DeepFaceLab/merger/MergerConfig.py
Colombo 2b7364005d Added new face type : head
Now you can replace the head.
Example: https://www.youtube.com/watch?v=xr5FHd0AdlQ
Requirements:
	Post processing skill in Adobe After Effects or Davinci Resolve.
Usage:
1)	Find suitable dst footage with the monotonous background behind head
2)	Use “extract head” script
3)	Gather rich src headset from only one scene (same color and haircut)
4)	Mask whole head for src and dst using XSeg editor
5)	Train XSeg
6)	Apply trained XSeg mask for src and dst headsets
7)	Train SAEHD using ‘head’ face_type as regular deepfake model with DF archi. You can use pretrained model for head. Minimum recommended resolution for head is 224.
8)	Extract multiple tracks, using Merger:
a.	Raw-rgb
b.	XSeg-prd mask
c.	XSeg-dst mask
9)	Using AAE or DavinciResolve, do:
a.	Hide source head using XSeg-prd mask: content-aware-fill, clone-stamp, background retraction, or other technique
b.	Overlay new head using XSeg-dst mask

Warning: Head faceset can be used for whole_face or less types of training only with XSeg masking.

XSegEditor: added button ‘view trained XSeg mask’, so you can see which frames should be masked to improve mask quality.
2020-04-04 09:28:06 +04:00

328 lines
13 KiB
Python

import numpy as np
import copy
from facelib import FaceType
from core.interact import interact as io
class MergerConfig(object):
TYPE_NONE = 0
TYPE_MASKED = 1
TYPE_FACE_AVATAR = 2
####
TYPE_IMAGE = 3
TYPE_IMAGE_WITH_LANDMARKS = 4
def __init__(self, type=0,
sharpen_mode=0,
blursharpen_amount=0,
**kwargs
):
self.type = type
self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian'}
#default changeable params
self.sharpen_mode = sharpen_mode
self.blursharpen_amount = blursharpen_amount
def copy(self):
return copy.copy(self)
#overridable
def ask_settings(self):
s = """Choose sharpen mode: \n"""
for key in self.sharpen_dict.keys():
s += f"""({key}) {self.sharpen_dict[key]}\n"""
io.log_info(s)
self.sharpen_mode = io.input_int ("", 0, valid_list=self.sharpen_dict.keys(), help_message="Enhance details by applying sharpen filter.")
if self.sharpen_mode != 0:
self.blursharpen_amount = np.clip ( io.input_int ("Choose blur/sharpen amount", 0, add_info="-100..100"), -100, 100 )
def toggle_sharpen_mode(self):
a = list( self.sharpen_dict.keys() )
self.sharpen_mode = a[ (a.index(self.sharpen_mode)+1) % len(a) ]
def add_blursharpen_amount(self, diff):
self.blursharpen_amount = np.clip ( self.blursharpen_amount+diff, -100, 100)
#overridable
def get_config(self):
d = self.__dict__.copy()
d.pop('type')
return d
#overridable
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, MergerConfig):
return self.sharpen_mode == other.sharpen_mode and \
self.blursharpen_amount == other.blursharpen_amount
return False
#overridable
def to_string(self, filename):
r = ""
r += f"sharpen_mode : {self.sharpen_dict[self.sharpen_mode]}\n"
r += f"blursharpen_amount : {self.blursharpen_amount}\n"
return r
mode_dict = {0:'original',
1:'overlay',
2:'hist-match',
3:'seamless',
4:'seamless-hist-match',
5:'raw-rgb',
6:'raw-predict'}
mode_str_dict = { mode_dict[key] : key for key in mode_dict.keys() }
mask_mode_dict = {1:'dst',
2:'learned-prd',
3:'learned-dst',
4:'learned-prd*learned-dst',
5:'XSeg-prd',
6:'XSeg-dst',
7:'XSeg-prd*XSeg-dst',
8:'learned-prd*learned-dst*XSeg-prd*XSeg-dst'
}
ctm_dict = { 0: "None", 1:"rct", 2:"lct", 3:"mkl", 4:"mkl-m", 5:"idt", 6:"idt-m", 7:"sot-m", 8:"mix-m" }
ctm_str_dict = {None:0, "rct":1, "lct":2, "mkl":3, "mkl-m":4, "idt":5, "idt-m":6, "sot-m":7, "mix-m":8 }
class MergerConfigMasked(MergerConfig):
def __init__(self, face_type=FaceType.FULL,
default_mode = 'overlay',
mode='overlay',
masked_hist_match=True,
hist_match_threshold = 238,
mask_mode = 4,
erode_mask_modifier = 0,
blur_mask_modifier = 0,
motion_blur_power = 0,
output_face_scale = 0,
super_resolution_power = 0,
color_transfer_mode = ctm_str_dict['rct'],
image_denoise_power = 0,
bicubic_degrade_power = 0,
color_degrade_power = 0,
**kwargs
):
super().__init__(type=MergerConfig.TYPE_MASKED, **kwargs)
self.face_type = face_type
if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL, FaceType.WHOLE_FACE, FaceType.HEAD ]:
raise ValueError("MergerConfigMasked does not support this type of face.")
