mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-03-12 20:42:45 -07:00
Now you can replace the head. Example: https://www.youtube.com/watch?v=xr5FHd0AdlQ Requirements: Post processing skill in Adobe After Effects or Davinci Resolve. Usage: 1) Find suitable dst footage with the monotonous background behind head 2) Use “extract head” script 3) Gather rich src headset from only one scene (same color and haircut) 4) Mask whole head for src and dst using XSeg editor 5) Train XSeg 6) Apply trained XSeg mask for src and dst headsets 7) Train SAEHD using ‘head’ face_type as regular deepfake model with DF archi. You can use pretrained model for head. Minimum recommended resolution for head is 224. 8) Extract multiple tracks, using Merger: a. Raw-rgb b. XSeg-prd mask c. XSeg-dst mask 9) Using AAE or DavinciResolve, do: a. Hide source head using XSeg-prd mask: content-aware-fill, clone-stamp, background retraction, or other technique b. Overlay new head using XSeg-dst mask Warning: Head faceset can be used for whole_face or less types of training only with XSeg masking. XSegEditor: added button ‘view trained XSeg mask’, so you can see which frames should be masked to improve mask quality.
881 lines
32 KiB
Python
881 lines
32 KiB
Python
import colorsys
|
|
import math
|
|
from enum import IntEnum
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import numpy.linalg as npla
|
|
|
|
from core import imagelib
|
|
from core import mathlib
|
|
from facelib import FaceType
|
|
from core.mathlib.umeyama import umeyama
|
|
|
|
landmarks_2D = np.array([
|
|
[ 0.000213256, 0.106454 ], #17
|
|
[ 0.0752622, 0.038915 ], #18
|
|
[ 0.18113, 0.0187482 ], #19
|
|
[ 0.29077, 0.0344891 ], #20
|
|
[ 0.393397, 0.0773906 ], #21
|
|
[ 0.586856, 0.0773906 ], #22
|
|
[ 0.689483, 0.0344891 ], #23
|
|
[ 0.799124, 0.0187482 ], #24
|
|
[ 0.904991, 0.038915 ], #25
|
|
[ 0.98004, 0.106454 ], #26
|
|
[ 0.490127, 0.203352 ], #27
|
|
[ 0.490127, 0.307009 ], #28
|
|
[ 0.490127, 0.409805 ], #29
|
|
[ 0.490127, 0.515625 ], #30
|
|
[ 0.36688, 0.587326 ], #31
|
|
[ 0.426036, 0.609345 ], #32
|
|
[ 0.490127, 0.628106 ], #33
|
|
[ 0.554217, 0.609345 ], #34
|
|
[ 0.613373, 0.587326 ], #35
|
|
[ 0.121737, 0.216423 ], #36
|
|
[ 0.187122, 0.178758 ], #37
|
|
[ 0.265825, 0.179852 ], #38
|
|
[ 0.334606, 0.231733 ], #39
|
|
[ 0.260918, 0.245099 ], #40
|
|
[ 0.182743, 0.244077 ], #41
|
|
[ 0.645647, 0.231733 ], #42
|
|
[ 0.714428, 0.179852 ], #43
|
|
[ 0.793132, 0.178758 ], #44
|
|
[ 0.858516, 0.216423 ], #45
|
|
[ 0.79751, 0.244077 ], #46
|
|
[ 0.719335, 0.245099 ], #47
|
|
[ 0.254149, 0.780233 ], #48
|
|
