mirror of
https://github.com/iperov/DeepFaceLive.git
synced 2024-12-25 07:21:13 -08:00
919 lines
28 KiB
Python
919 lines
28 KiB
Python
from enum import IntEnum
|
|
from typing import Tuple, Union
|
|
|
|
import cv2
|
|
import numexpr as ne
|
|
import numpy as np
|
|
|
|
class ImageProcessor:
|
|
"""
|
|
Generic image processor for numpy images
|
|
|
|
arguments
|
|
|
|
img np.ndarray HW (2 ndim)
|
|
HWC (3 ndim)
|
|
NHWC (4 ndim)
|
|
|
|
"""
|
|
def __init__(self, img : np.ndarray, copy=False):
|
|
if copy:
|
|
img = img.copy()
|
|
ndim = img.ndim
|
|
if ndim not in [2,3,4]:
|
|
raise ValueError(f'img.ndim must be 2,3,4, not {ndim}.')
|
|
|
|
# Make internal image as NHWC
|
|
if ndim == 2:
|
|
N, (H,W), C = 0, img.shape, 0
|
|
img = img[None,:,:,None]
|
|
elif ndim == 3:
|
|
N, (H,W,C) = 0, img.shape
|
|
img = img[None,...]
|
|
else:
|
|
N,H,W,C = img.shape
|
|
|
|
self._img : np.ndarray = img
|
|
|
|
def copy(self) -> 'ImageProcessor':
|
|
"""
|
|
"""
|
|
ip = ImageProcessor.__new__(ImageProcessor)
|
|
ip._img = self._img.copy()
|
|
return ip
|
|
|
|
def get_dims(self) -> Tuple[int,int,int,int]:
|
|
"""
|
|
returns dimensions of current working image
|
|
|
|
returns N,H,W,C (ints) , each >= 1
|
|
"""
|
|
return self._img.shape
|
|
|
|
def get_dtype(self):
|
|
return self._img.dtype
|
|
|
|
def gamma(self, red : float, green : float, blue : float, mask=None) -> 'ImageProcessor':
|
|
dtype = self.get_dtype()
|
|
self.to_ufloat32()
|
|
img = orig_img = self._img
|
|
|
|
img = np.power(img, np.array([1.0 / blue, 1.0 / green, 1.0 / red], np.float32) )
|
|
np.clip(img, 0, 1.0, out=img)
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
|
|
|
self._img = img
|
|
self.to_dtype(dtype)
|
|
return self
|
|
|
|
|
|
def apply(self, func, mask=None) -> 'ImageProcessor':
|
|
"""
|
|
apply your own function on internal image
|
|
|
|
image has NHWC format. Do not change format, but dims can be changed.
|
|
|
|
func callable (img) -> img
|
|
|
|
example:
|
|
|
|
.apply( lambda img: img-[102,127,63] )
|
|
"""
|
|
img = orig_img = self._img
|
|
img = func(img).astype(orig_img.dtype)
|
|
if img.ndim != 4:
|
|
raise Exception('func used in ImageProcessor.apply changed format of image')
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask').astype(orig_img.dtype)
|
|
|
|
self._img = img
|
|
return self
|
|
|
|
def fit_in (self, TW = None, TH = None, pad_to_target : bool = False, allow_upscale : bool = False, interpolation : 'ImageProcessor.Interpolation' = None) -> float:
|
|
"""
|
|
fit image in w,h keeping aspect ratio
|
|
|
|
|
|
TW,TH int/None target width,height
|
|
|
|
|
|
pad_to_target bool pad remain area with zeros
|
|
|
|
allow_upscale bool if image smaller than TW,TH it will be upscaled
|
|
|
|
interpolation ImageProcessor.Interpolation. value
|
|
|
|
returns scale float value
|
|
"""
|
|
#if interpolation is None:
|
|
# interpolation = ImageProcessor.Interpolation.LINEAR
|
|
img = self._img
|
|
N,H,W,C = img.shape
|
|
|
|
