mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
with XSeg model you can train your own mask segmentator of dst(and src) faces that will be used in merger for whole_face. Instead of using a pretrained model (which does not exist), you control which part of faces should be masked. Workflow is not easy, but at the moment it is the best solution for obtaining the best quality of whole_face's deepfakes using minimum effort without rotoscoping in AfterEffects. new scripts: XSeg) data_dst edit.bat XSeg) data_dst merge.bat XSeg) data_dst split.bat XSeg) data_src edit.bat XSeg) data_src merge.bat XSeg) data_src split.bat XSeg) train.bat Usage: unpack dst faceset if packed run XSeg) data_dst split.bat this scripts extracts (previously saved) .json data from jpg faces to use in label tool. run XSeg) data_dst edit.bat new tool 'labelme' is used use polygon (CTRL-N) to mask the face name polygon "1" (one symbol) as include polygon name polygon "0" (one symbol) as exclude polygon 'exclude polygons' will be applied after all 'include polygons' Hot keys: ctrl-N create polygon ctrl-J edit polygon A/D navigate between frames ctrl + mousewheel image zoom mousewheel vertical scroll alt+mousewheel horizontal scroll repeat for 10/50/100 faces, you don't need to mask every frame of dst, only frames where the face is different significantly, for example: closed eyes changed head direction changed light the more various faces you mask, the more quality you will get Start masking from the upper left area and follow the clockwise direction. Keep the same logic of masking for all frames, for example: the same approximated jaw line of the side faces, where the jaw is not visible the same hair line Mask the obstructions using polygon with name "0". run XSeg) data_dst merge.bat this script merges .json data of polygons into jpg faces, therefore faceset can be sorted or packed as usual. run XSeg) train.bat train the model Check the faces of 'XSeg dst faces' preview. if some faces have wrong or glitchy mask, then repeat steps: split run edit find these glitchy faces and mask them merge train further or restart training from scratch Restart training of XSeg model is only possible by deleting all 'model\XSeg_*' files. If you want to get the mask of the predicted face in merger, you should repeat the same steps for src faceset. New mask modes available in merger for whole_face: XSeg-prd - XSeg mask of predicted face -> faces from src faceset should be labeled XSeg-dst - XSeg mask of dst face -> faces from dst faceset should be labeled XSeg-prd*XSeg-dst - the smallest area of both if workspace\model folder contains trained XSeg model, then merger will use it, otherwise you will get transparent mask by using XSeg-* modes. Some screenshots: label tool: https://i.imgur.com/aY6QGw1.jpg trainer : https://i.imgur.com/NM1Kn3s.jpg merger : https://i.imgur.com/glUzFQ8.jpg example of the fake using 13 segmented dst faces : https://i.imgur.com/wmvyizU.gifv
341 lines
13 KiB
Python
341 lines
13 KiB
Python
import pickle
|
|
import struct
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from core.interact import interact as io
|
|
from core.structex import *
|
|
from facelib import FaceType
|
|
|
|