[ 0.340985, 0.745405 ], #49
|
|
[ 0.428858, 0.727388 ], #50
|
|
[ 0.490127, 0.742578 ], #51
|
|
[ 0.551395, 0.727388 ], #52
|
|
[ 0.639268, 0.745405 ], #53
|
|
[ 0.726104, 0.780233 ], #54
|
|
[ 0.642159, 0.864805 ], #55
|
|
[ 0.556721, 0.902192 ], #56
|
|
[ 0.490127, 0.909281 ], #57
|
|
[ 0.423532, 0.902192 ], #58
|
|
[ 0.338094, 0.864805 ], #59
|
|
[ 0.290379, 0.784792 ], #60
|
|
[ 0.428096, 0.778746 ], #61
|
|
[ 0.490127, 0.785343 ], #62
|
|
[ 0.552157, 0.778746 ], #63
|
|
[ 0.689874, 0.784792 ], #64
|
|
[ 0.553364, 0.824182 ], #65
|
|
[ 0.490127, 0.831803 ], #66
|
|
[ 0.42689 , 0.824182 ] #67
|
|
], dtype=np.float32)
|
|
|
|
|
|
landmarks_2D_new = np.array([
|
|
[ 0.000213256, 0.106454 ], #17
|
|
[ 0.0752622, 0.038915 ], #18
|
|
[ 0.18113, 0.0187482 ], #19
|
|
[ 0.29077, 0.0344891 ], #20
|
|
[ 0.393397, 0.0773906 ], #21
|
|
[ 0.586856, 0.0773906 ], #22
|
|
[ 0.689483, 0.0344891 ], #23
|
|
[ 0.799124, 0.0187482 ], #24
|
|
[ 0.904991, 0.038915 ], #25
|
|
[ 0.98004, 0.106454 ], #26
|
|
[ 0.490127, 0.203352 ], #27
|
|
[ 0.490127, 0.307009 ], #28
|
|
[ 0.490127, 0.409805 ], #29
|
|
[ 0.490127, 0.515625 ], #30
|
|
[ 0.36688, 0.587326 ], #31
|
|
[ 0.426036, 0.609345 ], #32
|
|
[ 0.490127, 0.628106 ], #33
|
|
[ 0.554217, 0.609345 ], #34
|
|
[ 0.613373, 0.587326 ], #35
|
|
[ 0.121737, 0.216423 ], #36
|
|
[ 0.187122, 0.178758 ], #37
|
|
[ 0.265825, 0.179852 ], #38
|
|
[ 0.334606, 0.231733 ], #39
|
|
[ 0.260918, 0.245099 ], #40
|
|
[ 0.182743, 0.244077 ], #41
|
|
[ 0.645647, 0.231733 ], #42
|
|
[ 0.714428, 0.179852 ], #43
|
|
[ 0.793132, 0.178758 ], #44
|
|
[ 0.858516, 0.216423 ], #45
|
|
[ 0.79751, 0.244077 ], #46
|
|
[ 0.719335, 0.245099 ], #47
|
|
[ 0.254149, 0.780233 ], #48
|
|
[ 0.726104, 0.780233 ], #54
|
|
], dtype=np.float32)
|
|
|
|
mouth_center_landmarks_2D = np.array([
|
|
[-4.4202591e-07, 4.4916576e-01], #48
|
|
[ 1.8399176e-01, 3.7537053e-01], #49
|
|
[ 3.7018123e-01, 3.3719531e-01], #50
|
|
[ 5.0000089e-01, 3.6938059e-01], #51
|
|
[ 6.2981832e-01, 3.3719531e-01], #52
|
|
[ 8.1600773e-01, 3.7537053e-01], #53
|
|
[ 1.0000000e+00, 4.4916576e-01], #54
|
|
[ 8.2213330e-01, 6.2836081e-01], #55
|
|
[ 6.4110327e-01, 7.0757812e-01], #56
|
|
[ 5.0000089e-01, 7.2259867e-01], #57
|
|
[ 3.5889623e-01, 7.0757812e-01], #58
|
|
[ 1.7786618e-01, 6.2836081e-01], #59
|
|
[ 7.6765373e-02, 4.5882553e-01], #60
|
|
[ 3.6856663e-01, 4.4601500e-01], #61
|
|
[ 5.0000089e-01, 4.5999300e-01], #62
|
|
[ 6.3143289e-01, 4.4601500e-01], #63
|
|
[ 9.2323411e-01, 4.5882553e-01], #64
|
|
[ 6.3399029e-01, 5.4228687e-01], #65
|
|
[ 5.0000089e-01, 5.5843467e-01], #66
|
|
[ 3.6601129e-01, 5.4228687e-01] #67