if TW is not None and TH is None:
|
|
scale = TW / W
|
|
elif TW is None and TH is not None:
|
|
scale = TH / H
|
|
elif TW is not None and TH is not None:
|
|
SW = W / TW
|
|
SH = H / TH
|
|
scale = 1.0
|
|
if SW > 1.0 or SH > 1.0 or (SW < 1.0 and SH < 1.0):
|
|
scale /= max(SW, SH)
|
|
else:
|
|
raise ValueError('TW or TH should be specified')
|
|
|
|
if not allow_upscale and scale > 1.0:
|
|
scale = 1.0
|
|
|
|
if scale != 1.0:
|
|
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
|
img = cv2.resize (img, ( int(W*scale), int(H*scale) ), interpolation=ImageProcessor.Interpolation.LINEAR)
|
|
H,W = img.shape[0:2]
|
|
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
|
|
|
if pad_to_target:
|
|
w_pad = (TW-W) if TW is not None else 0
|
|
h_pad = (TH-H) if TH is not None else 0
|
|
if w_pad != 0 or h_pad != 0:
|
|
img = np.pad(img, ( (0,0), (0,h_pad), (0,w_pad), (0,0) ))
|
|
self._img = img
|
|
|
|
return scale
|
|
|
|
def clip(self, min, max) -> 'ImageProcessor':
|
|
np.clip(self._img, min, max, out=self._img)
|
|
return self
|
|
|
|
def clip2(self, low_check, low_val, high_check, high_val) -> 'ImageProcessor':
|
|
img = self._img
|
|
l, h = img < low_check, img > high_check
|
|
img[l] = low_val
|
|
img[h] = high_val
|
|
return self
|
|
|
|
def reresize(self, power : float, interpolation : 'ImageProcessor.Interpolation' = None, mask = None) -> 'ImageProcessor':
|
|
"""
|
|
|
|
power float 0 .. 1.0
|
|
"""
|
|
power = min(1, max(0, power))
|
|
if power == 0:
|
|
return self
|
|
|
|
if interpolation is None:
|
|
interpolation = ImageProcessor.Interpolation.LINEAR
|
|
|
|
img = orig_img = self._img
|
|
|
|
N,H,W,C = img.shape
|
|
W_lr = max(4, int(W*(1.0-power)))
|
|
H_lr = max(4, int(H*(1.0-power)))
|
|
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
|
img = cv2.resize (img, (W_lr,H_lr), interpolation=_cv_inter[interpolation])
|
|
img = cv2.resize (img, (W,H) , interpolation=_cv_inter[interpolation])
|
|
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask').astype(orig_img.dtype)
|
|
|
|
self._img = img
|
|
return self
|
|
|
|
def box_sharpen(self, size : int, power : float, mask = None) -> 'ImageProcessor':
|
|
"""
|
|
size int kernel size
|
|
|
|
power float 0 .. 1.0 (or higher)
|
|
"""
|
|
power = max(0, power)
|
|
if power == 0:
|
|
return self
|
|
|
|
if size % 2 == 0:
|
|
size += 1
|
|
|
|
dtype = self.get_dtype()
|
|
self.to_ufloat32()
|
|
|
|
img = orig_img = self._img
|
|
N,H,W,C = img.shape
|
|
|
|
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
|
|
|
kernel = np.zeros( (size, size), dtype=np.float32)
|
|
kernel[ size//2, size//2] = 1.0
|
|
box_filter = np.ones( (size, size), dtype=np.float32) / (size**2)
|
|
kernel = kernel + (kernel - box_filter) * (power)
|
|
img = cv2.filter2D(img, -1, kernel)
|
|
img = np.clip(img, 0, 1, out=img)
|
|
|
|
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
|
|
|
self._img = img
|
|
self.to_dtype(dtype)
|
|
return self
|
|
|
|