|
|
class DFLJPG(object):
|
|
def __init__(self):
|
|
self.data = b""
|
|
self.length = 0
|
|
self.chunks = []
|
|
self.dfl_dict = None
|
|
self.shape = (0,0,0)
|
|
|
|
@staticmethod
|
|
def load_raw(filename, loader_func=None):
|
|
try:
|
|
if loader_func is not None:
|
|
data = loader_func(filename)
|
|
else:
|
|
with open(filename, "rb") as f:
|
|
data = f.read()
|
|
except:
|
|
raise FileNotFoundError(filename)
|
|
|
|
try:
|
|
inst = DFLJPG()
|
|
inst.data = data
|
|
inst.length = len(data)
|
|
inst_length = inst.length
|
|
chunks = []
|
|
data_counter = 0
|
|
while data_counter < inst_length:
|
|
chunk_m_l, chunk_m_h = struct.unpack ("BB", data[data_counter:data_counter+2])
|
|
data_counter += 2
|
|
|
|
if chunk_m_l != 0xFF:
|
|
raise ValueError(f"No Valid JPG info in {filename}")
|
|
|
|
chunk_name = None
|
|
chunk_size = None
|
|
chunk_data = None
|
|
chunk_ex_data = None
|
|
is_unk_chunk = False
|
|
|
|
if chunk_m_h & 0xF0 == 0xD0:
|
|
n = chunk_m_h & 0x0F
|
|
|
|
if n >= 0 and n <= 7:
|
|
chunk_name = "RST%d" % (n)
|
|
chunk_size = 0
|
|
elif n == 0x8:
|
|
chunk_name = "SOI"
|
|
chunk_size = 0
|
|
if len(chunks) != 0:
|
|
raise Exception("")
|
|
elif n == 0x9:
|
|
chunk_name = "EOI"
|
|
chunk_size = 0
|
|
elif n == 0xA:
|
|
chunk_name = "SOS"
|
|
elif n == 0xB:
|
|
chunk_name = "DQT"
|
|
elif n == 0xD:
|
|
chunk_name = "DRI"
|
|
chunk_size = 2
|
|
else:
|
|
is_unk_chunk = True
|
|
elif chunk_m_h & 0xF0 == 0xC0:
|
|
n = chunk_m_h & 0x0F
|
|
if n == 0:
|
|
chunk_name = "SOF0"
|
|
elif n == 2:
|
|
chunk_name = "SOF2"
|
|
elif n == 4:
|
|
chunk_name = "DHT"
|
|
else:
|
|
is_unk_chunk = True
|
|
elif chunk_m_h & 0xF0 == 0xE0:
|
|
n = chunk_m_h & 0x0F
|
|
chunk_name = "APP%d" % (n)
|
|
else:
|
|
is_unk_chunk = True
|
|
|
|
#if is_unk_chunk:
|
|
# #raise ValueError(f"Unknown chunk {chunk_m_h} in {filename}")
|
|
# io.log_info(f"Unknown chunk {chunk_m_h} in {filename}")
|
|
|
|
if chunk_size == None: #variable size
|
|
chunk_size, = struct.unpack (">H", data[data_counter:data_counter+2])
|
|
chunk_size -= 2
|
|
data_counter += 2
|
|
|
|
if chunk_size > 0:
|
|
chunk_data = data[data_counter:data_counter+chunk_size]
|
|
data_counter += chunk_size
|
|
|
|
if chunk_name == "SOS":
|
|
c = data_counter
|
|
while c < inst_length and (data[c] != 0xFF or data[c+1] != 0xD9):
|
|
c += 1
|
|
|
|
chunk_ex_data = data[data_counter:c]
|
|
data_counter = c
|
|
|
|
chunks.append ({'name' : chunk_name,
|
|
'm_h' : chunk_m_h,
|
|
'data' : chunk_data,
|
|
'ex_data' : chunk_ex_data,
|
|
})
|
|
inst.chunks = chunks
|
|
|
|
return inst
|
|
except Exception as e:
|
|
raise Exception (f"Corrupted JPG file {filename} {e}")
|
|
|
|
@staticmethod
|
|
def load(filename, loader_func=None):
|
|
try:
|
|
inst = DFLJPG.load_raw (filename, loader_func=loader_func)
|
|
inst.dfl_dict = None
|
|
|
|
for chunk in inst.chunks:
|
|
if chunk['name'] == 'APP0':
|
|
d, c = chunk['data'], 0
|
|
c, id, _ = struct_unpack (d, c, "=4sB")
|
|
|
|
if id == b"JFIF":
|
|
c, ver_major, ver_minor, units, Xdensity, Ydensity, Xthumbnail, Ythumbnail = struct_unpack (d, c, "=BBBHHBB")
|
|
#if units == 0:
|
|
# inst.shape = (Ydensity, Xdensity, 3)
|
|
else:
|
|
raise Exception("Unknown jpeg ID: %s" % (id) )
|
|