|
|
], dtype=np.float32)
|
|
|
|
# 68 point landmark definitions
|
|
landmarks_68_pt = { "mouth": (48,68),
|
|
"right_eyebrow": (17, 22),
|
|
"left_eyebrow": (22, 27),
|
|
"right_eye": (36, 42),
|
|
"left_eye": (42, 48),
|
|
"nose": (27, 36), # missed one point
|
|
"jaw": (0, 17) }
|
|
|
|
landmarks_68_3D = np.array( [
|
|
[-73.393523 , -29.801432 , 47.667532 ], #00
|
|
[-72.775014 , -10.949766 , 45.909403 ], #01
|
|
[-70.533638 , 7.929818 , 44.842580 ], #02
|
|
[-66.850058 , 26.074280 , 43.141114 ], #03
|
|
[-59.790187 , 42.564390 , 38.635298 ], #04
|
|
[-48.368973 , 56.481080 , 30.750622 ], #05
|
|
[-34.121101 , 67.246992 , 18.456453 ], #06
|
|
[-17.875411 , 75.056892 , 3.609035 ], #07
|
|
[0.098749 , 77.061286 , -0.881698 ], #08
|
|
[17.477031 , 74.758448 , 5.181201 ], #09
|
|
[32.648966 , 66.929021 , 19.176563 ], #10
|
|
[46.372358 , 56.311389 , 30.770570 ], #11
|
|
[57.343480 , 42.419126 , 37.628629 ], #12
|
|
[64.388482 , 25.455880 , 40.886309 ], #13
|
|
[68.212038 , 6.990805 , 42.281449 ], #14
|
|
[70.486405 , -11.666193 , 44.142567 ], #15
|
|
[71.375822 , -30.365191 , 47.140426 ], #16
|
|
[-61.119406 , -49.361602 , 14.254422 ], #17
|
|
[-51.287588 , -58.769795 , 7.268147 ], #18
|
|
[-37.804800 , -61.996155 , 0.442051 ], #19
|
|
[-24.022754 , -61.033399 , -6.606501 ], #20
|
|
[-11.635713 , -56.686759 , -11.967398 ], #21
|
|
[12.056636 , -57.391033 , -12.051204 ], #22
|
|
[25.106256 , -61.902186 , -7.315098 ], #23
|
|
[38.338588 , -62.777713 , -1.022953 ], #24
|
|
[51.191007 , -59.302347 , 5.349435 ], #25
|
|
[60.053851 , -50.190255 , 11.615746 ], #26
|
|
[0.653940 , -42.193790 , -13.380835 ], #27
|
|
[0.804809 , -30.993721 , -21.150853 ], #28
|
|
[0.992204 , -19.944596 , -29.284036 ], #29
|
|
[1.226783 , -8.414541 , -36.948060 ], #00
|
|
[-14.772472 , 2.598255 , -20.132003 ], #01
|
|
[-7.180239 , 4.751589 , -23.536684 ], #02
|
|
[0.555920 , 6.562900 , -25.944448 ], #03
|
|
[8.272499 , 4.661005 , -23.695741 ], #04
|
|
[15.214351 , 2.643046 , -20.858157 ], #05
|
|
[-46.047290 , -37.471411 , 7.037989 ], #06
|
|
[-37.674688 , -42.730510 , 3.021217 ], #07
|
|
[-27.883856 , -42.711517 , 1.353629 ], #08
|
|
[-19.648268 , -36.754742 , -0.111088 ], #09
|
|
[-28.272965 , -35.134493 , -0.147273 ], #10
|
|
[-38.082418 , -34.919043 , 1.476612 ], #11
|
|
[19.265868 , -37.032306 , -0.665746 ], #12
|
|
[27.894191 , -43.342445 , 0.247660 ], #13
|
|
[37.437529 , -43.110822 , 1.696435 ], #14
|
|
[45.170805 , -38.086515 , 4.894163 ], #15
|
|
[38.196454 , -35.532024 , 0.282961 ], #16
|
|
[28.764989 , -35.484289 , -1.172675 ], #17
|
|
[-28.916267 , 28.612716 , -2.240310 ], #18