self.default_mode = default_mode
#default changeable params
if mode not in mode_str_dict:
mode = mode_dict[1]
self.mode = mode
self.masked_hist_match = masked_hist_match
self.hist_match_threshold = hist_match_threshold
self.mask_mode = mask_mode
self.erode_mask_modifier = erode_mask_modifier
self.blur_mask_modifier = blur_mask_modifier
self.motion_blur_power = motion_blur_power
self.output_face_scale = output_face_scale
self.super_resolution_power = super_resolution_power
self.color_transfer_mode = color_transfer_mode
self.image_denoise_power = image_denoise_power
self.bicubic_degrade_power = bicubic_degrade_power
self.color_degrade_power = color_degrade_power
def copy(self):
return copy.copy(self)
def set_mode (self, mode):
self.mode = mode_dict.get (mode, self.default_mode)
def toggle_masked_hist_match(self):
if self.mode == 'hist-match':
self.masked_hist_match = not self.masked_hist_match
def add_hist_match_threshold(self, diff):
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255)
def toggle_mask_mode(self):
a = list( mask_mode_dict.keys() )
self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ]
def add_erode_mask_modifier(self, diff):
self.erode_mask_modifier = np.clip ( self.erode_mask_modifier+diff , -400, 400)
def add_blur_mask_modifier(self, diff):
self.blur_mask_modifier = np.clip ( self.blur_mask_modifier+diff , 0, 400)
def add_motion_blur_power(self, diff):
self.motion_blur_power = np.clip ( self.motion_blur_power+diff, 0, 100)
def add_output_face_scale(self, diff):
self.output_face_scale = np.clip ( self.output_face_scale+diff , -50, 50)
def toggle_color_transfer_mode(self):
self.color_transfer_mode = (self.color_transfer_mode+1) % ( max(ctm_dict.keys())+1 )
def add_super_resolution_power(self, diff):
self.super_resolution_power = np.clip ( self.super_resolution_power+diff , 0, 100)
def add_color_degrade_power(self, diff):
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
def add_image_denoise_power(self, diff):
self.image_denoise_power = np.clip ( self.image_denoise_power+diff, 0, 500)
def add_bicubic_degrade_power(self, diff):
self.bicubic_degrade_power = np.clip ( self.bicubic_degrade_power+diff, 0, 100)
def ask_settings(self):
s = """Choose mode: \n"""
for key in mode_dict.keys():
s += f"""({key}) {mode_dict[key]}\n"""
io.log_info(s)
mode = io.input_int ("", mode_str_dict.get(self.default_mode, 1) )
self.mode = mode_dict.get (mode, self.default_mode )
if 'raw' not in self.mode:
if self.mode == 'hist-match':
self.masked_hist_match = io.input_bool("Masked hist match?", True)
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold", 255, add_info="0..255"), 0, 255)
s = """Choose mask mode: \n"""
for key in mask_mode_dict.keys():
s += f"""({key}) {mask_mode_dict[key]}\n"""
io.log_info(s)
self.mask_mode = io.input_int ("", 1, valid_list=mask_mode_dict.keys() )
if 'raw' not in self.mode:
self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier", 0, add_info="-400..400"), -400, 400)
self.blur_mask_modifier = np.clip ( io.input_int ("Choose blur mask modifier", 0, add_info="0..400"), 0, 400)
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power", 0, add_info="0..100"), 0, 100)
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier", 0, add_info="-50..50" ), -50, 50)
if 'raw' not in self.mode:
self.color_transfer_mode = io.input_str ( "Color transfer to predicted face", None, valid_list=list(ctm_str_dict.keys())[1:] )