elif chunk['name'] == 'SOF0' or chunk['name'] == 'SOF2':
|
|
d, c = chunk['data'], 0
|
|
c, precision, height, width = struct_unpack (d, c, ">BHH")
|
|
inst.shape = (height, width, 3)
|
|
|
|
elif chunk['name'] == 'APP15':
|
|
if type(chunk['data']) == bytes:
|
|
inst.dfl_dict = pickle.loads(chunk['data'])
|
|
|
|
if (inst.dfl_dict is not None):
|
|
if 'face_type' not in inst.dfl_dict:
|
|
inst.dfl_dict['face_type'] = FaceType.toString (FaceType.FULL)
|
|
|
|
if 'fanseg_mask' in inst.dfl_dict:
|
|
fanseg_mask = inst.dfl_dict['fanseg_mask']
|
|
if fanseg_mask is not None:
|
|
numpyarray = np.asarray( inst.dfl_dict['fanseg_mask'], dtype=np.uint8)
|
|
inst.dfl_dict['fanseg_mask'] = cv2.imdecode(numpyarray, cv2.IMREAD_UNCHANGED)
|
|
|
|
if inst.dfl_dict == None:
|
|
return None
|
|
|
|
return inst
|
|
except Exception as e:
|
|
print (e)
|
|
return None
|
|
|
|
@staticmethod
|
|
def embed_dfldict(filename, dfl_dict):
|
|
inst = DFLJPG.load_raw (filename)
|
|
inst.setDFLDictData (dfl_dict)
|
|
|
|
try:
|
|
with open(filename, "wb") as f:
|
|
f.write ( inst.dump() )
|
|
except:
|
|
raise Exception( 'cannot save %s' % (filename) )
|
|
|
|
@staticmethod
|
|
def embed_data(filename, face_type=None,
|
|
landmarks=None,
|
|
ie_polys=None,
|
|
seg_ie_polys=None,
|
|
source_filename=None,
|
|
source_rect=None,
|
|
source_landmarks=None,
|
|
image_to_face_mat=None,
|
|
fanseg_mask=None,
|
|
eyebrows_expand_mod=None,
|
|
relighted=None,
|
|
**kwargs
|
|
):
|
|
|
|
if fanseg_mask is not None:
|
|
fanseg_mask = np.clip ( (fanseg_mask*255).astype(np.uint8), 0, 255 )
|
|
|
|
ret, buf = cv2.imencode( '.jpg', fanseg_mask, [int(cv2.IMWRITE_JPEG_QUALITY), 85] )
|
|
|
|
if ret and len(buf) < 60000:
|
|
fanseg_mask = buf
|
|
else:
|
|
io.log_err("Unable to encode fanseg_mask for %s" % (filename) )
|
|
fanseg_mask = None
|
|
|
|
if ie_polys is not None:
|
|
if not isinstance(ie_polys, list):
|
|
ie_polys = ie_polys.dump()
|
|
|
|
if seg_ie_polys is not None:
|
|
if not isinstance(seg_ie_polys, list):
|
|
seg_ie_polys = seg_ie_polys.dump()
|
|
|
|
DFLJPG.embed_dfldict (filename, {'face_type': face_type,
|
|
'landmarks': landmarks,
|
|
'ie_polys' : ie_polys,
|
|
'seg_ie_polys' : seg_ie_polys,
|
|
'source_filename': source_filename,
|
|
'source_rect': source_rect,
|
|
'source_landmarks': source_landmarks,
|
|
'image_to_face_mat': image_to_face_mat,
|
|
'fanseg_mask' : fanseg_mask,
|
|
'eyebrows_expand_mod' : eyebrows_expand_mod,
|
|
'relighted' : relighted
|
|
})
|
|
|
|
def embed_and_set(self, filename, face_type=None,
|
|
landmarks=None,
|
|
ie_polys=None,
|
|
seg_ie_polys=None,
|
|
source_filename=None,
|
|
source_rect=None,
|
|
source_landmarks=None,
|
|
image_to_face_mat=None,
|
|
fanseg_mask=None,
|
|
eyebrows_expand_mod=None,
|
|
relighted=None,
|
|
**kwargs
|
|
):
|
|
if face_type is None: face_type = self.get_face_type()
|
|
if landmarks is None: landmarks = self.get_landmarks()
|
|
if ie_polys is None: ie_polys = self.get_ie_polys()
|
|
if seg_ie_polys is None: seg_ie_polys = self.get_seg_ie_polys()
|
|
if source_filename is None: source_filename = self.get_source_filename()
|
|
if source_rect is None: source_rect = self.get_source_rect()
|
|
