid_len = 7;
// save CUID
*cuid = bytes_to_num(rUIDBCC2, 4);
// CascadeTag, CT
rUIDBCC1[0] = MIFARE_SELECT_CT;
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MifareSimInit - Flags: %04X - BCC1: %02X - BCC2: %02X", flags, rUIDBCC1[4], rUIDBCC2[4]);
if (g_dbglevel > DBG_NONE) {
Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3]);
}
// Correct uid size bits in ATQA
rATQA[0] = (rATQA[0] & 0x3f) | 0x40; // double size uid
} else if (IS_FLAG_UID_IN_DATA(flags, 10)) {
memcpy(&rUIDBCC1[1], uid, 3);
memcpy(&rUIDBCC2[1], uid + 3, 3);
memcpy(rUIDBCC3, uid + 6, 4);
*uid_len = 10;
// save CUID
*cuid = bytes_to_num(rUIDBCC3, 4);
// CascadeTag, CT
rUIDBCC1[0] = MIFARE_SELECT_CT;
rUIDBCC2[0] = MIFARE_SELECT_CT;
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MifareSimInit - Flags: %04X - BCC1: %02X - BCC2: %02X - BCC3: %02X", flags, rUIDBCC1[4], rUIDBCC2[4], rUIDBCC3[4]);
if (g_dbglevel > DBG_NONE) {
Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3],
rUIDBCC3[0], rUIDBCC3[1], rUIDBCC3[2], rUIDBCC3[3]
);
}
// Correct uid size bits in ATQA
rATQA[0] = (rATQA[0] & 0x3f) | 0x80; // triple size uid
} else {
Dbprintf("ERROR: " _RED_("UID size not defined"));
return false;
}
if (flags & FLAG_ATQA_IN_DATA) {
rATQA[0] = atqa >> 8;
rATQA[1] = atqa & 0xff;
}
if (flags & FLAG_SAK_IN_DATA) {
rSAK[0] = sak;
}
if (g_dbglevel > DBG_NONE) {
Dbprintf("ATQA : %02X %02X", rATQA[1], rATQA[0]);
Dbprintf("SAK : %02X", rSAK[0]);
}
// clone UIDs for byte-frame anti-collision multiple tag selection procedure
memcpy(rUIDBCC1b4, &rUIDBCC1[1], 4);
memcpy(rUIDBCC1b3, &rUIDBCC1[2], 3);
memcpy(rUIDBCC1b2, &rUIDBCC1[3], 2);
memcpy(rUIDBCC1b1, &rUIDBCC1[4], 1);
if (*uid_len >= 7) {
memcpy(rUIDBCC2b4, &rUIDBCC2[1], 4);
memcpy(rUIDBCC2b3, &rUIDBCC2[2], 3);
memcpy(rUIDBCC2b2, &rUIDBCC2[3], 2);
memcpy(rUIDBCC2b1, &rUIDBCC2[4], 1);
}
if (*uid_len == 10) {
memcpy(rUIDBCC3b4, &rUIDBCC3[1], 4);
memcpy(rUIDBCC3b3, &rUIDBCC3[2], 3);
memcpy(rUIDBCC3b2, &rUIDBCC3[3], 2);
memcpy(rUIDBCC3b1, &rUIDBCC3[4], 1);
}
// Calculate actual CRC
AddCrc14A(rSAK, sizeof(rSAK) - 2);
#define TAG_RESPONSE_COUNT 18
static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = {
{ .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type
{ .response = rSAK, .response_n = sizeof(rSAK) }, //
{ .response = rSAKuid, .response_n = sizeof(rSAKuid) }, //
// Do not reorder. Block used via relative index of rUIDBCC1
{ .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid
{ .response = rUIDBCC1b4, .response_n = sizeof(rUIDBCC1b4)},
{ .response = rUIDBCC1b3, .response_n = sizeof(rUIDBCC1b3)},
{ .response = rUIDBCC1b2, .response_n = sizeof(rUIDBCC1b2)},
{ .response = rUIDBCC1b1, .response_n = sizeof(rUIDBCC1b1)},
// Do not reorder. Block used via relative index of rUIDBCC2
{ .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid
{ .response = rUIDBCC2b4, .response_n = sizeof(rUIDBCC2b4)},
{ .response = rUIDBCC2b3, .response_n = sizeof(rUIDBCC2b3)},
{ .response = rUIDBCC2b2, .response_n = sizeof(rUIDBCC2b2)},
{ .response = rUIDBCC2b1, .response_n = sizeof(rUIDBCC2b1)},
// Do not reorder. Block used via relative index of rUIDBCC3
{ .response = rUIDBCC3, .response_n = sizeof(rUIDBCC3) }, // Anticollision cascade3 - respond with 3th part of uid
{ .response = rUIDBCC3b4, .response_n = sizeof(rUIDBCC3b4)},
{ .response = rUIDBCC3b3, .response_n = sizeof(rUIDBCC3b3)},
{ .response = rUIDBCC3b2, .response_n = sizeof(rUIDBCC3b2)},
{ .response = rUIDBCC3b1, .response_n = sizeof(rUIDBCC3b1)}
};
// Prepare ("precompile") the responses of the anticollision phase.