|
|
[-17.533194 , 22.172187 , -15.934335 ], #19
|
|
[-6.684590 , 19.029051 , -22.611355 ], #20
|
|
[0.381001 , 20.721118 , -23.748437 ], #21
|
|
[8.375443 , 19.035460 , -22.721995 ], #22
|
|
[18.876618 , 22.394109 , -15.610679 ], #23
|
|
[28.794412 , 28.079924 , -3.217393 ], #24
|
|
[19.057574 , 36.298248 , -14.987997 ], #25
|
|
[8.956375 , 39.634575 , -22.554245 ], #26
|
|
[0.381549 , 40.395647 , -23.591626 ], #27
|
|
[-7.428895 , 39.836405 , -22.406106 ], #28
|
|
[-18.160634 , 36.677899 , -15.121907 ], #29
|
|
[-24.377490 , 28.677771 , -4.785684 ], #30
|
|
[-6.897633 , 25.475976 , -20.893742 ], #31
|
|
[0.340663 , 26.014269 , -22.220479 ], #32
|
|
[8.444722 , 25.326198 , -21.025520 ], #33
|
|
[24.474473 , 28.323008 , -5.712776 ], #34
|
|
[8.449166 , 30.596216 , -20.671489 ], #35
|
|
[0.205322 , 31.408738 , -21.903670 ], #36
|
|
[-7.198266 , 30.844876 , -20.328022 ] #37
|
|
], dtype=np.float32)
|
|
|
|
FaceType_to_padding_remove_align = {
|
|
FaceType.HALF: (0.0, False),
|
|
FaceType.MID_FULL: (0.0675, False),
|
|
FaceType.FULL: (0.2109375, False),
|
|
FaceType.FULL_NO_ALIGN: (0.2109375, True),
|
|
FaceType.WHOLE_FACE: (0.40, False),
|
|
FaceType.HEAD: (0.70, False),
|
|
FaceType.HEAD_NO_ALIGN: (0.70, True),
|
|
}
|
|
|
|
def convert_98_to_68(lmrks):
|
|
#jaw
|
|
result = [ lmrks[0] ]
|
|
for i in range(2,16,2):
|
|
result += [ ( lmrks[i] + (lmrks[i-1]+lmrks[i+1])/2 ) / 2 ]
|
|
result += [ lmrks[16] ]
|
|
for i in range(18,32,2):
|
|
result += [ ( lmrks[i] + (lmrks[i-1]+lmrks[i+1])/2 ) / 2 ]
|
|
result += [ lmrks[32] ]
|
|
|
|
#eyebrows averaging
|
|
result += [ lmrks[33],
|
|
(lmrks[34]+lmrks[41])/2,
|
|
(lmrks[35]+lmrks[40])/2,
|
|
(lmrks[36]+lmrks[39])/2,
|
|
(lmrks[37]+lmrks[38])/2,
|
|
]
|
|
|
|
result += [ (lmrks[42]+lmrks[50])/2,
|
|
(lmrks[43]+lmrks[49])/2,
|
|
(lmrks[44]+lmrks[48])/2,
|
|
(lmrks[45]+lmrks[47])/2,
|
|
lmrks[46]
|
|
]
|
|
|
|
#nose
|
|
result += list ( lmrks[51:60] )
|
|
|
|
#left eye (from our view)
|
|
result += [ lmrks[60],
|
|
lmrks[61],
|
|
lmrks[63],
|
|
lmrks[64],
|
|
lmrks[65],
|
|
lmrks[67] ]
|
|
|
|
#right eye
|
|
result += [ lmrks[68],
|
|
lmrks[69],
|
|
lmrks[71],
|
|
lmrks[72],
|
|
lmrks[73],
|
|
lmrks[75] ]
|
|
|
|
#mouth
|
|
result += list ( lmrks[76:96] )
|
|
|
|
return np.concatenate (result).reshape ( (68,2) )
|
|
|
|
def transform_points(points, mat, invert=False):
|
|
if invert:
|
|
mat = cv2.invertAffineTransform (mat)
|
|
points = np.expand_dims(points, axis=1)
|
|
points = cv2.transform(points, mat, points.shape)
|
|
points = np.squeeze(points)
|
|
return points
|
|
|
|