if source_landmarks is None: source_landmarks = self.get_source_landmarks()
|
|
if image_to_face_mat is None: image_to_face_mat = self.get_image_to_face_mat()
|
|
if fanseg_mask is None: fanseg_mask = self.get_fanseg_mask()
|
|
if eyebrows_expand_mod is None: eyebrows_expand_mod = self.get_eyebrows_expand_mod()
|
|
if relighted is None: relighted = self.get_relighted()
|
|
DFLJPG.embed_data (filename, face_type=face_type,
|
|
landmarks=landmarks,
|
|
ie_polys=ie_polys,
|
|
seg_ie_polys=seg_ie_polys,
|
|
source_filename=source_filename,
|
|
source_rect=source_rect,
|
|
source_landmarks=source_landmarks,
|
|
image_to_face_mat=image_to_face_mat,
|
|
fanseg_mask=fanseg_mask,
|
|
eyebrows_expand_mod=eyebrows_expand_mod,
|
|
relighted=relighted)
|
|
|
|
def remove_ie_polys(self):
|
|
self.dfl_dict['ie_polys'] = None
|
|
|
|
def remove_seg_ie_polys(self):
|
|
self.dfl_dict['seg_ie_polys'] = None
|
|
|
|
def remove_fanseg_mask(self):
|
|
self.dfl_dict['fanseg_mask'] = None
|
|
|
|
def remove_source_filename(self):
|
|
self.dfl_dict['source_filename'] = None
|
|
|
|
def dump(self):
|
|
data = b""
|
|
|
|
for chunk in self.chunks:
|
|
data += struct.pack ("BB", 0xFF, chunk['m_h'] )
|
|
chunk_data = chunk['data']
|
|
if chunk_data is not None:
|
|
data += struct.pack (">H", len(chunk_data)+2 )
|
|
data += chunk_data
|
|
|
|
chunk_ex_data = chunk['ex_data']
|
|
if chunk_ex_data is not None:
|
|
data += chunk_ex_data
|
|
|
|
return data
|
|
|
|
def get_shape(self):
|
|
return self.shape
|
|
|
|
def get_height(self):
|
|
for chunk in self.chunks:
|
|
if type(chunk) == IHDR:
|
|
return chunk.height
|
|
return 0
|
|
|
|
def getDFLDictData(self):
|
|
return self.dfl_dict
|
|
|
|
def setDFLDictData (self, dict_data=None):
|
|
self.dfl_dict = dict_data
|
|
|
|
for chunk in self.chunks:
|
|
if chunk['name'] == 'APP15':
|
|
self.chunks.remove(chunk)
|
|
break
|
|
|
|
last_app_chunk = 0
|
|
for i, chunk in enumerate (self.chunks):
|
|
if chunk['m_h'] & 0xF0 == 0xE0:
|
|
last_app_chunk = i
|
|
|
|
dflchunk = {'name' : 'APP15',
|
|
'm_h' : 0xEF,
|
|
'data' : pickle.dumps(dict_data),
|
|
'ex_data' : None,
|
|
}
|
|
self.chunks.insert (last_app_chunk+1, dflchunk)
|
|
|
|
def get_face_type(self): return self.dfl_dict['face_type']
|
|
def get_landmarks(self): return np.array ( self.dfl_dict['landmarks'] )
|
|
def get_ie_polys(self): return self.dfl_dict.get('ie_polys',None)
|
|
def get_seg_ie_polys(self): return self.dfl_dict.get('seg_ie_polys',None)
|
|
def get_source_filename(self): return self.dfl_dict['source_filename']
|
|
def get_source_rect(self): return self.dfl_dict['source_rect']
|
|
def get_source_landmarks(self): return np.array ( self.dfl_dict['source_landmarks'] )
|
|
def get_image_to_face_mat(self):
|
|
mat = self.dfl_dict.get ('image_to_face_mat', None)
|
|
if mat is not None:
|
|
return np.array (mat)
|
|
return None
|
|
def get_fanseg_mask(self):
|
|
fanseg_mask = self.dfl_dict.get ('fanseg_mask', None)
|
|
if fanseg_mask is not None:
|
|
return np.clip ( np.array (fanseg_mask) / 255.0, 0.0, 1.0 )[...,np.newaxis]
|
|
return None
|
|
def get_eyebrows_expand_mod(self):
|
|
return self.dfl_dict.get ('eyebrows_expand_mod', None)
|
|
def get_relighted(self):
|
|
return self.dfl_dict.get ('relighted', False)
|