// There will be not enough time to do this at the moment the reader sends its REQA or SELECT
// There are 18 predefined responses with a total of 53 bytes data to transmit.
// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 53 * 8 data bits, 53 * 1 parity bits, 18 start bits, 18 stop bits, 18 correction bits -> need 571 bytes buffer
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 571
uint8_t *free_buffer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
// modulation buffer pointer and current buffer free space size
uint8_t *free_buffer_pointer = free_buffer;
size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
for (size_t i = 0; i < TAG_RESPONSE_COUNT; i++) {
if (prepare_allocated_tag_modulation(&responses_init[i], &free_buffer_pointer, &free_buffer_size) == false) {
Dbprintf("Not enough modulation buffer size, exit after %d elements", i);
return false;
}
}
*responses = responses_init;
// indices into responses array:
#define ATQA 0
#define SAK 1
#define SAKuid 2
#define UIDBCC1 3
#define UIDBCC2 8
#define UIDBCC3 13
return true;
}
/**
*MIFARE 1K simulate.
*
*@param flags: See pm3_cmd.h for the full definitions
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
* (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attempted)
*/
void Mifare1ksim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *uid, uint16_t atqa, uint8_t sak) {
tag_response_info_t *responses;
uint8_t cardSTATE = MFEMUL_NOFIELD;
uint8_t uid_len = 0; // 4, 7, 10
uint32_t cuid = 0, selTimer = 0, authTimer = 0;
uint32_t nr, ar;
uint8_t blockNo;
bool encrypted_data;
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint8_t cardMaxSEC = MifareMaxSector(flags);
uint8_t cardAUTHKEY = AUTHKEYNONE; // no authentication
uint32_t cardRr = 0;
uint32_t ans = 0;
uint32_t cardINTREG = 0;
uint8_t cardINTBLOCK = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint32_t numReads = 0; //Counts numer of times reader reads a block
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint16_t receivedCmd_len;
uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint8_t *rats = NULL;
uint8_t rats_len = 0;
//Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
// This will be used in the reader-only attack.
//allow collecting up to 16 sets of nonces to allow recovery of up to 16 keys
#define ATTACK_KEY_COUNT 16
nonces_t ar_nr_resp[ATTACK_KEY_COUNT]; // for moebius attack type
memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
// Authenticate response - nonce
uint8_t rAUTH_NT[4] = {0, 0, 0, 1};
uint8_t rAUTH_NT_keystream[4];
uint32_t nonce = 0;
const tUart14a *uart = GetUart14a();
// free eventually allocated BigBuf memory but keep Emulator Memory
BigBuf_free_keep_EM();
if (MifareSimInit(flags, uid, atqa, sak, &responses, &cuid, &uid_len, &rats, &rats_len) == false) {
BigBuf_free_keep_EM();
return;
}
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// clear trace
clear_trace();
set_tracing(true);
LED_D_ON();
ResetSspClk();
uint8_t *p_em = BigBuf_get_EM_addr();
uint8_t cve_flipper = 0;
int counter = 0;
bool finished = false;
bool running_nested_auth_attack = false;
bool button_pushed = BUTTON_PRESS();
while ((button_pushed == false) && (finished == false)) {
WDT_HIT();
if (counter == 1000) {
if (data_available()) {
Dbprintf("----------- " _GREEN_("BREAKING") " ----------");
break;
}
counter = 0;
} else {
counter++;
}
/*
// find reader field
if (cardSTATE == MFEMUL_NOFIELD) {
vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15;
if (vHf > MF_MINFIELDV) {
cardSTATE_TO_IDLE();
LED_A_ON();
}
button_pushed = BUTTON_PRESS();
continue;
}
*/
FpgaEnableTracing();
//Now, get data
int res = EmGetCmd(receivedCmd, sizeof(receivedCmd), &receivedCmd_len, receivedCmd_par);
if (res == 2) { //Field is off!
