Colombo 6d3607a13d New script:
5.XSeg) data_dst/src mask for XSeg trainer - fetch.bat
Copies faces containing XSeg polygons to aligned_xseg\ dir.
Useful only if you want to collect labeled faces and reuse them in other fakes.

Now you can use trained XSeg mask in the SAEHD training process.
It’s mean default ‘full_face’ mask obtained from landmarks will be replaced with the mask obtained from the trained XSeg model.
use
5.XSeg.optional) trained mask for data_dst/data_src - apply.bat
5.XSeg.optional) trained mask for data_dst/data_src - remove.bat

Normally you don’t need it. You can use it, if you want to use ‘face_style’ and ‘bg_style’ with obstructions.

XSeg trainer : now you can choose type of face
XSeg trainer : now you can restart training in “override settings”
Merger: XSeg-* modes now can be used with all types of faces.

Therefore old MaskEditor, FANSEG models, and FAN-x modes have been removed,
because the new XSeg solution is better, simpler and more convenient, which costs only 1 hour of manual masking for regular deepfake.
2020-03-30 14:00:40 +04:00

104 lines
3.5 KiB
Python

from enum import IntEnum
from pathlib import Path
import cv2
import numpy as np
from core.cv2ex import *
from DFLIMG import *
from facelib import LandmarksProcessor
from core.imagelib import SegIEPolys
class SampleType(IntEnum):
IMAGE = 0 #raw image
FACE_BEGIN = 1
FACE = 1 #aligned face unsorted
FACE_PERSON = 2 #aligned face person
FACE_TEMPORAL_SORTED = 3 #sorted by source filename
FACE_END = 3
QTY = 4
class Sample(object):
__slots__ = ['sample_type',
'filename',
'face_type',
'shape',
'landmarks',
'seg_ie_polys',
'xseg_mask',
'eyebrows_expand_mod',
'source_filename',
'person_name',
'pitch_yaw_roll',
'_filename_offset_size',
]
def __init__(self, sample_type=None,
filename=None,
face_type=None,
shape=None,
landmarks=None,
seg_ie_polys=None,
xseg_mask=None,
eyebrows_expand_mod=None,
source_filename=None,
person_name=None,
pitch_yaw_roll=None,
**kwargs):
self.sample_type = sample_type if sample_type is not None else SampleType.IMAGE
self.filename = filename
self.face_type = face_type
self.shape = shape
self.landmarks = np.array(landmarks) if landmarks is not None else None
if isinstance(seg_ie_polys, SegIEPolys):
self.seg_ie_polys = seg_ie_polys
else:
self.seg_ie_polys = SegIEPolys.load(seg_ie_polys)
self.xseg_mask = xseg_mask
self.eyebrows_expand_mod = eyebrows_expand_mod if eyebrows_expand_mod is not None else 1.0
self.source_filename = source_filename
self.person_name = person_name
self.pitch_yaw_roll = pitch_yaw_roll
self._filename_offset_size = None
def get_pitch_yaw_roll(self):
if self.pitch_yaw_roll is None:
self.pitch_yaw_roll = LandmarksProcessor.estimate_pitch_yaw_roll(self.landmarks, size=self.shape[1])
return self.pitch_yaw_roll
def set_filename_offset_size(self, filename, offset, size):
self._filename_offset_size = (filename, offset, size)
def read_raw_file(self, filename=None):
if self._filename_offset_size is not None:
filename, offset, size = self._filename_offset_size
with open(filename, "rb") as f:
f.seek( offset, 0)
return f.read (size)
else:
with open(filename, "rb") as f:
return f.read()
def load_bgr(self):
img = cv2_imread (self.filename, loader_func=self.read_raw_file).astype(np.float32) / 255.0
return img
def get_config(self):
return {'sample_type': self.sample_type,
'filename': self.filename,
'face_type': self.face_type,
'shape': self.shape,
'landmarks': self.landmarks.tolist(),
'seg_ie_polys': self.seg_ie_polys.dump(),
'xseg_mask' : self.xseg_mask,
'eyebrows_expand_mod': self.eyebrows_expand_mod,
'source_filename': self.source_filename,
'person_name': self.person_name
}