DeepFaceLab/samplelib/SampleProcessor.py
2020-03-16 22:40:55 +04:00

357 lines
19 KiB
Python

import collections
import math
from enum import IntEnum
import cv2
import numpy as np
from core import imagelib
from facelib import FaceType, LandmarksProcessor
class SampleProcessor(object):
class SampleType(IntEnum):
NONE = 0
IMAGE = 1
FACE_IMAGE = 2
FACE_MASK = 3
LANDMARKS_ARRAY = 4
PITCH_YAW_ROLL = 5
PITCH_YAW_ROLL_SIGMOID = 6
class ChannelType(IntEnum):
NONE = 0
BGR = 1 #BGR
G = 2 #Grayscale
GGG = 3 #3xGrayscale
BGR_SHUFFLE = 4 #BGR shuffle
BGR_RANDOM_HSV_SHIFT = 5
BGR_RANDOM_RGB_LEVELS = 6
G_MASK = 7
class FaceMaskType(IntEnum):
NONE = 0
FULL_FACE = 1 #mask all hull as grayscale
EYES = 2 #mask eyes hull as grayscale
FULL_FACE_EYES = 3 #combo all + eyes as grayscale
class Options(object):
def __init__(self, random_flip = True, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
self.random_flip = random_flip
self.rotation_range = rotation_range
self.scale_range = scale_range
self.tx_range = tx_range
self.ty_range = ty_range
@staticmethod
def process (samples, sample_process_options, output_sample_types, debug, ct_sample=None):
SPST = SampleProcessor.SampleType
SPCT = SampleProcessor.ChannelType
SPFMT = SampleProcessor.FaceMaskType
sample_rnd_seed = np.random.randint(0x80000000)
outputs = []
for sample in samples:
sample_face_type = sample.face_type
sample_bgr = sample.load_bgr()
sample_landmarks = sample.landmarks
ct_sample_bgr = None
h,w,c = sample_bgr.shape
def get_full_face_mask():
if sample.eyebrows_expand_mod is not None:
full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
else:
full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks)
return np.clip(full_face_mask, 0, 1)
def get_eyes_mask():
eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
return np.clip(eyes_mask, 0, 1)
is_face_sample = sample_landmarks is not None
if debug and is_face_sample:
LandmarksProcessor.draw_landmarks (sample_bgr, sample_landmarks, (0, 1, 0))
params_per_resolution = {}
warp_rnd_state = np.random.RandomState (sample_rnd_seed-1)
for opts in output_sample_types:
resolution = opts.get('resolution', None)
if resolution is None:
continue
params_per_resolution[resolution] = imagelib.gen_warp_params(resolution,
sample_process_options.random_flip,
rotation_range=sample_process_options.rotation_range,
scale_range=sample_process_options.scale_range,
tx_range=sample_process_options.tx_range,
ty_range=sample_process_options.ty_range,
rnd_state=warp_rnd_state)
outputs_sample = []
for opts in output_sample_types:
sample_type = opts.get('sample_type', SPST.NONE)
channel_type = opts.get('channel_type', SPCT.NONE)
resolution = opts.get('resolution', 0)
warp = opts.get('warp', False)
transform = opts.get('transform', False)
motion_blur = opts.get('motion_blur', None)
gaussian_blur = opts.get('gaussian_blur', None)
random_bilinear_resize = opts.get('random_bilinear_resize', None)
normalize_tanh = opts.get('normalize_tanh', False)
ct_mode = opts.get('ct_mode', None)
data_format = opts.get('data_format', 'NHWC')
if sample_type == SPST.FACE_MASK or sample_type == SPST.IMAGE:
border_replicate = False
elif sample_type == SPST.FACE_IMAGE:
border_replicate = True
border_replicate = opts.get('border_replicate', border_replicate)
borderMode = cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
if not is_face_sample:
raise ValueError("face_samples should be provided for sample_type FACE_*")
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
face_type = opts.get('face_type', None)
face_mask_type = opts.get('face_mask_type', SPFMT.NONE)
if face_type is None:
raise ValueError("face_type must be defined for face samples")