//FpgaDisableTracing();
if ((flags & FLAG_CVE21_0430) == FLAG_CVE21_0430) {
p_em[1] = 0x21;
cve_flipper = 0;
}
LEDsoff();
cardSTATE = MFEMUL_NOFIELD;
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("cardSTATE = MFEMUL_NOFIELD");
continue;
} else if (res == 1) { // button pressed
FpgaDisableTracing();
button_pushed = true;
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("Button pressed");
break;
}
// WUPA in HALTED state or REQA or WUPA in any other state
if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
selTimer = GetTickCount();
if (g_dbglevel >= DBG_EXTENDED) {
//Dbprintf("EmSendPrecompiledCmd(&responses[ATQA]);");
}
EmSendPrecompiledCmd(&responses[ATQA]);
FpgaDisableTracing();
// init crypto block
crypto1_deinit(pcs);
cardAUTHKEY = AUTHKEYNONE;
nonce = prng_successor(selTimer, 32);
// prepare NT for nested authentication
num_to_bytes(nonce, 4, rAUTH_NT);
num_to_bytes(cuid ^ nonce, 4, rAUTH_NT_keystream);
LED_B_OFF();
LED_C_OFF();
cardSTATE = MFEMUL_SELECT;
if ((flags & FLAG_CVE21_0430) == FLAG_CVE21_0430) {
p_em[1] = 0x21;
cve_flipper = 0;
}
continue;
}
switch (cardSTATE) {
case MFEMUL_NOFIELD: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MFEMUL_NOFIELD");
break;
}
case MFEMUL_HALTED: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MFEMUL_HALTED");
break;
}
case MFEMUL_IDLE: {
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MFEMUL_IDLE");
break;
}
// The anti-collision sequence, which is a mandatory part of the card activation sequence.
// It auto with 4-byte UID (= Single Size UID),
// 7 -byte UID (= Double Size UID) or 10-byte UID (= Triple Size UID).
// For details see chapter 2 of AN10927.pdf
//
// This case is used for all Cascade Levels, because:
// 1) Any devices (under Android for example) after full select procedure completed,
// when UID is known, uses "fast-selection" method. In this case reader ignores
// first cascades and tries to select tag by last bytes of UID of last cascade
// 2) Any readers (like ACR122U) uses bit oriented anti-collision frames during selectin,
// same as multiple tags. For details see chapter 6.1.5.3 of ISO/IEC 14443-3
case MFEMUL_SELECT: {
int uid_index = -1;
// Extract cascade level
if (receivedCmd_len >= 2) {
switch (receivedCmd[0]) {
case ISO14443A_CMD_ANTICOLL_OR_SELECT:
uid_index = UIDBCC1;
break;
case ISO14443A_CMD_ANTICOLL_OR_SELECT_2:
uid_index = UIDBCC2;
break;
case ISO14443A_CMD_ANTICOLL_OR_SELECT_3:
uid_index = UIDBCC3;
break;
}
}
if (uid_index < 0) {
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] Incorrect cascade level received");
break;
}
// Incoming SELECT ALL for any cascade level
if (receivedCmd_len == 2 && receivedCmd[1] == 0x20) {
EmSendPrecompiledCmd(&responses[uid_index]);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("SELECT ALL - EmSendPrecompiledCmd(%02x)", &responses[uid_index]);
break;
}
// Incoming SELECT CLx for any cascade level
if (receivedCmd_len == 9 && receivedCmd[1] == 0x70) {
if (memcmp(&receivedCmd[2], responses[uid_index].response, 4) == 0) {
bool cl_finished = (uid_len == 4 && uid_index == UIDBCC1) ||
(uid_len == 7 && uid_index == UIDBCC2) ||
(uid_len == 10 && uid_index == UIDBCC3);
EmSendPrecompiledCmd(&responses[cl_finished ? SAK : SAKuid]);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("SELECT CLx %02x%02x%02x%02x received", receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5]);
if (cl_finished) {
LED_B_ON();
cardSTATE = MFEMUL_WORK;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_WORK");
}
} else {
// IDLE, not our UID
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE");
}
break;
}
// Incoming anti-collision frame
// receivedCmd[1] indicates number of byte and bit collision, supports only for bit collision is zero
if (receivedCmd_len >= 3 && receivedCmd_len <= 6 && (receivedCmd[1] & 0x0f) == 0) {
// we can process only full-byte frame anti-collision procedure
if (memcmp(&receivedCmd[2], responses[uid_index].response, receivedCmd_len - 2) == 0) {
// response missing part of UID via relative array index
EmSendPrecompiledCmd(&responses[uid_index + receivedCmd_len - 2]);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("SELECT ANTICOLLISION - EmSendPrecompiledCmd(%02x)", &responses[uid_index]);
