mirror of
https://github.com/iperov/DeepFaceLive.git
synced 2024-12-26 07:51:13 -08:00
235 lines
7.6 KiB
Python
235 lines
7.6 KiB
Python
import numpy as np
|
|
|
|
from ..AShape import AShape
|
|
from ..backend import Kernel
|
|
from ..EInterpolation import EInterpolation
|
|
from ..HKernel import HKernel
|
|
from ..SCacheton import SCacheton
|
|
from ..Tensor import Tensor
|
|
|
|
|
|
def remap_np_affine (input_t : Tensor, affine_n : np.ndarray, interpolation : EInterpolation = None, inverse=False, output_size=None, post_op_text=None, dtype=None) -> Tensor:
|
|
"""
|
|
remap affine operator for all channels using single numpy affine mat
|
|
|
|
arguments
|
|
|
|
input_t Tensor (...,H,W)
|
|
|
|
affine_n np.array (2,3)
|
|
|
|
interpolation EInterpolation
|
|
|
|
post_op_text cl kernel
|
|
post operation with output float value named 'O'
|
|
example 'O = 2*O;'
|
|
|
|
output_size (w,h)
|
|
|
|
dtype
|
|
"""
|
|
if affine_n.shape != (2,3):
|
|
raise ValueError('affine_n.shape must be (2,3)')
|
|
|
|
op = SCacheton.get(_RemapAffineOp, input_t.shape, input_t.dtype, interpolation, output_size, post_op_text, dtype)
|
|
|
|
output_t = Tensor( op.o_shape, op.o_dtype, device=input_t.get_device() )
|
|
|
|
((a, b, c),
|
|
(d, e, f)) = affine_n
|
|
if not inverse:
|
|
# do inverse by default, match cv2.warpAffine behaviour
|
|
D = a*e - b*d
|
|
D = 1.0 / D if D != 0.0 else 0.0
|
|
a, b, c, d, e, f = ( e*D, -b*D, (b*f-e*c)*D ,
|
|
-d*D, a*D, (d*c-a*f)*D )
|
|
|
|
input_t.get_device().run_kernel(op.forward_krn, output_t.get_buffer(), input_t.get_buffer(),
|
|
np.float32(a), np.float32(b), np.float32(c), np.float32(d), np.float32(e), np.float32(f) )
|
|
|
|
return output_t
|
|
|
|
|
|
class _RemapAffineOp():
|
|
def __init__(self, i_shape : AShape, i_dtype, interpolation, o_size, post_op_text, o_dtype):
|
|
if np.dtype(i_dtype).type == np.bool_:
|
|
raise ValueError('np.bool_ dtype of i_dtype is not supported.')
|
|
if i_shape.ndim < 2:
|
|
raise ValueError('i_shape.ndim must be >= 2 (...,H,W)')
|
|
if interpolation is None:
|
|
interpolation = EInterpolation.LINEAR
|
|
|
|
IH,IW = i_shape[-2:]
|
|
if o_size is not None:
|
|
OH,OW = o_size
|
|
else:
|
|
OH,OW = IH,IW
|
|
|
|
o_shape = AShape( (OH,OW) )
|
|
if i_shape.ndim > 2:
|
|
o_shape = i_shape[:-2] + o_shape
|
|
|
|
self.o_shape = o_shape
|
|
self.o_dtype = o_dtype = o_dtype if o_dtype is not None else i_dtype
|
|
|
|
if post_op_text is None:
|
|
post_op_text = ''
|
|
|
|
|
|
if interpolation == EInterpolation.LINEAR:
|
|
self.forward_krn = Kernel(global_shape=(o_shape.size,), kernel_text=f"""
|
|
|
|
{HKernel.define_tensor('O', o_shape, o_dtype)}
|
|
{HKernel.define_tensor('I', i_shape, i_dtype)}
|
|
|
|
__kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME,
|
|
float a, float b, float c,
|
|
float d, float e, float f)
|
|
{{
|
|
size_t gid = get_global_id(0);
|
|
|
|
{HKernel.decompose_idx_to_axes_idxs('gid', 'O', o_shape.ndim)}
|
|
|
|
float cx01 = om1*a + om2*b + c;
|
|
float cy01 = om1*d + om2*e + f;
|
|
|
|
float cx0f = floor(cx01); int cx0 = (int)cx0f;
|
|
float cy0f = floor(cy01); int cy0 = (int)cy0f;
|
|
float cx1f = cx0f+1; int cx1 = (int)cx1f;
|
|
float cy1f = cy0f+1; int cy1 = (int)cy1f;
|
|
|
|
float p00 = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='cy0,cx0')}));
|
|
float p01 = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='cy0,cx1')}));
|
|
float p10 = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='cy1,cx0')}));
|
|
float p11 = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='cy1,cx1')}));
|
|
|
|
p00 *= (cx1f - cx01)*(cy1f - cy01)*(cy0 >= 0 & cy0 < Im2 & cx0 >= 0 & cx0 < Im1);
|
|
p01 *= (cx01 - cx0f)*(cy1f - cy01)*(cy0 >= 0 & cy0 < Im2 & cx1 >= 0 & cx1 < Im1);