def gaussian_sharpen(self, sigma : float, power : float, mask = None) -> 'ImageProcessor':
|
|
"""
|
|
sigma float
|
|
|
|
power float 0 .. 1.0 and higher
|
|
"""
|
|
sigma = max(0, sigma)
|
|
if sigma == 0:
|
|
return self
|
|
|
|
dtype = self.get_dtype()
|
|
self.to_ufloat32()
|
|
|
|
img = orig_img = self._img
|
|
N,H,W,C = img.shape
|
|
|
|
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
|
|
|
img = cv2.addWeighted(img, 1.0 + power,
|
|
cv2.GaussianBlur(img, (0, 0), sigma), -power, 0)
|
|
img = np.clip(img, 0, 1, out=img)
|
|
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
|
|
|
self._img = img
|
|
|
|
self.to_dtype(dtype)
|
|
return self
|
|
|
|
def gaussian_blur(self, sigma : float, opacity : float = 1.0, mask = None) -> 'ImageProcessor':
|
|
"""
|
|
sigma float
|
|
|
|
opacity float 0 .. 1.0
|
|
"""
|
|
sigma = max(0, sigma)
|
|
if sigma == 0:
|
|
return self
|
|
opacity = np.float32( min(1, max(0, opacity)) )
|
|
if opacity == 0:
|
|
return self
|
|
|
|
dtype = self.get_dtype()
|
|
self.to_ufloat32()
|
|
|
|
img = orig_img = self._img
|
|
N,H,W,C = img.shape
|
|
|
|
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
|
|
|
img_blur = cv2.GaussianBlur(img, (0,0), sigma)
|
|
f32_1 = np.float32(1.0)
|
|
img = ne.evaluate('img*(f32_1-opacity) + img_blur*opacity')
|
|
|
|
img = np.clip(img, 0, 1, out=img)
|
|
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
|
|
|
self._img = img
|
|
|
|
self.to_dtype(dtype)
|
|
return self
|
|
|
|
def median_blur(self, size : int, opacity : float = 1.0, mask = None) -> 'ImageProcessor':
|
|
"""
|
|
size int median kernel size
|
|
|
|
opacity float 0 .. 1.0
|
|
"""
|
|
if size % 2 == 0:
|
|
size += 1
|
|
size = max(1, size)
|
|
|
|
opacity = min(1, max(0, opacity))
|
|
if opacity == 0:
|
|
return self
|
|
|
|
dtype = self.get_dtype()
|
|
self.to_ufloat32()
|
|
|
|
img = orig_img = self._img
|
|
N,H,W,C = img.shape
|
|
|
|
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
|
|
|
img_blur = cv2.medianBlur(img, size)
|
|
f32_1 = np.float32(1.0)
|
|
img = ne.evaluate('img*(f32_1-opacity) + img_blur*opacity')
|
|
img = np.clip(img, 0, 1, out=img)
|
|
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
|
|
|
self._img = img
|
|
|
|
self.to_dtype(dtype)
|
|
return self
|
|
|
|
def motion_blur( self, size, angle, mask=None ):
|
|
"""
|
|
size [1..]
|
|
|
|
angle degrees
|
|
|
|
mask H,W
|
|
H,W,C
|
|
N,H,W,C int/float 0-1 will be applied
|
|
"""
|
|
if size % 2 == 0:
|
|
size += 1
|
|
|
|
dtype = self.get_dtype()
|
|
self.to_ufloat32()
|
|
|
|
img = orig_img = self._img
|
|
N,H,W,C = img.shape
|
|
|
|
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
|
|
|
k = np.zeros((size, size), dtype=np.float32)
|
|
k[ (size-1)// 2 , :] = np.ones(size, dtype=np.float32)
|
|
k = cv2.warpAffine(k, cv2.getRotationMatrix2D( (size / 2 -0.5 , size / 2 -0.5 ) , angle, 1.0), (size, size) )
|
|
k = k * ( 1.0 / np.sum(k) )
|
|
|
|
img = cv2.filter2D(img, -1, k)
|
|
img = np.clip(img, 0, 1, out=img)
|
|
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