} else {
// IDLE, not our UID or split-byte frame anti-collision (not supports)
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] cardSTATE = MFEMUL_IDLE");
}
break;
}
// Unknown selection procedure
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_SELECT] Unknown selection procedure");
break;
}
// WORK
case MFEMUL_WORK: {
if (g_dbglevel >= DBG_EXTENDED) {
// Dbprintf("[MFEMUL_WORK] Enter in case");
}
if (receivedCmd_len == 0) {
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] NO CMD received");
break;
}
encrypted_data = (cardAUTHKEY != AUTHKEYNONE);
if (encrypted_data) {
// decrypt seqence
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Decrypt sequence");
} else {
// Data in clear
memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len);
}
// all commands must have a valid CRC
if (CheckCrc14A(receivedCmd_dec, receivedCmd_len) == false) {
EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] All commands must have a valid CRC %02X (%d)", receivedCmd_dec, receivedCmd_len);
break;
}
if (receivedCmd_len == 4 && (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB)) {
// Reader asks for AUTH: 6X XX
// RCV: 60 XX => Using KEY A
// RCV: 61 XX => Using KEY B
// XX: Block number
authTimer = GetTickCount();
// received block num -> sector
// Example: 6X [00]
// 4K tags have 16 blocks per sector 32..39
cardAUTHSC = MifareBlockToSector(receivedCmd_dec[1]);
// cardAUTHKEY: 60 => Auth use Key A
// cardAUTHKEY: 61 => Auth use Key B
cardAUTHKEY = receivedCmd_dec[0] & 0x01;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] KEY %c: %012" PRIx64, (cardAUTHKEY == 0) ? 'A' : 'B', emlGetKey(cardAUTHSC, cardAUTHKEY));
// sector out of range - do not respond
if (cardAUTHSC >= cardMaxSEC) {
cardAUTHKEY = AUTHKEYNONE; // not authenticated
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Out of range sector %d(0x%02x)", cardAUTHSC, cardAUTHSC);
break;
}
// first authentication
crypto1_deinit(pcs);
// Load key into crypto
crypto1_init(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
running_nested_auth_attack = false;
if (!encrypted_data) {
// Receive Cmd in clear txt
// Update crypto state (UID ^ NONCE)
crypto1_word(pcs, cuid ^ nonce, 0);
// rAUTH_NT contains prepared nonce for authenticate
EmSendCmd(rAUTH_NT, sizeof(rAUTH_NT));
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("[MFEMUL_WORK] Reader authenticating for block %d (0x%02x) with key %c - nonce: %08X - cuid: %08X",
receivedCmd_dec[1],
receivedCmd_dec[1],
(cardAUTHKEY == 0) ? 'A' : 'B',
nonce,
cuid
);
}
} else {
// nested authentication
/*
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
num_to_bytes(ans, 4, rAUTH_AT);
*/
// if key not known and FLAG_NESTED_AUTH_ATTACK and we have nt/nt_enc/parity, send recorded nt_enc and parity
if ((flags & FLAG_NESTED_AUTH_ATTACK) == FLAG_NESTED_AUTH_ATTACK) {
if (emlGetKey(cardAUTHSC, cardAUTHKEY) == 0) {
uint8_t buf[16] = {0};
emlGetMem(buf, (CARD_MEMORY_RF08S_OFFSET / MIFARE_BLOCK_SIZE) + cardAUTHSC, 1);
if (buf[(cardAUTHKEY * 8) + 3] == 0xAA) { // extra check to tell we have nt/nt_enc/par_err
running_nested_auth_attack = true;
// nt
nonce = bytes_to_num(buf + (cardAUTHKEY * 8), 2);
nonce = nonce << 16 | prng_successor(nonce, 16);
// nt_enc
memcpy(response, buf + (cardAUTHKEY * 8) + 4, 4);
uint8_t nt_par_err = buf[(cardAUTHKEY * 8) + 2];
uint32_t nt_enc = bytes_to_num(response, 4);
response_par[0] = ((((nt_par_err >> 3) & 1) ^ oddparity8((nt_enc >> 24) & 0xFF)) << 7 |
(((nt_par_err >> 2) & 1) ^ oddparity8((nt_enc >> 16) & 0xFF)) << 6 |
(((nt_par_err >> 1) & 1) ^ oddparity8((nt_enc >> 8) & 0xFF)) << 5 |
(((nt_par_err >> 0) & 1) ^ oddparity8((nt_enc >> 0) & 0xFF)) << 4);
ar_nr_resp[0].cuid = cuid;
ar_nr_resp[0].sector = cardAUTHSC;
ar_nr_resp[0].keytype = cardAUTHKEY;
ar_nr_resp[0].nonce = nonce;
ar_nr_resp[0].nonce2 = nt_enc;
};
}
}
if (running_nested_auth_attack == false) {
// rAUTH_NT, rAUTH_NT_keystream contains prepared nonce and keystream for nested authentication
// we need calculate parity bits for non-encrypted sequence
mf_crypto1_encryptEx(pcs, rAUTH_NT, rAUTH_NT_keystream, response, 4, response_par);
}