if face_type > sample.face_type:
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, face_type) )
if sample_type == SPST.FACE_MASK:
if face_mask_type == SPFMT.FULL_FACE:
img = get_full_face_mask()
elif face_mask_type == SPFMT.EYES:
img = get_eyes_mask()
elif face_mask_type == SPFMT.FULL_FACE_EYES:
img = get_full_face_mask() + get_eyes_mask()
else:
img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)
if sample.ie_polys is not None:
sample.ie_polys.overlay_mask(img)
if sample_face_type == FaceType.MARK_ONLY:
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
img = cv2.resize( img, (resolution,resolution), cv2.INTER_LINEAR )
else:
if face_type != sample_face_type:
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_LINEAR )
else:
if w != resolution:
img = cv2.resize( img, (resolution, resolution), cv2.INTER_CUBIC )
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
if len(img.shape) == 2:
img = img[...,None]
if channel_type == SPCT.G:
out_sample = img.astype(np.float32)
else:
raise ValueError("only channel_type.G supported for the mask")
elif sample_type == SPST.FACE_IMAGE:
img = sample_bgr
if face_type != sample_face_type:
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_CUBIC )
else:
if w != resolution:
img = cv2.resize( img, (resolution, resolution), cv2.INTER_CUBIC )
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
img = np.clip(img.astype(np.float32), 0, 1)
# Apply random color transfer
if ct_mode is not None and ct_sample is not None:
if ct_sample_bgr is None:
ct_sample_bgr = ct_sample.load_bgr()
img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), cv2.INTER_LINEAR ) )
if motion_blur is not None:
chance, mb_max_size = motion_blur
chance = np.clip(chance, 0, 100)
l_rnd_state = np.random.RandomState (sample_rnd_seed)
mblur_rnd_chance = l_rnd_state.randint(100)
mblur_rnd_kernel = l_rnd_state.randint(mb_max_size)+1
mblur_rnd_deg = l_rnd_state.randint(360)
if mblur_rnd_chance < chance:
img = imagelib.LinearMotionBlur (img, mblur_rnd_kernel, mblur_rnd_deg )
if gaussian_blur is not None:
chance, kernel_max_size = gaussian_blur
chance = np.clip(chance, 0, 100)
l_rnd_state = np.random.RandomState (sample_rnd_seed+1)
gblur_rnd_chance = l_rnd_state.randint(100)
gblur_rnd_kernel = l_rnd_state.randint(kernel_max_size)*2+1
if gblur_rnd_chance < chance:
img = cv2.GaussianBlur(img, (gblur_rnd_kernel,) *2 , 0)
if random_bilinear_resize is not None:
l_rnd_state = np.random.RandomState (sample_rnd_seed+2)
chance, max_size_per = random_bilinear_resize
chance = np.clip(chance, 0, 100)
pick_chance = l_rnd_state.randint(100)
resize_to = resolution - int( l_rnd_state.rand()* int(resolution*(max_size_per/100.0)) )
img = cv2.resize (img, (resize_to,resize_to), cv2.INTER_LINEAR )
img = cv2.resize (img, (resolution,resolution), cv2.INTER_LINEAR )
# Transform from BGR to desired channel_type
if channel_type == SPCT.BGR:
out_sample = img
elif channel_type == SPCT.BGR_SHUFFLE:
l_rnd_state = np.random.RandomState (sample_rnd_seed)
out_sample = np.take (img, l_rnd_state.permutation(img.shape[-1]), axis=-1)
elif channel_type == SPCT.BGR_RANDOM_HSV_SHIFT:
l_rnd_state = np.random.RandomState (sample_rnd_seed)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
h = (h + l_rnd_state.randint(360) ) % 360
s = np.clip ( s + l_rnd_state.random()-0.5, 0, 1 )
v = np.clip ( v + l_rnd_state.random()/2-0.25, 0, 1 )
hsv = cv2.merge([h, s, v])
out_sample = np.clip( cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) , 0, 1 )
elif channel_type == SPCT.BGR_RANDOM_RGB_LEVELS:
l_rnd_state = np.random.RandomState (sample_rnd_seed)
np_rnd = l_rnd_state.rand
