Colombo 45582d129d added XSeg model.
with XSeg model you can train your own mask segmentator of dst(and src) faces
that will be used in merger for whole_face.

Instead of using a pretrained model (which does not exist),
you control which part of faces should be masked.

Workflow is not easy, but at the moment it is the best solution
for obtaining the best quality of whole_face's deepfakes using minimum effort
without rotoscoping in AfterEffects.

new scripts:
	XSeg) data_dst edit.bat
	XSeg) data_dst merge.bat
	XSeg) data_dst split.bat
	XSeg) data_src edit.bat
	XSeg) data_src merge.bat
	XSeg) data_src split.bat
	XSeg) train.bat

Usage:
	unpack dst faceset if packed

	run XSeg) data_dst split.bat
		this scripts extracts (previously saved) .json data from jpg faces to use in label tool.

	run XSeg) data_dst edit.bat
		new tool 'labelme' is used

		use polygon (CTRL-N) to mask the face
			name polygon "1" (one symbol) as include polygon
			name polygon "0" (one symbol) as exclude polygon

			'exclude polygons' will be applied after all 'include polygons'

		Hot keys:
		ctrl-N			create polygon
		ctrl-J			edit polygon
		A/D 			navigate between frames
		ctrl + mousewheel 	image zoom
		mousewheel		vertical scroll
		alt+mousewheel		horizontal scroll

		repeat for 10/50/100 faces,
			you don't need to mask every frame of dst,
			only frames where the face is different significantly,
			for example:
				closed eyes
				changed head direction
				changed light
			the more various faces you mask, the more quality you will get

			Start masking from the upper left area and follow the clockwise direction.
			Keep the same logic of masking for all frames, for example:
				the same approximated jaw line of the side faces, where the jaw is not visible
				the same hair line
			Mask the obstructions using polygon with name "0".

	run XSeg) data_dst merge.bat
		this script merges .json data of polygons into jpg faces,
		therefore faceset can be sorted or packed as usual.

	run XSeg) train.bat
		train the model

		Check the faces of 'XSeg dst faces' preview.

		if some faces have wrong or glitchy mask, then repeat steps:
			split
			run edit
			find these glitchy faces and mask them
			merge
			train further or restart training from scratch

Restart training of XSeg model is only possible by deleting all 'model\XSeg_*' files.

If you want to get the mask of the predicted face in merger,
you should repeat the same steps for src faceset.

New mask modes available in merger for whole_face:

XSeg-prd	  - XSeg mask of predicted face	 -> faces from src faceset should be labeled
XSeg-dst	  - XSeg mask of dst face        -> faces from dst faceset should be labeled
XSeg-prd*XSeg-dst - the smallest area of both

if workspace\model folder contains trained XSeg model, then merger will use it,
otherwise you will get transparent mask by using XSeg-* modes.

Some screenshots:
label tool: https://i.imgur.com/aY6QGw1.jpg
trainer   : https://i.imgur.com/NM1Kn3s.jpg
merger    : https://i.imgur.com/glUzFQ8.jpg

example of the fake using 13 segmented dst faces
          : https://i.imgur.com/wmvyizU.gifv
2020-03-15 15:12:44 +04:00