|
|
|
self._img = img
|
|
self.to_dtype(dtype)
|
|
return self
|
|
|
|
|
|
def erode_blur(self, erode : int, blur : int, fade_to_border : bool = False) -> 'ImageProcessor':
|
|
"""
|
|
apply erode and blur to the mask image
|
|
|
|
erode int != 0
|
|
blur int > 0
|
|
fade_to_border(False) clip the image in order
|
|
to fade smoothly to the border with specified blur amount
|
|
"""
|
|
erode, blur = int(erode), int(blur)
|
|
|
|
img = self._img
|
|
N,H,W,C = img.shape
|
|
|
|
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
|
img = np.pad (img, ( (H,H), (W,W), (0,0) ) )
|
|
|
|
if erode > 0:
|
|
el = np.asarray(cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)))
|
|
iterations = max(1,erode//2)
|
|
img = cv2.erode(img, el, iterations = iterations )
|
|
|
|
elif erode < 0:
|
|
el = np.asarray(cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)))
|
|
iterations = max(1,-erode//2)
|
|
img = cv2.dilate(img, el, iterations = iterations )
|
|
|
|
if fade_to_border:
|
|
h_clip_size = H + blur // 2
|
|
w_clip_size = W + blur // 2
|
|
img[:h_clip_size,:] = 0
|
|
img[-h_clip_size:,:] = 0
|
|
img[:,:w_clip_size] = 0
|
|
img[:,-w_clip_size:] = 0
|
|
|
|
if blur > 0:
|
|
sigma = blur * 0.125 * 2
|
|
img = cv2.GaussianBlur(img, (0, 0), sigma)
|
|
|
|
img = img[H:-H,W:-W]
|
|
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
|
|
|
|
self._img = img
|
|
return self
|
|
|
|
def levels(self, in_bwg_out_bw, mask = None) -> 'ImageProcessor':
|
|
"""
|
|
in_bwg_out_bw ( [N],[C], 5)
|
|
optional per channel/batch input black,white,gamma and out black,white floats
|
|
|
|
in black = [0.0 .. 1.0] default:0.0
|
|
in white = [0.0 .. 1.0] default:1.0
|
|
in gamma = [0.0 .. 2.0++] default:1.0
|
|
|
|
out black = [0.0 .. 1.0] default:0.0
|
|
out white = [0.0 .. 1.0] default:1.0
|
|
"""
|
|
dtype = self.get_dtype()
|
|
self.to_ufloat32()
|
|
|
|
img = orig_img = self._img
|
|
N,H,W,C = img.shape
|
|
|
|
v = np.array(in_bwg_out_bw, np.float32)
|
|
|
|
if v.ndim == 1:
|
|
v = v[None,None,...]
|
|
v = np.tile(v, (N,C,1))
|
|
elif v.ndim == 2:
|
|
v = v[None,...]
|
|
v = np.tile(v, (N,1,1))
|
|
elif v.ndim > 3:
|
|
raise ValueError('in_bwg_out_bw.ndim > 3')
|
|
|
|
VN, VC, VD = v.shape
|
|
if N != VN or C != VC or VD != 5:
|
|
raise ValueError('wrong in_bwg_out_bw size. Must have 5 floats at last dim.')
|
|
|
|
v = v[:,None,None,:,:]
|
|
|
|
img = np.clip( (img - v[...,0]) / (v[...,1] - v[...,0]), 0, 1 )
|
|
|
|
img = ( img ** (1/v[...,2]) ) * (v[...,4] - v[...,3]) + v[...,3]
|
|
img = np.clip(img, 0, 1, out=img)
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
|
|
|
self._img = img
|
|
self.to_dtype(dtype)
|
|
return self
|
|
|
|
def hsv(self, h_diff : float, s_diff : float, v_diff : float, mask = None) -> 'ImageProcessor':
|
|
"""
|
|
apply HSV modification for BGR image
|
|
|
|
h_diff = [-1.0 .. 1.0]
|
|
s_diff = [-1.0 .. 1.0]
|
|
v_diff = [-1.0 .. 1.0]
|
|
"""
|
|
dtype = self.get_dtype()
|
|
self.to_ufloat32()
|