inBlack = np.array([np_rnd()*0.25 , np_rnd()*0.25 , np_rnd()*0.25], dtype=np.float32)
inWhite = np.array([1.0-np_rnd()*0.25, 1.0-np_rnd()*0.25, 1.0-np_rnd()*0.25], dtype=np.float32)
inGamma = np.array([0.5+np_rnd(), 0.5+np_rnd(), 0.5+np_rnd()], dtype=np.float32)
outBlack = np.array([0.0, 0.0, 0.0], dtype=np.float32)
outWhite = np.array([1.0, 1.0, 1.0], dtype=np.float32)
out_sample = np.clip( (img - inBlack) / (inWhite - inBlack), 0, 1 )
out_sample = ( out_sample ** (1/inGamma) ) * (outWhite - outBlack) + outBlack
out_sample = np.clip(out_sample, 0, 1)
elif channel_type == SPCT.G:
out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
elif channel_type == SPCT.GGG:
out_sample = np.repeat ( np.expand_dims(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY),-1), (3,), -1)
# Final transformations
if not debug:
if normalize_tanh:
out_sample = np.clip (out_sample * 2.0 - 1.0, -1.0, 1.0)
if data_format == "NCHW":
out_sample = np.transpose(out_sample, (2,0,1) )
elif sample_type == SPST.IMAGE:
img = sample_bgr
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=True)
img = cv2.resize( img, (resolution, resolution), cv2.INTER_CUBIC )
out_sample = img
if data_format == "NCHW":
out_sample = np.transpose(out_sample, (2,0,1) )
elif sample_type == SPST.LANDMARKS_ARRAY:
l = sample_landmarks
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
l = np.clip(l, 0.0, 1.0)
out_sample = l
elif sample_type == SPST.PITCH_YAW_ROLL or sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
pitch,yaw,roll = sample.get_pitch_yaw_roll()
if params_per_resolution[resolution]['flip']:
yaw = -yaw
if sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
pitch = np.clip( (pitch / math.pi) / 2.0 + 0.5, 0, 1)
yaw = np.clip( (yaw / math.pi) / 2.0 + 0.5, 0, 1)
roll = np.clip( (roll / math.pi) / 2.0 + 0.5, 0, 1)
out_sample = (pitch, yaw)
else:
raise ValueError ('expected sample_type')
outputs_sample.append ( out_sample )
outputs += [outputs_sample]
return outputs
"""
STRUCT = 4 #mask structure as grayscale
elif face_mask_type == SPFMT.STRUCT:
if sample.eyebrows_expand_mod is not None:
img = LandmarksProcessor.get_face_struct_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
else:
img = LandmarksProcessor.get_face_struct_mask (sample_bgr.shape, sample_landmarks)
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
if debug and close_sample_bgr is not None:
LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))
RANDOM_CLOSE = 0x00000040, #currently unused
MORPH_TO_RANDOM_CLOSE = 0x00000080, #currently unused
if f & SPTF.RANDOM_CLOSE != 0:
img_type += 10
elif f & SPTF.MORPH_TO_RANDOM_CLOSE != 0:
img_type += 20
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
img_type -= 10
img = close_sample_bgr
cur_sample = close_sample
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
img_type -= 20
res = sample.shape[0]
s_landmarks = sample.landmarks.copy()
d_landmarks = close_sample.landmarks.copy()
idxs = list(range(len(s_landmarks)))
#remove landmarks near boundaries
for i in idxs[:]:
s_l = s_landmarks[i]
d_l = d_landmarks[i]
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
idxs.remove(i)
#remove landmarks that close to each other in 5 dist
for landmarks in [s_landmarks, d_landmarks]:
for i in idxs[:]:
s_l = landmarks[i]
for j in idxs[:]:
if i == j:
continue
s_l_2 = landmarks[j]
diff_l = np.abs(s_l - s_l_2)
if np.sqrt(diff_l.dot(diff_l)) < 5:
idxs.remove(i)
break
s_landmarks = s_landmarks[idxs]
d_landmarks = d_landmarks[idxs]
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
img = imagelib.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
cur_sample = close_sample
else:
"""