mirror of
https://github.com/iperov/DeepFaceLive.git
synced 2024-12-26 07:51:13 -08:00
61 lines
2.1 KiB
Python
61 lines
2.1 KiB
Python
import numpy as np
|
|
|
|
from ..backend import Kernel
|
|
from ..HKernel import HKernel
|
|
from ..SCacheton import SCacheton
|
|
from ..Tensor import Tensor
|
|
from .Initializer import Initializer
|
|
|
|
|
|
class InitRandomUniform(Initializer):
|
|
|
|
def __init__(self, low=0, high=1):
|
|
"""
|
|
arguments
|
|
|
|
low(0) low value
|
|
|
|
high(1) high value (exclusive)
|
|
"""
|
|
super().__init__()
|
|
self._low = low
|
|
self._high = high
|
|
|
|
def initialize_tensor(self, tensor : Tensor):
|
|
|
|
key = (InitRandomUniform, self._low, self._high, tensor.dtype)
|
|
kernel = SCacheton.get_var(key)
|
|
if kernel is None:
|
|
|
|
hl = self._high-self._low
|
|
l = self._low
|
|
|
|
if tensor.dtype in [np.bool_,np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32]:
|
|
gen_expression = f'hash_uint_from_uint(gid+seed32) % {int(hl)} + {int(l)}'
|
|
elif tensor.dtype in [np.int64]:
|
|
gen_expression = f'hash_ulong_from_ulong(gid+seed64) % {int(hl)} + {int(l)}'
|
|
elif tensor.dtype in [np.uint64]:
|
|
gen_expression = f'hash_ulong_from_ulong(gid+seed64) % {int(hl)} + {int(l)}'
|
|
elif tensor.dtype in [np.float16, np.float32]:
|
|
gen_expression = f'hash_float_from_uint(gid+seed32)*{hl} + {l}'
|
|
|
|
kernel = Kernel(kernel_text=f"""
|
|
{HKernel.include_hash()}
|
|
{HKernel.define_tensor('O', (tensor.shape.size,), tensor.dtype )}
|
|
__kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, uint seed32, ulong seed64)
|
|
{{
|
|
size_t gid = get_global_id(0);
|
|
O_GLOBAL_STORE(gid, {gen_expression} );
|
|
}}
|
|
""")
|
|
SCacheton.set_var(key, kernel)
|
|
|
|
|
|
tensor.get_device().run_kernel( kernel, tensor.get_buffer(),
|
|
np.uint32(np.random.randint(np.iinfo(np.uint32).max, dtype=np.uint32)),
|
|
np.uint64(np.random.randint(np.iinfo(np.uint64).max, dtype=np.uint64)),
|
|
global_shape=(tensor.shape.size,) )
|
|
|
|
def __str__(self): return f'InitRandomUniform low={self._low}, high={self._high}'
|
|
|