|
|
|
img = orig_img = self._img
|
|
N,H,W,C = img.shape
|
|
if C != 3:
|
|
raise Exception('Image channels must be == 3')
|
|
|
|
img = img.reshape( (N*H,W,C) )
|
|
|
|
h, s, v = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
|
h = ( h + h_diff*360.0 ) % 360
|
|
|
|
s += s_diff
|
|
np.clip (s, 0, 1, out=s )
|
|
|
|
v += v_diff
|
|
np.clip (v, 0, 1, out=v )
|
|
|
|
img = np.clip( cv2.cvtColor(cv2.merge([h, s, v]), cv2.COLOR_HSV2BGR) , 0, 1 )
|
|
img = img.reshape( (N,H,W,C) )
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask')
|
|
|
|
self._img = img
|
|
self.to_dtype(dtype)
|
|
return self
|
|
|
|
def to_lab(self) -> 'ImageProcessor':
|
|
"""
|
|
"""
|
|
img = self._img
|
|
N,H,W,C = img.shape
|
|
if C != 3:
|
|
raise Exception('Image channels must be == 3')
|
|
|
|
img = img.reshape( (N*H,W,C) )
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
|
|
img = img.reshape( (N,H,W,C) )
|
|
|
|
self._img = img
|
|
return self
|
|
|
|
def from_lab(self) -> 'ImageProcessor':
|
|
"""
|
|
"""
|
|
img = self._img
|
|
N,H,W,C = img.shape
|
|
if C != 3:
|
|
raise Exception('Image channels must be == 3')
|
|
|
|
img = img.reshape( (N*H,W,C) )
|
|
img = cv2.cvtColor(img, cv2.COLOR_LAB2BGR)
|
|
img = img.reshape( (N,H,W,C) )
|
|
|
|
self._img = img
|
|
return self
|
|
|
|
def jpeg_recompress(self, quality : int, mask = None ) -> 'ImageProcessor':
|
|
"""
|
|
quality 0-100
|
|
"""
|
|
dtype = self.get_dtype()
|
|
self.to_uint8()
|
|
|
|
img = orig_img = self._img
|
|
_,_,_,C = img.shape
|
|
if C != 3:
|
|
raise Exception('Image channels must be == 3')
|
|
|
|
new_imgs = []
|
|
for x in img:
|
|
ret, result = cv2.imencode('.jpg', x, [int(cv2.IMWRITE_JPEG_QUALITY), quality] )
|
|
if not ret:
|
|
raise Exception('unable to compress jpeg')
|
|
x = cv2.imdecode(result, flags=cv2.IMREAD_UNCHANGED)
|
|
|
|
new_imgs.append(x)
|
|
|
|
img = np.array(new_imgs)
|
|
|
|
|
|
if mask is not None:
|
|
mask = self._check_normalize_mask(mask)
|
|
img = ne.evaluate('orig_img*(1-mask) + img*mask').astype(np.uint8)
|
|
|
|
self._img = img
|
|
self.to_dtype(dtype)
|
|
|
|
return self
|
|
|
|
def patch_to_batch(self, patch_size : int) -> 'ImageProcessor':
|
|
img = self._img
|
|
|
|
N,H,W,C = img.shape
|
|
OH, OW = H // patch_size, W // patch_size
|
|
|
|
img = img.reshape(N,OH,patch_size,OW,patch_size,C)
|
|
img = img.transpose(0,2,4,1,3,5)
|
|
img = img.reshape(N*patch_size*patch_size,OH,OW,C)
|
|
self._img = img
|
|
|
|
return self
|
|
|
|
def patch_from_batch(self, patch_size : int) -> 'ImageProcessor':
|
|
img = self._img
|
|
|
|
N,H,W,C = img.shape
|
|
ON = N//(patch_size*patch_size)
|
|
img = img.reshape(ON,patch_size,patch_size,H,W,C )
|
|
img = img.transpose(0,3,1,4,2,5)
|
|
img = img.reshape(ON,H*patch_size,W*patch_size,C )
|
|
self._img = img
|
|
|
|
return self
|
|
|
|
def rct(self, like : np.ndarray, mask : np.ndarray = None, like_mask : np.ndarray = None, mask_cutoff=0.5) -> 'ImageProcessor':
|
|
"""
|
|
Transfer color using rct method.