def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
|
|
if not isinstance(image_landmarks, np.ndarray):
|
|
image_landmarks = np.array (image_landmarks)
|
|
|
|
|
|
# estimate landmarks transform from global space to local aligned space with bounds [0..1]
|
|
mat = umeyama( np.concatenate ( [ image_landmarks[17:49] , image_landmarks[54:55] ] ) , landmarks_2D_new, True)[0:2]
|
|
|
|
# get corner points in global space
|
|
g_p = transform_points ( np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5) ]) , mat, True)
|
|
g_c = g_p[4]
|
|
|
|
# calc diagonal vectors between corners in global space
|
|
tb_diag_vec = (g_p[2]-g_p[0]).astype(np.float32)
|
|
tb_diag_vec /= npla.norm(tb_diag_vec)
|
|
bt_diag_vec = (g_p[1]-g_p[3]).astype(np.float32)
|
|
bt_diag_vec /= npla.norm(bt_diag_vec)
|
|
|
|
# calc modifier of diagonal vectors for scale and padding value
|
|
padding, remove_align = FaceType_to_padding_remove_align.get(face_type, 0.0)
|
|
mod = (1.0 / scale)* ( npla.norm(g_p[0]-g_p[2])*(padding*np.sqrt(2.0) + 0.5) )
|
|
|
|
if face_type == FaceType.WHOLE_FACE:
|
|
# adjust vertical offset for WHOLE_FACE, 7% below in order to cover more forehead
|
|
vec = (g_p[0]-g_p[3]).astype(np.float32)
|
|
vec_len = npla.norm(vec)
|
|
vec /= vec_len
|
|
g_c += vec*vec_len*0.07
|
|
|
|
elif face_type == FaceType.HEAD:
|
|
mat = umeyama( np.concatenate ( [ image_landmarks[17:49] , image_landmarks[54:55] ] ) , landmarks_2D_new, True)[0:2]
|
|
|
|
# assuming image_landmarks are 3D_Landmarks extracted for HEAD,
|
|
# adjust horizontal offset according to estimated yaw
|
|
yaw = estimate_averaged_yaw(transform_points (image_landmarks, mat, False))
|
|
|
|
hvec = (g_p[0]-g_p[1]).astype(np.float32)
|
|
hvec_len = npla.norm(hvec)
|
|
hvec /= hvec_len
|
|
|
|
yaw *= np.abs(math.tanh(yaw*2)) # Damp near zero
|
|
|
|
g_c -= hvec * (yaw * hvec_len / 2.0)
|
|
|
|
# adjust vertical offset for HEAD, 50% below
|
|
vvec = (g_p[0]-g_p[3]).astype(np.float32)
|
|
vvec_len = npla.norm(vvec)
|
|
vvec /= vvec_len
|
|
g_c += vvec*vvec_len*0.50
|
|
|
|
# calc 3 points in global space to estimate 2d affine transform
|
|
if not remove_align:
|
|
l_t = np.array( [ g_c - tb_diag_vec*mod,
|
|
g_c + bt_diag_vec*mod,
|
|
g_c + tb_diag_vec*mod ] )
|
|
else:
|
|
# remove_align - face will be centered in the frame but not aligned
|
|
l_t = np.array( [ g_c - tb_diag_vec*mod,
|
|
g_c + bt_diag_vec*mod,
|
|
g_c + tb_diag_vec*mod,
|
|
g_c - bt_diag_vec*mod,
|
|
] )
|
|
|
|
# get area of face square in global space
|
|
area = mathlib.polygon_area(l_t[:,0], l_t[:,1] )
|
|
|
|
# calc side of square
|
|
side = np.float32(math.sqrt(area) / 2)
