mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
5.XSeg) data_dst/src mask for XSeg trainer - fetch.bat Copies faces containing XSeg polygons to aligned_xseg\ dir. Useful only if you want to collect labeled faces and reuse them in other fakes. Now you can use trained XSeg mask in the SAEHD training process. It’s mean default ‘full_face’ mask obtained from landmarks will be replaced with the mask obtained from the trained XSeg model. use 5.XSeg.optional) trained mask for data_dst/data_src - apply.bat 5.XSeg.optional) trained mask for data_dst/data_src - remove.bat Normally you don’t need it. You can use it, if you want to use ‘face_style’ and ‘bg_style’ with obstructions. XSeg trainer : now you can choose type of face XSeg trainer : now you can restart training in “override settings” Merger: XSeg-* modes now can be used with all types of faces. Therefore old MaskEditor, FANSEG models, and FAN-x modes have been removed, because the new XSeg solution is better, simpler and more convenient, which costs only 1 hour of manual masking for regular deepfake.
162 lines
5.3 KiB
Python
162 lines
5.3 KiB
Python
import pickle
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
|
|
from DFLIMG import *
|
|
from facelib import LandmarksProcessor, FaceType
|
|
from core.interact import interact as io
|
|
from core import pathex
|
|
from core.cv2ex import *
|
|
|
|
|
|
def save_faceset_metadata_folder(input_path):
|
|
input_path = Path(input_path)
|
|
|
|
metadata_filepath = input_path / 'meta.dat'
|
|
|
|
io.log_info (f"Saving metadata to {str(metadata_filepath)}\r\n")
|
|
|
|
d = {}
|
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Processing"):
|
|
filepath = Path(filepath)
|
|
dflimg = DFLIMG.load (filepath)
|
|
if dflimg is None or not dflimg.has_data():
|
|
io.log_info(f"{filepath} is not a dfl image file")
|
|
continue
|
|
|
|
dfl_dict = dflimg.get_dict()
|
|
d[filepath.name] = ( dflimg.get_shape(), dfl_dict )
|
|
|
|
try:
|
|
with open(metadata_filepath, "wb") as f:
|
|
f.write ( pickle.dumps(d) )
|
|
except:
|
|
raise Exception( 'cannot save %s' % (filename) )
|
|
|
|
io.log_info("Now you can edit images.")
|
|
io.log_info("!!! Keep same filenames in the folder.")
|
|
io.log_info("You can change size of images, restoring process will downscale back to original size.")
|
|
io.log_info("After that, use restore metadata.")
|
|
|
|
def restore_faceset_metadata_folder(input_path):
|
|
input_path = Path(input_path)
|
|
|
|
metadata_filepath = input_path / 'meta.dat'
|
|
io.log_info (f"Restoring metadata from {str(metadata_filepath)}.\r\n")
|
|
|
|
if not metadata_filepath.exists():
|
|
io.log_err(f"Unable to find {str(metadata_filepath)}.")
|
|
|
|
try:
|
|
with open(metadata_filepath, "rb") as f:
|
|
d = pickle.loads(f.read())
|
|
except:
|
|
raise FileNotFoundError(filename)
|
|
|
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path, image_extensions=['.jpg'], return_Path_class=True), "Processing"):
|
|
saved_data = d.get(filepath.name, None)
|
|
if saved_data is None:
|
|
io.log_info(f"No saved metadata for {filepath}")
|
|
continue
|
|
|
|
shape, dfl_dict = saved_data
|
|
|
|
img = cv2_imread (filepath)
|
|
if img.shape != shape:
|
|
img = cv2.resize (img, (shape[1], shape[0]), cv2.INTER_LANCZOS4 )
|
|
|
|
cv2_imwrite (str(filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
|
|
|
|
if filepath.suffix == '.jpg':
|
|
dflimg = DFLJPG.load(filepath)
|
|
dflimg.set_dict(dfl_dict)
|
|
dflimg.save()
|
|
else:
|
|
continue
|
|
|
|
metadata_filepath.unlink()
|
|
|
|
def add_landmarks_debug_images(input_path):
|
|
io.log_info ("Adding landmarks debug images...")
|
|
|
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Processing"):
|
|
filepath = Path(filepath)
|
|
|
|
img = cv2_imread(str(filepath))
|
|
|
|
dflimg = DFLIMG.load (filepath)
|
|
|
|
if dflimg is None or not dflimg.has_data():
|
|
io.log_err (f"{filepath.name} is not a dfl image file")
|
|
continue
|
|
|
|
if img is not None:
|
|
face_landmarks = dflimg.get_landmarks()
|
|
face_type = FaceType.fromString ( dflimg.get_face_type() )
|
|
|
|
if face_type == FaceType.MARK_ONLY:
|
|
rect = dflimg.get_source_rect()
|
|
LandmarksProcessor.draw_rect_landmarks(img, rect, face_landmarks, FaceType.FULL )
|
|
else:
|
|
LandmarksProcessor.draw_landmarks(img, face_landmarks, transparent_mask=True )
|
|
|
|
|
|
|
|
output_file = '{}{}'.format( str(Path(str(input_path)) / filepath.stem), '_debug.jpg')
|
|
cv2_imwrite(output_file, img, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )
|
|
|
|
def recover_original_aligned_filename(input_path):
|
|
io.log_info ("Recovering original aligned filename...")
|
|
|
|
files = []
|
|
for filepath in io.progress_bar_generator( pathex.get_image_paths(input_path), "Processing"):
|
|
filepath = Path(filepath)
|
|
|
|
dflimg = DFLIMG.load (filepath)
|
|
|
|
if dflimg is None or not dflimg.has_data():
|
|
io.log_err (f"{filepath.name} is not a dfl image file")
|
|
continue
|
|
|
|
files += [ [filepath, None, dflimg.get_source_filename(), False] ]
|
|
|
|
files_len = len(files)
|
|
for i in io.progress_bar_generator( range(files_len), "Sorting" ):
|
|
fp, _, sf, converted = files[i]
|
|
|
|
if converted:
|
|
continue
|
|
|
|
sf_stem = Path(sf).stem
|
|
|
|
files[i][1] = fp.parent / ( sf_stem + '_0' + fp.suffix )
|
|
files[i][3] = True
|
|
c = 1
|
|
|
|
for j in range(i+1, files_len):
|
|
fp_j, _, sf_j, converted_j = files[j]
|
|
if converted_j:
|
|
continue
|
|
|
|
if sf_j == sf:
|
|
files[j][1] = fp_j.parent / ( sf_stem + ('_%d' % (c)) + fp_j.suffix )
|
|
files[j][3] = True
|
|
c += 1
|
|
|
|
for file in io.progress_bar_generator( files, "Renaming", leave=False ):
|
|
fs, _, _, _ = file
|
|
dst = fs.parent / ( fs.stem + '_tmp' + fs.suffix )
|
|
try:
|
|
fs.rename (dst)
|
|
except:
|
|
io.log_err ('fail to rename %s' % (fs.name) )
|
|
|
|
for file in io.progress_bar_generator( files, "Renaming" ):
|
|
fs, fd, _, _ = file
|
|
fs = fs.parent / ( fs.stem + '_tmp' + fs.suffix )
|
|
try:
|
|
fs.rename (fd)
|
|
except:
|
|
io.log_err ('fail to rename %s' % (fs.name) )
|