282 lines
12 KiB
Python

import math
import traceback
from pathlib import Path
import numpy as np
import numpy.linalg as npla
import samplelib
from core import pathex
from core.cv2ex import *
from core.interact import interact as io
from core.joblib import MPClassFuncOnDemand, MPFunc
from core.leras import nn
from DFLIMG import DFLIMG
from facelib import FaceEnhancer, FaceType, LandmarksProcessor, TernausNet, XSegNet
from merger import FrameInfo, MergerConfig, InteractiveMergerSubprocessor
def main (model_class_name=None,
saved_models_path=None,
training_data_src_path=None,
force_model_name=None,
input_path=None,
output_path=None,
output_mask_path=None,
aligned_path=None,
force_gpu_idxs=None,
cpu_only=None):
io.log_info ("Running merger.\r\n")
try:
if not input_path.exists():
io.log_err('Input directory not found. Please ensure it exists.')
return
if not output_path.exists():
output_path.mkdir(parents=True, exist_ok=True)
if not output_mask_path.exists():
output_mask_path.mkdir(parents=True, exist_ok=True)
if not saved_models_path.exists():
io.log_err('Model directory not found. Please ensure it exists.')
return
# Initialize model
import models
model = models.import_model(model_class_name)(is_training=False,
saved_models_path=saved_models_path,
force_gpu_idxs=force_gpu_idxs,
cpu_only=cpu_only)
predictor_func, predictor_input_shape, cfg = model.get_MergerConfig()
# Preparing MP functions
predictor_func = MPFunc(predictor_func)
run_on_cpu = len(nn.getCurrentDeviceConfig().devices) == 0
fanseg_full_face_256_extract_func = MPClassFuncOnDemand(TernausNet, 'extract',
name=f'FANSeg_{FaceType.toString(FaceType.FULL)}',
resolution=256,
place_model_on_cpu=True,
run_on_cpu=run_on_cpu)
xseg_256_extract_func = MPClassFuncOnDemand(XSegNet, 'extract',
name='XSeg',
resolution=256,
weights_file_root=saved_models_path,
place_model_on_cpu=True,
run_on_cpu=run_on_cpu)
face_enhancer_func = MPClassFuncOnDemand(FaceEnhancer, 'enhance',
place_model_on_cpu=True,
run_on_cpu=run_on_cpu)
is_interactive = io.input_bool ("Use interactive merger?", True) if not io.is_colab() else False
if not is_interactive:
cfg.ask_settings()
input_path_image_paths = pathex.get_image_paths(input_path)
if cfg.type == MergerConfig.TYPE_MASKED:
if not aligned_path.exists():
io.log_err('Aligned directory not found. Please ensure it exists.')
return
packed_samples = None
try:
packed_samples = samplelib.PackedFaceset.load(aligned_path)
except:
io.log_err(f"Error occured while loading samplelib.PackedFaceset.load {str(aligned_path)}, {traceback.format_exc()}")
if packed_samples is not None:
io.log_info ("Using packed faceset.")
def generator():
for sample in io.progress_bar_generator( packed_samples, "Collecting alignments"):
filepath = Path(sample.filename)
yield filepath, DFLIMG.load(filepath, loader_func=lambda x: sample.read_raw_file() )
else:
def generator():
for filepath in io.progress_bar_generator( pathex.get_image_paths(aligned_path), "Collecting alignments"):
filepath = Path(filepath)
yield filepath, DFLIMG.load(filepath)
alignments = {}
multiple_faces_detected = False
for filepath, dflimg in generator():
if dflimg is None:
io.log_err ("%s is not a dfl image file" % (filepath.name) )
continue
source_filename = dflimg.get_source_filename()
if source_filename is None:
continue
source_filepath = Path(source_filename)
source_filename_stem = source_filepath.stem
if source_filename_stem not in alignments.keys():
alignments[ source_filename_stem ] = []
alignments_ar = alignments[ source_filename_stem ]
alignments_ar.append ( (dflimg.get_source_landmarks(), filepath, source_filepath ) )
if len(alignments_ar) > 1:
multiple_faces_detected = True
if multiple_faces_detected:
io.log_info ("")
io.log_info ("Warning: multiple faces detected. Only one alignment file should refer one source file.")
io.log_info ("")
for a_key in list(alignments.keys()):
a_ar = alignments[a_key]
if len(a_ar) > 1:
for _, filepath, source_filepath in a_ar:
io.log_info (f"alignment {filepath.name} refers to {source_filepath.name} ")
io.log_info ("")
alignments[a_key] = [ a[0] for a in a_ar]
if multiple_faces_detected:
io.log_info ("It is strongly recommended to process the faces separatelly.")
io.log_info ("Use 'recover original filename' to determine the exact duplicates.")
io.log_info ("")
frames = [ InteractiveMergerSubprocessor.Frame( frame_info=FrameInfo(filepath=Path(p),
landmarks_list=alignments.get(Path(p).stem, None)