|
|
|
|
# calc 3 points with unrotated square
|
|
l_t = np.array( [ g_c + [-side,-side],
|
|
g_c + [ side,-side],
|
|
g_c + [ side, side] ] )
|
|
|
|
# calc affine transform from 3 global space points to 3 local space points size of 'output_size'
|
|
pts2 = np.float32(( (0,0),(output_size,0),(output_size,output_size) ))
|
|
mat = cv2.getAffineTransform(l_t,pts2)
|
|
return mat
|
|
|
|
def get_rect_from_landmarks(image_landmarks):
|
|
mat = get_transform_mat(image_landmarks, 256, FaceType.FULL_NO_ALIGN)
|
|
|
|
g_p = transform_points ( np.float32([(0,0),(255,255) ]) , mat, True)
|
|
|
|
(l,t,r,b) = g_p[0][0], g_p[0][1], g_p[1][0], g_p[1][1]
|
|
|
|
return (l,t,r,b)
|
|
|
|
def expand_eyebrows(lmrks, eyebrows_expand_mod=1.0):
|
|
if len(lmrks) != 68:
|
|
raise Exception('works only with 68 landmarks')
|
|
lmrks = np.array( lmrks.copy(), dtype=np.int )
|
|
|
|
# #nose
|
|
ml_pnt = (lmrks[36] + lmrks[0]) // 2
|
|
mr_pnt = (lmrks[16] + lmrks[45]) // 2
|
|
|
|
# mid points between the mid points and eye
|
|
ql_pnt = (lmrks[36] + ml_pnt) // 2
|
|
qr_pnt = (lmrks[45] + mr_pnt) // 2
|
|
|
|
# Top of the eye arrays
|
|
bot_l = np.array((ql_pnt, lmrks[36], lmrks[37], lmrks[38], lmrks[39]))
|
|
bot_r = np.array((lmrks[42], lmrks[43], lmrks[44], lmrks[45], qr_pnt))
|
|
|
|
# Eyebrow arrays
|
|
top_l = lmrks[17:22]
|
|
top_r = lmrks[22:27]
|
|
|
|
# Adjust eyebrow arrays
|
|
lmrks[17:22] = top_l + eyebrows_expand_mod * 0.5 * (top_l - bot_l)
|
|
lmrks[22:27] = top_r + eyebrows_expand_mod * 0.5 * (top_r - bot_r)
|
|
return lmrks
|
|
|
|
|
|
|
|
|
|
def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0 ):
|
|
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
|
|
|
|
lmrks = expand_eyebrows(image_landmarks, eyebrows_expand_mod)
|
|
|
|
r_jaw = (lmrks[0:9], lmrks[17:18])
|
|
l_jaw = (lmrks[8:17], lmrks[26:27])
|
|
r_cheek = (lmrks[17:20], lmrks[8:9])
|
|
l_cheek = (lmrks[24:27], lmrks[8:9])
|
|
nose_ridge = (lmrks[19:25], lmrks[8:9],)
|
|
r_eye = (lmrks[17:22], lmrks[27:28], lmrks[31:36], lmrks[8:9])
|
|
l_eye = (lmrks[22:27], lmrks[27:28], lmrks[31:36], lmrks[8:9])
|
|
nose = (lmrks[27:31], lmrks[31:36])
|
|
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
|
|
|
|
for item in parts:
|
|
merged = np.concatenate(item)
|
|
cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), (1,) )
|
|
|
|
return hull_mask
|
|
|
|
def get_image_eye_mask (image_shape, image_landmarks):
|
|
if len(image_landmarks) != 68:
|
|
raise Exception('get_image_eye_mask works only with 68 landmarks')
|
|
|
|
h,w,c = image_shape
|
|
|
|
hull_mask = np.zeros( (h,w,1),dtype=np.float32)
|
|
|