|
|
|
|
like np.ndarray [N][HW][3C] np.uint8/np.float32
|
|
|
|
mask(None) np.ndarray [N][HW][1C] np.uint8/np.float32
|
|
like_mask(None) np.ndarray [N][HW][1C] np.uint8/np.float32
|
|
|
|
mask_cutoff(0.5) float
|
|
|
|
masks are used to limit the space where color statistics will be computed to adjust the image
|
|
|
|
reference: Color Transfer between Images https://www.cs.tau.ac.il/~turkel/imagepapers/ColorTransfer.pdf
|
|
"""
|
|
dtype = self.get_dtype()
|
|
|
|
self.to_ufloat32()
|
|
self.to_lab()
|
|
|
|
like_for_stat = ImageProcessor(like).to_ufloat32().to_lab().get_image('NHWC')
|
|
if like_mask is not None:
|
|
like_mask = ImageProcessor(like_mask).to_ufloat32().ch(1).get_image('NHW')
|
|
like_for_stat = like_for_stat.copy()
|
|
like_for_stat[like_mask < mask_cutoff] = [0,0,0]
|
|
|
|
img_for_stat = img = self._img
|
|
if mask is not None:
|
|
mask = ImageProcessor(mask).to_ufloat32().ch(1).get_image('NHW')
|
|
img_for_stat = img_for_stat.copy()
|
|
img_for_stat[mask < mask_cutoff] = [0,0,0]
|
|
|
|
source_l_mean, source_l_std, source_a_mean, source_a_std, source_b_mean, source_b_std, \
|
|
= img_for_stat[...,0].mean((1,2), keepdims=True), img_for_stat[...,0].std((1,2), keepdims=True), img_for_stat[...,1].mean((1,2), keepdims=True), img_for_stat[...,1].std((1,2), keepdims=True), img_for_stat[...,2].mean((1,2), keepdims=True), img_for_stat[...,2].std((1,2), keepdims=True)
|
|
|
|
like_l_mean, like_l_std, like_a_mean, like_a_std, like_b_mean, like_b_std, \
|
|
= like_for_stat[...,0].mean((1,2), keepdims=True), like_for_stat[...,0].std((1,2), keepdims=True), like_for_stat[...,1].mean((1,2), keepdims=True), like_for_stat[...,1].std((1,2), keepdims=True), like_for_stat[...,2].mean((1,2), keepdims=True), like_for_stat[...,2].std((1,2), keepdims=True)
|
|
|
|
# not as in the paper: scale by the standard deviations using reciprocal of paper proposed factor
|
|
source_l = img[...,0]
|
|
source_l = ne.evaluate('(source_l - source_l_mean) * like_l_std / source_l_std + like_l_mean')
|
|
|
|
source_a = img[...,1]
|
|
source_a = ne.evaluate('(source_a - source_a_mean) * like_a_std / source_a_std + like_a_mean')
|
|
|
|
source_b = img[...,2]
|
|
source_b = ne.evaluate('(source_b - source_b_mean) * like_b_std / source_b_std + like_b_mean')
|
|
|
|
np.clip(source_l, 0, 100, out=source_l)
|
|
np.clip(source_a, -127, 127, out=source_a)
|
|
np.clip(source_b, -127, 127, out=source_b)
|
|
|
|
self._img = np.stack([source_l,source_a,source_b], -1)
|
|
self.from_lab()
|
|
self.to_dtype(dtype)
|
|
return self
|
|
|
|
def rotate90(self) -> 'ImageProcessor':
|
|
self._img = np.rot90(self._img, k=1, axes=(1,2) )
|
|
return self
|
|
|
|
def rotate180(self) -> 'ImageProcessor':
|
|
self._img = np.rot90(self._img, k=2, axes=(1,2) )
|
|
return self
|
|
|
|
def rotate270(self) -> 'ImageProcessor':
|
|
self._img = np.rot90(self._img, k=3, axes=(1,2) )
|
|
return self
|
|
|
|
def flip_horizontal(self) -> 'ImageProcessor':
|
|
"""
|
|
|
|
"""
|
|
self._img = self._img[:,:,::-1,:]
|
|
return self
|
|
|
|
def flip_vertical(self) -> 'ImageProcessor':
|
|
"""
|
|
|
|
"""
|
|
self._img = self._img[:,::-1,:,:]
|
|
return self