|
|
p10 *= (cx1f - cx01)*(cy01 - cy0f)*(cy1 >= 0 & cy1 < Im2 & cx0 >= 0 & cx0 < Im1);
|
|
p11 *= (cx01 - cx0f)*(cy01 - cy0f)*(cy1 >= 0 & cy1 < Im2 & cx1 >= 0 & cx1 < Im1);
|
|
|
|
float O = p00 + p01 + p10 + p11;
|
|
|
|
{post_op_text}
|
|
|
|
O_GLOBAL_STORE(gid, O);
|
|
}}
|
|
""")
|
|
elif interpolation == EInterpolation.CUBIC:
|
|
self.forward_krn = Kernel(global_shape=(o_shape.size,), kernel_text=f"""
|
|
|
|
{HKernel.define_tensor('O', o_shape, o_dtype)}
|
|
{HKernel.define_tensor('I', i_shape, i_dtype)}
|
|
|
|
float cubic(float p0, float p1, float p2, float p3, float x)
|
|
{{
|
|
float a0 = p1;
|
|
float a1 = p2 - p0;
|
|
float a2 = 2 * p0 - 5 * p1 + 4 * p2 - p3;
|
|
float a3 = 3 * (p1 - p2) + p3 - p0;
|
|
return a0 + 0.5 * x * (a1 + x * (a2 + x * a3));
|
|
}}
|
|
|
|
__kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME,
|
|
float a, float b, float c,
|
|
float d, float e, float f)
|
|
{{
|
|
size_t gid = get_global_id(0);
|
|
|
|
{HKernel.decompose_idx_to_axes_idxs('gid', 'O', o_shape.ndim)}
|
|
|
|
float cx01f = om1*a + om2*b + c;
|
|
float cy01f = om1*d + om2*e + f;
|
|
|
|
float cxf = floor(cx01f); int cx = (int)cxf;
|
|
float cyf = floor(cy01f); int cy = (int)cyf;
|
|
|
|
float dx = cx01f-cxf;
|
|
float dy = cy01f-cyf;
|
|
|
|
float row[4];
|
|
|
|
#pragma unroll
|
|
for (int y=cy-1, j=0; y<=cy+2; y++, j++)
|
|
{{
|
|
float col[4];
|
|
#pragma unroll
|
|
for (int x=cx-1, i=0; x<=cx+2; x++, i++)
|
|
{{
|
|
float sxy = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='y,x')}));
|
|
|
|
col[i] = sxy*(y >= 0 & y < Im2 & x >= 0 & x < Im1);
|
|
}}
|
|
row[j] = cubic(col[0], col[1], col[2], col[3], dx);
|
|
}}
|
|
|
|
float O = cubic(row[0], row[1], row[2], row[3], dy);
|
|
{post_op_text}
|
|
O_GLOBAL_STORE(gid, O);
|
|
}}
|
|
""")
|
|
elif interpolation in [EInterpolation.LANCZOS3, EInterpolation.LANCZOS4]:
|
|
RAD = 3 if interpolation == EInterpolation.LANCZOS3 else 4
|
|
self.forward_krn = Kernel(global_shape=(o_shape.size,), kernel_text=f"""
|
|
|
|
{HKernel.define_tensor('O', o_shape, o_dtype)}
|
|
{HKernel.define_tensor('I', i_shape, i_dtype)}
|
|
|
|
__kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME,
|
|
float a, float b, float c,
|
|
float d, float e, float f)
|
|
{{
|
|
size_t gid = get_global_id(0);
|
|
|
|
{HKernel.decompose_idx_to_axes_idxs('gid', 'O', o_shape.ndim)}
|
|
|
|
float cx01f = om1*a + om2*b + c;
|
|
float cy01f = om1*d + om2*e + f;
|
|
|
|
float cxf = floor(cx01f); int cx = (int)cxf;
|
|
float cyf = floor(cy01f); int cy = (int)cyf;
|
|
|
|
#define RAD {RAD}
|
|
float Fy[2 * RAD];
|
|
float Fx[2 * RAD];
|
|
|
|
#pragma unroll
|
|
for (int y=cy-RAD+1, j=0; y<=cy+RAD; y++, j++)
|
|
{{
|
|
float dy = fabs(cy01f - y);
|
|
if (dy < 1e-4) Fy[j] = 1;
|
|
else if (dy > RAD) Fy[j] = 0;
|
|
else Fy[j] = ( RAD * sin(M_PI * dy) * sin(M_PI * dy / RAD) ) / ( (M_PI*M_PI)*dy*dy );
|
|
}}
|
|
|
|
#pragma unroll
|
|
for (int x=cx-RAD+1, i=0; x<=cx+RAD; x++, i++)
|
|
{{
|
|
float dx = fabs(cx01f - x);
|
|
if (dx < 1e-4) Fx[i] = 1;
|
|
else if (dx > RAD) Fx[i] = 0;
|
|
else Fx[i] = ( RAD * sin(M_PI * dx) * sin(M_PI * dx / RAD) ) / ( (M_PI*M_PI)*dx*dx );
|
|
}}
|
|
|
|
float FxFysum = 0;
|
|
float O = 0;
|
|
|
|
#pragma unroll
|
|
for (int y=cy-RAD+1, j=0; y<=cy+RAD; y++, j++)
|
|
#pragma unroll
|
|
for (int x=cx-RAD+1, i=0; x<=cx+RAD; x++, i++)
|
|
{{
|
|
float sxy = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='y,x')}));
|
|
|
|
float Fxyv = Fx[i]*Fy[j];
|
|
FxFysum += Fxyv;
|
|
|
|
O += sxy*Fxyv*(y >= 0 & y < Im2 & x >= 0 & x < Im1);
|
|
}}
|
|
O = O / FxFysum;
|
|
{post_op_text}
|
|
O_GLOBAL_STORE(gid, O);
|
|
}}
|
|
""")
|
|
else:
|
|
raise ValueError(f'Unsupported interpolation type {interpolation}') |