|
image_landmarks = image_landmarks.astype(np.int)
|
|
|
|
cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[36:42]), (1,) )
|
|
cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[42:48]), (1,) )
|
|
|
|
dilate = h // 32
|
|
hull_mask = cv2.dilate(hull_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(dilate,dilate)), iterations = 1 )
|
|
|
|
blur = h // 16
|
|
blur = blur + (1-blur % 2)
|
|
hull_mask = cv2.GaussianBlur(hull_mask, (blur, blur) , 0)
|
|
hull_mask = hull_mask[...,None]
|
|
|
|
return hull_mask
|
|
|
|
|
|
def alpha_to_color (img_alpha, color):
|
|
if len(img_alpha.shape) == 2:
|
|
img_alpha = img_alpha[...,None]
|
|
h,w,c = img_alpha.shape
|
|
result = np.zeros( (h,w, len(color) ), dtype=np.float32 )
|
|
result[:,:] = color
|
|
|
|
return result * img_alpha
|
|
|
|
|
|
|
|
def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
|
|
h,w,c = image_shape
|
|
|
|
hull = get_image_hull_mask (image_shape, lmrks, eyebrows_expand_mod )
|
|
|
|
result = np.zeros( (h,w,3), dtype=np.float32 )
|
|
|
|
|
|
|
|
def process(w,h, data ):
|
|
d = {}
|
|
cur_lc = 0
|
|
all_lines = []
|
|
for s, pts_loop_ar in data:
|
|
lines = []
|
|
for pts, loop in pts_loop_ar:
|
|
pts_len = len(pts)
|
|
lines.append ( [ [ pts[i], pts[(i+1) % pts_len ] ] for i in range(pts_len - (0 if loop else 1) ) ] )
|
|
lines = np.concatenate (lines)
|
|
|
|
lc = lines.shape[0]
|
|
all_lines.append(lines)
|
|
d[s] = cur_lc, cur_lc+lc
|
|
cur_lc += lc
|
|
all_lines = np.concatenate (all_lines, 0)
|
|
|
|
#calculate signed distance for all points and lines
|
|
line_count = all_lines.shape[0]
|
|
pts_count = w*h
|
|
|
|
all_lines = np.repeat ( all_lines[None,...], pts_count, axis=0 ).reshape ( (pts_count*line_count,2,2) )
|
|
|
|
pts = np.empty( (h,w,line_count,2), dtype=np.float32 )
|
|
pts[...,1] = np.arange(h)[:,None,None]
|
|
pts[...,0] = np.arange(w)[:,None]
|
|
pts = pts.reshape ( (h*w*line_count, -1) )
|
|
|
|
a = all_lines[:,0,:]
|
|
b = all_lines[:,1,:]
|
|
pa = pts-a
|
|
ba = b-a
|
|
ph = np.clip ( np.einsum('ij,ij->i', pa, ba) / np.einsum('ij,ij->i', ba, ba), 0, 1 )
|
|
dists = npla.norm ( pa - ba*ph[...,None], axis=1).reshape ( (h,w,line_count) )
|
|
|
|
def get_dists(name, thickness=0):
|
|
s,e = d[name]
|
|
result = dists[...,s:e]
|
|
if thickness != 0:
|
|
result = np.abs(result)-thickness
|
|
return np.min (result, axis=-1)
|
|
|
|
return get_dists
|
|
|
|
l_eye = lmrks[42:48]
|
|
r_eye = lmrks[36:42]
|
|
l_brow = lmrks[22:27]
|
|
r_brow = lmrks[17:22]
|
|
mouth = lmrks[48:60]
|
|
|
|
up_nose = np.concatenate( (lmrks[27:31], lmrks[33:34]) )
|
|
down_nose = lmrks[31:36]
