DeepFaceLive/modelhub/onnx/CenterFace/CenterFace.py
2021-07-23 17:34:49 +04:00

112 lines
3.9 KiB
Python

from pathlib import Path
from typing import List
import numpy as np
from xlib import math as lib_math
from xlib.image import ImageProcessor
from xlib.onnxruntime import (InferenceSession_with_device, ORTDeviceInfo,
get_available_devices_info)
class CenterFace:
"""
CenterFace face detection model.
arguments
device_info ORTDeviceInfo
use CenterFace.get_available_devices()
to determine a list of avaliable devices accepted by model
raises
Exception
"""
@staticmethod
def get_available_devices() -> List[ORTDeviceInfo]:
# CenterFace ONNX model does not work correctly on CPU
# but it is much faster than Pytorch version
return get_available_devices_info(include_cpu=False)
def __init__(self, device_info : ORTDeviceInfo ):
if device_info not in CenterFace.get_available_devices():
raise Exception(f'device_info {device_info} is not in available devices for CenterFace')
path = Path(__file__).parent / 'CenterFace.onnx'
self._sess = sess = InferenceSession_with_device(str(path), device_info)
self._input_name = sess.get_inputs()[0].name
def extract(self, img, threshold : float = 0.5, fixed_window=0, min_face_size=40):
"""
arguments
img np.ndarray ndim 2,3,4
fixed_window(0) int size
0 mean don't use
fit image in fixed window
downscale if bigger than window
pad if smaller than window
increases performance, but decreases accuracy
returns a list of [l,t,r,b] for every batch dimension of img
"""
ip = ImageProcessor(img)
N,H,W,_ = ip.get_dims()
if fixed_window != 0:
fixed_window = max(64, max(1, fixed_window // 32) * 32 )
img_scale = ip.fit_in(fixed_window, fixed_window, pad_to_target=True, allow_upscale=False)
else:
ip.pad_to_next_divisor(64, 64)
img_scale = 1.0
img = ip.ch(3).swap_ch().to_uint8().as_float32().get_image('NCHW')
heatmaps, scales, offsets = self._sess.run(None, {self._input_name: img})
faces_per_batch = []
for heatmap, offset, scale in zip(heatmaps, offsets, scales):
faces = []
for face in self.refine(heatmap, offset, scale, H, W, threshold):
l,t,r,b,c = face
if img_scale != 1.0:
l,t,r,b = l/img_scale, t/img_scale, r/img_scale, b/img_scale
bt = b-t
if min(r-l,bt) < min_face_size:
continue
b += bt*0.1
faces.append( (l,t,r,b) )
faces_per_batch.append(faces)
return faces_per_batch
def refine(self, heatmap, offset, scale, h, w, threshold):
heatmap = heatmap[0]
scale0, scale1 = scale[0, :, :], scale[1, :, :]
offset0, offset1 = offset[0, :, :], offset[1, :, :]
c0, c1 = np.where(heatmap > threshold)
bboxlist = []
if len(c0) > 0:
for i in range(len(c0)):
s0, s1 = np.exp(scale0[c0[i], c1[i]]) * 4, np.exp(scale1[c0[i], c1[i]]) * 4
o0, o1 = offset0[c0[i], c1[i]], offset1[c0[i], c1[i]]
s = heatmap[c0[i], c1[i]]
x1, y1 = max(0, (c1[i] + o1 + 0.5) * 4 - s1 / 2), max(0, (c0[i] + o0 + 0.5) * 4 - s0 / 2)
x1, y1 = min(x1, w), min(y1, h)
bboxlist.append([x1, y1, min(x1 + s1, w), min(y1 + s0, h), s])
bboxlist = np.array(bboxlist, dtype=np.float32)
bboxlist = bboxlist[ lib_math.nms(bboxlist[:,0], bboxlist[:,1], bboxlist[:,2], bboxlist[:,3], bboxlist[:,4], 0.3), : ]
bboxlist = [x for x in bboxlist if x[-1] >= 0.5]
return bboxlist