EmSendCmdPar(response, 4, response_par);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("[MFEMUL_WORK] Reader doing nested authentication for block %d (0x%02x) with key %c",
receivedCmd_dec[1],
receivedCmd_dec[1],
(cardAUTHKEY == 0) ? 'A' : 'B'
);
}
}
cardSTATE = MFEMUL_AUTH1;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_AUTH1 - rAUTH_NT: %02X", rAUTH_NT);
break;
}
// rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
// BUT... ACK --> NACK
if (receivedCmd_len == 1 && receivedCmd_dec[0] == CARD_ACK) {
EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
FpgaDisableTracing();
break;
}
// rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
if (receivedCmd_len == 1 && receivedCmd_dec[0] == CARD_NACK_NA) {
EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_ACK) : CARD_ACK);
FpgaDisableTracing();
break;
}
// case MFEMUL_WORK => if Cmd is Read, Write, Inc, Dec, Restore, Transfer
if (receivedCmd_len == 4 && (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
|| receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK
|| receivedCmd_dec[0] == MIFARE_CMD_INC
|| receivedCmd_dec[0] == MIFARE_CMD_DEC
|| receivedCmd_dec[0] == MIFARE_CMD_RESTORE
|| receivedCmd_dec[0] == MIFARE_CMD_TRANSFER)) {
// all other commands must be encrypted (authenticated)
if (!encrypted_data) {
EmSend4bit(CARD_NACK_NA);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] Commands must be encrypted (authenticated)");
break;
}
// iceman, u8 can never be larger the MIFARE_4K_MAXBLOCK (256)
// Check if Block num is not too far
/*
if (receivedCmd_dec[1] > MIFARE_4K_MAXBLOCK) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (g_dbglevel >= DBG_ERROR) Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]);
break;
}
*/
blockNo = receivedCmd_dec[1];
if (MifareBlockToSector(blockNo) != cardAUTHSC) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (g_dbglevel >= DBG_ERROR)
Dbprintf("[MFEMUL_WORK] Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], cardAUTHSC);
break;
}
// Compliance of MIFARE Classic EV1 1K Datasheet footnote of Table 8
// If access bits show that key B is Readable, any subsequent memory access will be refused.
// Some cards don't respect it so we can also skip it with FLAG_MF_USE_READ_KEYB
if ((flags & FLAG_MF_USE_READ_KEYB) != FLAG_MF_USE_READ_KEYB) {
if (cardAUTHKEY == AUTHKEYB && IsKeyBReadable(blockNo)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
if (g_dbglevel >= DBG_ERROR)
Dbprintf("[MFEMUL_WORK] Access denied: Reader tried to access memory on authentication with key B while key B is readable in sector (0x%02x)", cardAUTHSC);
break;
}
}
}
// case MFEMUL_WORK => CMD READ block
if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) {
blockNo = receivedCmd_dec[1];
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("[MFEMUL_WORK] Reader reading block %d (0x%02x)", blockNo, blockNo);
// android CVE 2021_0430
// Simulate a MFC 1K, with a NDEF message.
// these values uses the standard LIBNFC NDEF message
//
// In short, first a value read of block 4,
// update the length byte before second read of block 4.
// on iphone etc there might even be 3 reads of block 4.
// fiddling with when to flip the byte or not, has different effects
if ((flags & FLAG_CVE21_0430) == FLAG_CVE21_0430) {
// first block
if (blockNo == 4) {
p_em += blockNo * 16;
// TLV in NDEF, flip length between
// 4 | 03 21 D1 02 1C 53 70 91 01 09 54 02 65 6E 4C 69
// 0xFF means long length
// 0xFE mean max short length
// We could also have a go at message len byte at p_em[4]...
if (p_em[1] == 0x21 && cve_flipper == 1) {
p_em[1] = 0xFE;
} else {
cve_flipper++;
}
}
}
emlGetMem(response, blockNo, 1);
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("[MFEMUL_WORK - ISO14443A_CMD_READBLOCK] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo,
response[0], response[1], response[2], response[3], response[4], response[5], response[6],
response[7], response[8], response[9], response[10], response[11], response[12], response[13],
response[14], response[15]);
}
// Access permission management:
//
// Sector Trailer:
// - KEY A access
// - KEY B access
// - AC bits access
//
// Data block:
// - Data access
// If permission is not allowed, data is cleared (00) in emulator memory.