|
|
|
|
def pad(self, t_h, b_h, l_w, r_w) -> 'ImageProcessor':
|
|
"""
|
|
|
|
"""
|
|
self._img = np.pad(self._img, ( (0,0), (t_h,b_h), (l_w,r_w), (0,0) ))
|
|
return self
|
|
|
|
def pad_to_next_divisor(self, dw=None, dh=None) -> 'ImageProcessor':
|
|
"""
|
|
pad image to next divisor of width/height
|
|
|
|
dw,dh int
|
|
"""
|
|
img = self._img
|
|
_,H,W,_ = img.shape
|
|
|
|
w_pad = 0
|
|
if dw is not None:
|
|
w_pad = W % dw
|
|
if w_pad != 0:
|
|
w_pad = dw - w_pad
|
|
|
|
h_pad = 0
|
|
if dh is not None:
|
|
h_pad = H % dh
|
|
if h_pad != 0:
|
|
h_pad = dh - h_pad
|
|
|
|
if w_pad != 0 or h_pad != 0:
|
|
img = np.pad(img, ( (0,0), (0,h_pad), (0,w_pad), (0,0) ))
|
|
|
|
self._img = img
|
|
return self
|
|
|
|
def get_image(self, format) -> np.ndarray:
|
|
"""
|
|
returns image with desired format
|
|
|
|
format str examples:
|
|
NHWC, HWCN, NHW
|
|
|
|
if symbol in format does not exist, it will be got from 0 index
|
|
|
|
zero dim will be set to 1
|
|
"""
|
|
format = format.upper()
|
|
img = self._img
|
|
|
|
# First slice missing dims
|
|
N_slice = 0 if 'N' not in format else slice(None)
|
|
H_slice = 0 if 'H' not in format else slice(None)
|
|
W_slice = 0 if 'W' not in format else slice(None)
|
|
C_slice = 0 if 'C' not in format else slice(None)
|
|
img = img[N_slice, H_slice, W_slice, C_slice]
|
|
|
|
f = ''
|
|
if 'N' in format: f += 'N'
|
|
if 'H' in format: f += 'H'
|
|
if 'W' in format: f += 'W'
|
|
if 'C' in format: f += 'C'
|
|
|
|
if f != format:
|
|
# Transpose to target
|
|
d = { s:i for i,s in enumerate(f) }
|
|
transpose_order = [ d[s] for s in format ]
|
|
img = img.transpose(transpose_order)
|
|
|
|
return np.ascontiguousarray(img)
|
|
|
|
def ch(self, TC : int) -> 'ImageProcessor':
|
|
"""
|
|
Clips or expands channel dimension to target channels
|
|
|
|
TC int >= 1
|
|
"""
|
|
img = self._img
|
|
N,H,W,C = img.shape
|
|
|
|
if TC <= 0:
|
|
raise ValueError(f'channels must be positive value, not {TC}')
|
|
|
|
if TC > C:
|
|
# Ch expand
|
|
img = img[...,0:1] # Clip to single ch first.
|
|
img = np.repeat (img, TC, -1) # Expand by repeat
|
|
elif TC < C:
|
|
# Ch reduction clip
|
|
img = img[...,:TC]
|
|
|
|
self._img = img
|
|
return self
|
|
|
|
def to_grayscale(self) -> 'ImageProcessor':
|
|
"""
|
|
Converts 3 ch bgr to grayscale.
|
|
"""
|
|
img = self._img
|
|
_,_,_,C = img.shape
|
|
if C != 1:
|
|
dtype = self.get_dtype()
|
|
|
|
if C == 2:
|
|
img = img[...,:1]
|
|
elif C >= 3:
|
|
img = img[...,:3]
|
|
|
|
img = np.dot(img, np.array([0.1140, 0.5870, 0.2989], np.float32)) [...,None]
|
|
img = img.astype(dtype)
|
|
self._img = img
|
|
|
|
return self
|
|
|
|
def resize(self, size : Tuple, interpolation : 'ImageProcessor.Interpolation' = None ) -> 'ImageProcessor':
|
|
"""
|
|
resize to (W,H)
|
|
"""
|
|
img = self._img
|
|
N,H,W,C = img.shape
|
|
|
|
TW,TH = size
|
|
if W != TW or H != TH:
|
|
if interpolation is None:
|
|
interpolation = ImageProcessor.Interpolation.LINEAR
|
|
|
|
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
|
img = cv2.resize (img, (TW, TH), interpolation=_cv_inter[interpolation])
|
|
img = img.reshape( (TH,TW,N,C) ).transpose( (2,0,1,3) )
