mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
124 lines
4.3 KiB
Python
124 lines
4.3 KiB
Python
import multiprocessing
|
|
import time
|
|
import traceback
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from core import mplib
|
|
from core.joblib import SubprocessGenerator, ThisThreadGenerator
|
|
from facelib import LandmarksProcessor
|
|
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor,
|
|
SampleType)
|
|
|
|
'''
|
|
arg
|
|
output_sample_types = [
|
|
[SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
|
|
...
|
|
]
|
|
'''
|
|
class SampleGeneratorFace(SampleGeneratorBase):
|
|
def __init__ (self, samples_path, debug=False, batch_size=1,
|
|
random_ct_samples_path=None,
|
|
sample_process_options=SampleProcessor.Options(),
|
|
output_sample_types=[],
|
|
add_sample_idx=False,
|
|
generators_count=4,
|
|
raise_on_no_data=True,
|
|
**kwargs):
|
|
|
|
super().__init__(debug, batch_size)
|
|
self.sample_process_options = sample_process_options
|
|
self.output_sample_types = output_sample_types
|
|
self.add_sample_idx = add_sample_idx
|
|
|
|
if self.debug:
|
|
self.generators_count = 1
|
|
else:
|
|
self.generators_count = max(1, generators_count)
|
|
|
|
samples = SampleLoader.load (SampleType.FACE, samples_path)
|
|
self.samples_len = len(samples)
|
|
|
|
self.initialized = False
|
|
if self.samples_len == 0:
|
|
if raise_on_no_data:
|
|
raise ValueError('No training data provided.')
|
|
else:
|
|
return
|
|
|
|
index_host = mplib.IndexHost(self.samples_len)
|
|
|
|
if random_ct_samples_path is not None:
|
|
ct_samples = SampleLoader.load (SampleType.FACE, random_ct_samples_path)
|
|
ct_index_host = mplib.IndexHost( len(ct_samples) )
|
|
else:
|
|
ct_samples = None
|
|
ct_index_host = None
|
|
|
|
if self.debug:
|
|
self.generators = [ThisThreadGenerator ( self.batch_func, (samples, index_host.create_cli(), ct_samples, ct_index_host.create_cli() if ct_index_host is not None else None) )]
|
|
else:
|
|
self.generators = [SubprocessGenerator ( self.batch_func, (samples, index_host.create_cli(), ct_samples, ct_index_host.create_cli() if ct_index_host is not None else None), start_now=False ) \
|
|
for i in range(self.generators_count) ]
|
|
|
|
SubprocessGenerator.start_in_parallel( self.generators )
|
|
|
|
self.generator_counter = -1
|
|
|
|
self.initialized = True
|
|
|
|
#overridable
|
|
def is_initialized(self):
|
|
return self.initialized
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if not self.initialized:
|
|
return []
|
|
|
|
self.generator_counter += 1
|
|
generator = self.generators[self.generator_counter % len(self.generators) ]
|
|
return next(generator)
|
|
|
|
def batch_func(self, param ):
|
|
samples, index_host, ct_samples, ct_index_host = param
|
|
|
|
bs = self.batch_size
|
|
while True:
|
|
batches = None
|
|
|
|
indexes = index_host.multi_get(bs)
|
|
ct_indexes = ct_index_host.multi_get(bs) if ct_samples is not None else None
|
|
|
|
t = time.time()
|
|
for n_batch in range(bs):
|
|
sample_idx = indexes[n_batch]
|
|
sample = samples[sample_idx]
|
|
|
|
ct_sample = None
|
|
if ct_samples is not None:
|
|
ct_sample = ct_samples[ct_indexes[n_batch]]
|
|
|
|
try:
|
|
x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug, ct_sample=ct_sample)
|
|
except:
|
|
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
|
|
|
|
if batches is None:
|
|
batches = [ [] for _ in range(len(x)) ]
|
|
if self.add_sample_idx:
|
|
batches += [ [] ]
|
|
i_sample_idx = len(batches)-1
|
|
|
|
for i in range(len(x)):
|
|
batches[i].append ( x[i] )
|
|
|
|
if self.add_sample_idx:
|
|
batches[i_sample_idx].append (sample_idx)
|
|
|
|
yield [ np.array(batch) for batch in batches]
|