// ex: a0a1a2a3a4a561e789c1b0b1b2b3b4b5 => 00000000000061e789c1b0b1b2b3b4b5
// Check if selected Block is a Sector Trailer
if (IsSectorTrailer(blockNo)) {
if (IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYA_READ) == false) {
memset(response, 0x00, 6); // keyA can never be read
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsSectorTrailer] keyA can never be read - block %d (0x%02x)", blockNo, blockNo);
}
if (IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ) == false) {
memset(response + 10, 0x00, 6); // keyB cannot be read
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsSectorTrailer] keyB cannot be read - block %d (0x%02x)", blockNo, blockNo);
}
if (IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ) == false) {
memset(response + 6, 0x00, 4); // AC bits cannot be read
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsAccessAllowed] AC bits cannot be read - block %d (0x%02x)", blockNo, blockNo);
}
} else {
if (IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ) == false) {
memset(response, 0x00, 16); // datablock cannot be read
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK - IsAccessAllowed] Data block %d (0x%02x) cannot be read", blockNo, blockNo);
}
}
AddCrc14A(response, 16);
mf_crypto1_encrypt(pcs, response, MAX_MIFARE_FRAME_SIZE, response_par);
EmSendCmdPar(response, MAX_MIFARE_FRAME_SIZE, response_par);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("[MFEMUL_WORK - EmSendCmdPar] Data Block[%d]: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x", blockNo,
response[0], response[1], response[2], response[3], response[4], response[5], response[6],
response[7], response[8], response[9], response[10], response[11], response[12], response[13],
response[14], response[15]);
}
numReads++;
if (exitAfterNReads > 0 && numReads == exitAfterNReads) {
Dbprintf("[MFEMUL_WORK] %d reads done, exiting", numReads);
finished = true;
}
break;
} // End receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
// case MFEMUL_WORK => CMD WRITEBLOCK
if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) {
blockNo = receivedCmd_dec[1];
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaDisableTracing();
cardWRBL = blockNo;
cardSTATE = MFEMUL_WRITEBL2;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_WRITEBL2");
break;
}
// case MFEMUL_WORK => CMD INC/DEC/REST
if (receivedCmd_len == 4 && (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE)) {
blockNo = receivedCmd_dec[1];
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)", receivedCmd_dec[0], blockNo, blockNo);
if (emlCheckValBl(blockNo) == false) {
if (g_dbglevel >= DBG_ERROR) Dbprintf("[MFEMUL_WORK] Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
break;
}
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaDisableTracing();
cardWRBL = blockNo;
// INC
if (receivedCmd_dec[0] == MIFARE_CMD_INC) {
cardSTATE = MFEMUL_INTREG_INC;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_INC");
}
// DEC
if (receivedCmd_dec[0] == MIFARE_CMD_DEC) {
cardSTATE = MFEMUL_INTREG_DEC;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_DEC");
}
// REST
if (receivedCmd_dec[0] == MIFARE_CMD_RESTORE) {
cardSTATE = MFEMUL_INTREG_REST;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_INTREG_REST");
}
break;
} // End case MFEMUL_WORK => CMD INC/DEC/REST
// case MFEMUL_WORK => CMD TRANSFER
if (receivedCmd_len == 4 && receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
blockNo = receivedCmd_dec[1];
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] RECV 0x%02x transfer block %d (%02x)", receivedCmd_dec[0], blockNo, blockNo);
emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1]);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
FpgaDisableTracing();
break;
}
// case MFEMUL_WORK => CMD HALT
if (receivedCmd_len > 1 && receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) {
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
LED_B_OFF();
LED_C_OFF();
cardSTATE = MFEMUL_HALTED;
cardAUTHKEY = AUTHKEYNONE;
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("[MFEMUL_WORK] cardSTATE = MFEMUL_HALTED");
}
break;
}
// case MFEMUL_WORK => CMD RATS
if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_RATS && (receivedCmd_dec[1] & 0xF0) <= 0x80 && (receivedCmd_dec[1] & 0x0F) <= 0x0e) {
if (rats && rats_len) {
if (encrypted_data) {
memcpy(response, rats, rats_len);
mf_crypto1_encrypt(pcs, response, rats_len, response_par);
EmSendCmdPar(response, rats_len, response_par);
} else {
EmSendCmd(rats, rats_len);
}
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("[MFEMUL_WORK] RCV RATS => ACK");
} else {
EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