|
|
|
|
self._img = img
|
|
|
|
return self
|
|
|
|
def warp_affine(self, mat, out_width, out_height, interpolation : 'ImageProcessor.Interpolation' = None ) -> 'ImageProcessor':
|
|
"""
|
|
img HWC
|
|
"""
|
|
img = self._img
|
|
N,H,W,C = img.shape
|
|
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
|
|
|
|
if interpolation is None:
|
|
interpolation = ImageProcessor.Interpolation.LINEAR
|
|
|
|
img = cv2.warpAffine(img, mat, (out_width, out_height), flags=_cv_inter[interpolation] )
|
|
|
|
img = img.reshape( (out_height,out_width,N,C) ).transpose( (2,0,1,3) )
|
|
self._img = img
|
|
return self
|
|
|
|
def swap_ch(self) -> 'ImageProcessor':
|
|
"""swaps order of channels"""
|
|
self._img = self._img[...,::-1]
|
|
return self
|
|
|
|
def as_float32(self) -> 'ImageProcessor':
|
|
"""
|
|
change image format to float32
|
|
"""
|
|
self._img = self._img.astype(np.float32)
|
|
return self
|
|
|
|
def as_uint8(self) -> 'ImageProcessor':
|
|
"""
|
|
change image format to uint8
|
|
"""
|
|
self._img = self._img.astype(np.uint8)
|
|
return self
|
|
|
|
def to_dtype(self, dtype, from_tanh=False) -> 'ImageProcessor':
|
|
if dtype == np.float32:
|
|
return self.to_ufloat32(from_tanh=from_tanh)
|
|
elif dtype == np.uint8:
|
|
return self.to_uint8(from_tanh=from_tanh)
|
|
else:
|
|
raise ValueError('unsupported dtype')
|
|
|
|
def to_ufloat32(self, as_tanh=False, from_tanh=False) -> 'ImageProcessor':
|
|
"""
|
|
Convert to uniform float32
|
|
"""
|
|
if self._img.dtype == np.uint8:
|
|
self._img = self._img.astype(np.float32)
|
|
if as_tanh:
|
|
self._img /= 127.5
|
|
self._img -= 1.0
|
|
else:
|
|
self._img /= 255.0
|
|
elif self._img.dtype in [np.float32, np.float64]:
|
|
if from_tanh:
|
|
self._img += 1.0
|
|
self._img /= 2.0
|
|
|
|
return self
|
|
|
|
def to_uint8(self, from_tanh=False) -> 'ImageProcessor':
|
|
"""
|
|
Convert to uint8
|
|
|
|
if current image dtype is float32/64, then image will be multiplied by *255
|
|
"""
|
|
img = self._img
|
|
|
|
if img.dtype in [np.float32, np.float64]:
|
|
if from_tanh:
|
|
img += 1.0
|
|
img /= 2.0
|
|
|
|
img *= 255.0
|
|
np.clip(img, 0, 255, out=img)
|
|
|
|
self._img = img.astype(np.uint8, copy=False)
|
|
return self
|
|
|
|
def _check_normalize_mask(self, mask : np.ndarray):
|
|
N,H,W,C = self._img.shape
|
|
|
|
if mask.ndim == 2:
|
|
mask = mask[None,...,None]
|
|
elif mask.ndim == 3:
|
|
mask = mask[None,...]
|
|
|
|
if mask.ndim != 4:
|
|
raise ValueError('mask must have ndim == 4')
|
|
|
|
MN, MH, MW, MC = mask.shape
|
|
if H != MH or W != MW:
|
|
raise ValueError('mask H,W, mismatch')
|
|
|
|
if MN != 1 and N != MN:
|
|
raise ValueError(f'mask N dim must be 1 or == {N}')
|
|
if MC != 1 and C != MC:
|
|
raise ValueError(f'mask C dim must be 1 or == {C}')
|
|
|
|
return mask
|
|
|
|
class Interpolation(IntEnum):
|
|
NEAREST = 0,
|
|
LINEAR = 1
|
|
CUBIC = 2,
|
|
LANCZOS4 = 4
|
|
|
|
_cv_inter = { ImageProcessor.Interpolation.NEAREST : cv2.INTER_NEAREST,
|
|
ImageProcessor.Interpolation.LINEAR : cv2.INTER_LINEAR,
|
|
ImageProcessor.Interpolation.CUBIC : cv2.INTER_CUBIC,
|
|
ImageProcessor.Interpolation.LANCZOS4 : cv2.INTER_LANCZOS4,
|
|
} |