self.color_transfer_mode = ctm_str_dict[self.color_transfer_mode]
super().ask_settings()
self.super_resolution_power = np.clip ( io.input_int ("Choose super resolution power", 0, add_info="0..100", help_message="Enhance details by applying superresolution network."), 0, 100)
if 'raw' not in self.mode:
self.image_denoise_power = np.clip ( io.input_int ("Choose image degrade by denoise power", 0, add_info="0..500"), 0, 500)
self.bicubic_degrade_power = np.clip ( io.input_int ("Choose image degrade by bicubic rescale power", 0, add_info="0..100"), 0, 100)
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image", 0, add_info="0..100"), 0, 100)
io.log_info ("")
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, MergerConfigMasked):
return super().__eq__(other) and \
self.mode == other.mode and \
self.masked_hist_match == other.masked_hist_match and \
self.hist_match_threshold == other.hist_match_threshold and \
self.mask_mode == other.mask_mode and \
self.erode_mask_modifier == other.erode_mask_modifier and \
self.blur_mask_modifier == other.blur_mask_modifier and \
self.motion_blur_power == other.motion_blur_power and \
self.output_face_scale == other.output_face_scale and \
self.color_transfer_mode == other.color_transfer_mode and \
self.super_resolution_power == other.super_resolution_power and \
self.image_denoise_power == other.image_denoise_power and \
self.bicubic_degrade_power == other.bicubic_degrade_power and \
self.color_degrade_power == other.color_degrade_power
return False
def to_string(self, filename):
r = (
f"""MergerConfig {filename}:\n"""
f"""Mode: {self.mode}\n"""
)
if self.mode == 'hist-match':
r += f"""masked_hist_match: {self.masked_hist_match}\n"""
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
r += f"""mask_mode: { mask_mode_dict[self.mask_mode] }\n"""
if 'raw' not in self.mode:
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
f"""blur_mask_modifier: {self.blur_mask_modifier}\n"""
f"""motion_blur_power: {self.motion_blur_power}\n""")
r += f"""output_face_scale: {self.output_face_scale}\n"""
if 'raw' not in self.mode:
r += f"""color_transfer_mode: {ctm_dict[self.color_transfer_mode]}\n"""
r += super().to_string(filename)
r += f"""super_resolution_power: {self.super_resolution_power}\n"""
if 'raw' not in self.mode:
r += (f"""image_denoise_power: {self.image_denoise_power}\n"""
f"""bicubic_degrade_power: {self.bicubic_degrade_power}\n"""
f"""color_degrade_power: {self.color_degrade_power}\n""")
r += "================"
return r
class MergerConfigFaceAvatar(MergerConfig):
def __init__(self, temporal_face_count=0,
add_source_image=False):
super().__init__(type=MergerConfig.TYPE_FACE_AVATAR)
self.temporal_face_count = temporal_face_count
#changeable params
self.add_source_image = add_source_image
def copy(self):
return copy.copy(self)
#override
def ask_settings(self):
self.add_source_image = io.input_bool("Add source image?", False, help_message="Add source image for comparison.")
super().ask_settings()
def toggle_add_source_image(self):
self.add_source_image = not self.add_source_image
#override
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, MergerConfigFaceAvatar):
return super().__eq__(other) and \
self.add_source_image == other.add_source_image
return False
#override
def to_string(self, filename):
return (f"MergerConfig {filename}:\n"
f"add_source_image : {self.add_source_image}\n") + \
super().to_string(filename) + "================"