FpgaDisableTracing();
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("[MFEMUL_WORK] RCV RATS => NACK");
}
break;
}
// case MFEMUL_WORK => ISO14443A_CMD_NXP_DESELECT
if (receivedCmd_len == 3 && receivedCmd_dec[0] == ISO14443A_CMD_NXP_DESELECT) {
if (rats && rats_len) {
// response back NXP_DESELECT
if (encrypted_data) {
memcpy(response, receivedCmd_dec, receivedCmd_len);
mf_crypto1_encrypt(pcs, response, receivedCmd_len, response_par);
EmSendCmdPar(response, receivedCmd_len, response_par);
} else
EmSendCmd(receivedCmd_dec, receivedCmd_len);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("[MFEMUL_WORK] RCV NXP DESELECT => ACK");
} else {
EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
FpgaDisableTracing();
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("[MFEMUL_WORK] RCV NXP DESELECT => NACK");
}
break;
}
// case MFEMUL_WORK => command not allowed
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("Received command not allowed, nacking");
EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
FpgaDisableTracing();
break;
}
// AUTH1
case MFEMUL_AUTH1: {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("[MFEMUL_AUTH1] Enter case");
if (receivedCmd_len != 8) {
cardSTATE_TO_IDLE();
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MFEMUL_AUTH1: receivedCmd_len != 8 (%d) => cardSTATE_TO_IDLE())", receivedCmd_len);
break;
}
nr = bytes_to_num(receivedCmd, 4);
ar = bytes_to_num(&receivedCmd[4], 4);
// --- crypto
crypto1_word(pcs, nr, 1);
cardRr = ar ^ crypto1_word(pcs, 0, 0);
// test if auth KO
if (cardRr != prng_successor(nonce, 64)) {
// Collect AR/NR per keytype & sector
if (running_nested_auth_attack) {
ar_nr_resp[0].nr = nr;
ar_nr_resp[0].ar = ar;
ar_nr_resp[0].state = NESTED;
finished = true;
}
if ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK) {
for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
if (ar_nr_resp[i].state == EMPTY ||
(
(ar_nr_resp[i].state != EMPTY) &&
(cardAUTHSC == ar_nr_resp[i].sector) &&
(cardAUTHKEY == ar_nr_resp[i].keytype)
)
) {
// if first auth for sector, or matches sector and keytype of previous auth
if (ar_nr_resp[i].state != SECOND) {
// if we haven't already collected 2 nonces for this sector
if (ar_nr_resp[i].state == EMPTY) {
// first nonce collect
ar_nr_resp[i].cuid = cuid;
ar_nr_resp[i].sector = cardAUTHSC;
ar_nr_resp[i].keytype = cardAUTHKEY;
ar_nr_resp[i].nonce = nonce;
ar_nr_resp[i].nr = nr;
ar_nr_resp[i].ar = ar;
ar_nr_resp[i].state = FIRST;
} else { // second nonce collect
// make sure we have different nonces for moebius attack
if (ar_nr_resp[i].nonce != nonce) {
ar_nr_resp[i].nonce2 = nonce;
ar_nr_resp[i].nr2 = nr;
ar_nr_resp[i].ar2 = ar;
ar_nr_resp[i].state = SECOND;
finished = true;
}
}
}
// we found right spot for this nonce stop looking
break;
}
}
}
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("[MFEMUL_AUTH1] AUTH FAILED for sector %d with key %c. [nr=%08x cardRr=%08x] [nt=%08x succ=%08x]"
, cardAUTHSC
, (cardAUTHKEY == 0) ? 'A' : 'B'
, nr
, cardRr
, nonce // nt
, prng_successor(nonce, 64)
);
}
cardAUTHKEY = AUTHKEYNONE; // not authenticated
cardSTATE_TO_IDLE();
// Really tags not respond NACK on invalid authentication
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
break;
}
ans = prng_successor(nonce, 96);
num_to_bytes(ans, 4, response);
mf_crypto1_encrypt(pcs, response, 4, response_par);
EmSendCmdPar(response, 4, response_par);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("[MFEMUL_AUTH1] AUTH COMPLETED for sector %d with key %c. time=%d",
cardAUTHSC,
cardAUTHKEY == 0 ? 'A' : 'B',
GetTickCountDelta(authTimer)
);
}
LED_C_ON();
cardSTATE = MFEMUL_WORK;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_AUTH1] cardSTATE = MFEMUL_WORK");
break;
}
// WRITE BL2
case MFEMUL_WRITEBL2: {
if (receivedCmd_len == MAX_MIFARE_FRAME_SIZE) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
if (CheckCrc14A(receivedCmd_dec, receivedCmd_len)) {
if (IsSectorTrailer(cardWRBL)) {
emlGetMem(response, cardWRBL, 1);
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) {
memcpy(receivedCmd_dec, response, 6); // don't change KeyA
}
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) {
memcpy(receivedCmd_dec + 10, response + 10, 6); // don't change KeyA
}
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) {
memcpy(receivedCmd_dec + 6, response + 6, 4); // don't change AC bits
}
} else {
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) {
memcpy(receivedCmd_dec, response, 16); // don't change anything
}
}
emlSetMem_xt(receivedCmd_dec, cardWRBL, 1, 16);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK?