)
)
for p in input_path_image_paths ]
if multiple_faces_detected:
io.log_info ("Warning: multiple faces detected. Motion blur will not be used.")
io.log_info ("")
else:
s = 256
local_pts = [ (s//2-1, s//2-1), (s//2-1,0) ] #center+up
frames_len = len(frames)
for i in io.progress_bar_generator( range(len(frames)) , "Computing motion vectors"):
fi_prev = frames[max(0, i-1)].frame_info
fi = frames[i].frame_info
fi_next = frames[min(i+1, frames_len-1)].frame_info
if len(fi_prev.landmarks_list) == 0 or \
len(fi.landmarks_list) == 0 or \
len(fi_next.landmarks_list) == 0:
continue
mat_prev = LandmarksProcessor.get_transform_mat ( fi_prev.landmarks_list[0], s, face_type=FaceType.FULL)
mat = LandmarksProcessor.get_transform_mat ( fi.landmarks_list[0] , s, face_type=FaceType.FULL)
mat_next = LandmarksProcessor.get_transform_mat ( fi_next.landmarks_list[0], s, face_type=FaceType.FULL)
pts_prev = LandmarksProcessor.transform_points (local_pts, mat_prev, True)
pts = LandmarksProcessor.transform_points (local_pts, mat, True)
pts_next = LandmarksProcessor.transform_points (local_pts, mat_next, True)
prev_vector = pts[0]-pts_prev[0]
next_vector = pts_next[0]-pts[0]
motion_vector = pts_next[0] - pts_prev[0]
fi.motion_power = npla.norm(motion_vector)
motion_vector = motion_vector / fi.motion_power if fi.motion_power != 0 else np.array([0,0],dtype=np.float32)
fi.motion_deg = -math.atan2(motion_vector[1],motion_vector[0])*180 / math.pi
if len(frames) == 0:
io.log_info ("No frames to merge in input_dir.")
else:
if False:
pass
else:
InteractiveMergerSubprocessor (
is_interactive = is_interactive,
merger_session_filepath = model.get_strpath_storage_for_file('merger_session.dat'),
predictor_func = predictor_func,
predictor_input_shape = predictor_input_shape,
face_enhancer_func = face_enhancer_func,
fanseg_full_face_256_extract_func = fanseg_full_face_256_extract_func,
xseg_256_extract_func = xseg_256_extract_func,
merger_config = cfg,
frames = frames,
frames_root_path = input_path,
output_path = output_path,
output_mask_path = output_mask_path,
model_iter = model.get_iter()
).run()
model.finalize()
except Exception as e:
print ( traceback.format_exc() )
"""
elif cfg.type == MergerConfig.TYPE_FACE_AVATAR:
filesdata = []
for filepath in io.progress_bar_generator(input_path_image_paths, "Collecting info"):
filepath = Path(filepath)
dflimg = DFLIMG.load(filepath)
if dflimg is None:
io.log_err ("%s is not a dfl image file" % (filepath.name) )
continue
filesdata += [ ( FrameInfo(filepath=filepath, landmarks_list=[dflimg.get_landmarks()] ), dflimg.get_source_filename() ) ]
filesdata = sorted(filesdata, key=operator.itemgetter(1)) #sort by source_filename
frames = []
filesdata_len = len(filesdata)
for i in range(len(filesdata)):
frame_info = filesdata[i][0]
prev_temporal_frame_infos = []
next_temporal_frame_infos = []
for t in range (cfg.temporal_face_count):
prev_frame_info = filesdata[ max(i -t, 0) ][0]
next_frame_info = filesdata[ min(i +t, filesdata_len-1 )][0]
prev_temporal_frame_infos.insert (0, prev_frame_info )
next_temporal_frame_infos.append ( next_frame_info )
frames.append ( InteractiveMergerSubprocessor.Frame(prev_temporal_frame_infos=prev_temporal_frame_infos,
frame_info=frame_info,
next_temporal_frame_infos=next_temporal_frame_infos) )
"""
#interpolate landmarks
#from facelib import LandmarksProcessor
#from facelib import FaceType
#a = sorted(alignments.keys())
#a_len = len(a)
#
#box_pts = 3
#box = np.ones(box_pts)/box_pts
#for i in range( a_len ):
# if i >= box_pts and i <= a_len-box_pts-1:
# af0 = alignments[ a[i] ][0] ##first face
# m0 = LandmarksProcessor.get_transform_mat (af0, 256, face_type=FaceType.FULL)
#
# points = []
#
# for j in range(-box_pts, box_pts+1):
# af = alignments[ a[i+j] ][0] ##first face
# m = LandmarksProcessor.get_transform_mat (af, 256, face_type=FaceType.FULL)
# p = LandmarksProcessor.transform_points (af, m)
# points.append (p)
#
# points = np.array(points)
# points_len = len(points)
# t_points = np.transpose(points, [1,0,2])
#
# p1 = np.array ( [ int(np.convolve(x[:,0], box, mode='same')[points_len//2]) for x in t_points ] )
# p2 = np.array ( [ int(np.convolve(x[:,1], box, mode='same')[points_len//2]) for x in t_points ] )
#
# new_points = np.concatenate( [np.expand_dims(p1,-1),np.expand_dims(p2,-1)], -1 )
#
# alignments[ a[i] ][0] = LandmarksProcessor.transform_points (new_points, m0, True).astype(np.int32)