FpgaDisableTracing();
cardSTATE = MFEMUL_WORK;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WRITEBL2] cardSTATE = MFEMUL_WORK");
break;
}
}
cardSTATE_TO_IDLE();
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WRITEBL2] cardSTATE = MFEMUL_IDLE");
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
break;
}
// INC
case MFEMUL_INTREG_INC: {
if (receivedCmd_len == 6) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL) != PM3_SUCCESS) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
cardSTATE_TO_IDLE();
break;
}
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardINTREG = cardINTREG + ans;
cardSTATE = MFEMUL_WORK;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_INTREG_INC] cardSTATE = MFEMUL_WORK");
break;
}
}
// DEC
case MFEMUL_INTREG_DEC: {
if (receivedCmd_len == 6) { // Data is encrypted
// Decrypted cmd
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL) != PM3_SUCCESS) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
cardSTATE_TO_IDLE();
break;
}
}
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardINTREG = cardINTREG - ans;
cardSTATE = MFEMUL_WORK;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_INTREG_DEC] cardSTATE = MFEMUL_WORK");
break;
}
// REST
case MFEMUL_INTREG_REST: {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t *)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL) != PM3_SUCCESS) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
FpgaDisableTracing();
cardSTATE_TO_IDLE();
break;
}
LogTrace(uart->output, uart->len, uart->startTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->endTime * 16 - DELAY_AIR2ARM_AS_TAG, uart->parity, true);
cardSTATE = MFEMUL_WORK;
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_INTREG_REST] cardSTATE = MFEMUL_WORK");
break;
}
} // End Switch Loop
button_pushed = BUTTON_PRESS();
} // End While Loop
FpgaDisableTracing();
uint8_t index = 0;
if (running_nested_auth_attack) {
if ((nonce_state)ar_nr_resp[0].state == NESTED) {
running_nested_auth_attack = false;
if (g_dbglevel >= DBG_INFO) {
Dbprintf("Collected nested AR/NR which can be used to extract sector %d " _YELLOW_("%s")
, ar_nr_resp[0].sector
, (ar_nr_resp[0].keytype == AUTHKEYA) ? "key A" : "key B"
);
Dbprintf("../tools/mfc/card_reader/mfkey32nested %08x %08x %08x %08x %08x",
ar_nr_resp[0].cuid, //UID
ar_nr_resp[0].nonce, //NT
ar_nr_resp[0].nonce2,//NT_ENC
ar_nr_resp[0].nr, //NR1
ar_nr_resp[0].ar //AR1
);
}
}
} else {
// NR AR ATTACK
if ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK) {
for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
if ((nonce_state)ar_nr_resp[i].state == SECOND) {
index = i;
if (g_dbglevel >= DBG_INFO) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract sector %d " _YELLOW_("%s")
, ar_nr_resp[i].sector
, (ar_nr_resp[i].keytype == AUTHKEYA) ? "key A" : "key B"
);
Dbprintf("../tools/mfc/card_reader/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
ar_nr_resp[i].cuid, //UID
ar_nr_resp[i].nonce, //NT
ar_nr_resp[i].nr, //NR1
ar_nr_resp[i].ar, //AR1
ar_nr_resp[i].nonce2,//NT2
ar_nr_resp[i].nr2, //NR2
ar_nr_resp[i].ar2 //AR2
);
}
}
}
}
}
if (g_dbglevel >= DBG_ERROR) {
Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen());
}
if ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK
//Send the collected ar_nr in the response
reply_ng(CMD_HF_MIFARE_SIMULATE, button_pushed ? PM3_EOPABORTED : PM3_SUCCESS, (uint8_t *)&ar_nr_resp[index], sizeof(nonces_t));
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(false);
BigBuf_free_keep_EM();
}