|
|
nose = np.concatenate ( (up_nose, down_nose) )
|
|
|
|
gdf = process ( w,h,
|
|
(
|
|
('eyes', ((l_eye, True), (r_eye, True)) ),
|
|
('brows', ((l_brow, False), (r_brow,False)) ),
|
|
('up_nose', ((up_nose, False),) ),
|
|
('down_nose', ((down_nose, False),) ),
|
|
('mouth', ((mouth, True),) ),
|
|
)
|
|
)
|
|
|
|
eyes_fall_dist = w // 32
|
|
eyes_thickness = max( w // 64, 1 )
|
|
|
|
brows_fall_dist = w // 32
|
|
brows_thickness = max( w // 256, 1 )
|
|
|
|
nose_fall_dist = w / 12
|
|
nose_thickness = max( w // 96, 1 )
|
|
|
|
mouth_fall_dist = w // 32
|
|
mouth_thickness = max( w // 64, 1 )
|
|
|
|
eyes_mask = gdf('eyes',eyes_thickness)
|
|
eyes_mask = 1-np.clip( eyes_mask/ eyes_fall_dist, 0, 1)
|
|
#eyes_mask = np.clip ( 1- ( np.sqrt( np.maximum(eyes_mask,0) ) / eyes_fall_dist ), 0, 1)
|
|
#eyes_mask = np.clip ( 1- ( np.cbrt( np.maximum(eyes_mask,0) ) / eyes_fall_dist ), 0, 1)
|
|
|
|
brows_mask = gdf('brows', brows_thickness)
|
|
brows_mask = 1-np.clip( brows_mask / brows_fall_dist, 0, 1)
|
|
#brows_mask = np.clip ( 1- ( np.sqrt( np.maximum(brows_mask,0) ) / brows_fall_dist ), 0, 1)
|
|
|
|
mouth_mask = gdf('mouth', mouth_thickness)
|
|
mouth_mask = 1-np.clip( mouth_mask / mouth_fall_dist, 0, 1)
|
|
#mouth_mask = np.clip ( 1- ( np.sqrt( np.maximum(mouth_mask,0) ) / mouth_fall_dist ), 0, 1)
|
|
|
|
def blend(a,b,k):
|
|
x = np.clip ( 0.5+0.5*(b-a)/k, 0.0, 1.0 )
|
|
return (a-b)*x+b - k*x*(1.0-x)
|
|
|
|
|
|
#nose_mask = (a-b)*x+b - k*x*(1.0-x)
|
|
|
|
#nose_mask = np.minimum (up_nose_mask , down_nose_mask )
|
|
#nose_mask = 1-np.clip( nose_mask / nose_fall_dist, 0, 1)
|
|
|
|
nose_mask = blend ( gdf('up_nose', nose_thickness), gdf('down_nose', nose_thickness), nose_thickness*3 )
|
|
nose_mask = 1-np.clip( nose_mask / nose_fall_dist, 0, 1)
|
|
|
|
up_nose_mask = gdf('up_nose', nose_thickness)
|
|
up_nose_mask = 1-np.clip( up_nose_mask / nose_fall_dist, 0, 1)
|
|
#up_nose_mask = np.clip ( 1- ( np.cbrt( np.maximum(up_nose_mask,0) ) / nose_fall_dist ), 0, 1)
|
|
|
|
down_nose_mask = gdf('down_nose', nose_thickness)
|
|
down_nose_mask = 1-np.clip( down_nose_mask / nose_fall_dist, 0, 1)
|
|
#down_nose_mask = np.clip ( 1- ( np.cbrt( np.maximum(down_nose_mask,0) ) / nose_fall_dist ), 0, 1)
|
|
|
|
#nose_mask = np.clip( up_nose_mask + down_nose_mask, 0, 1 )
|
|
#nose_mask /= np.max(nose_mask)
|
|
#nose_mask = np.maximum (up_nose_mask , down_nose_mask )
|
|
#nose_mask = down_nose_mask
|
|
|
|
#nose_mask = np.zeros_like(nose_mask)
|
|
|
|
eyes_mask = eyes_mask * (1-mouth_mask)
|
|
nose_mask = nose_mask * (1-eyes_mask)
|
|
|
|
hull_mask = hull[...,0].copy()
|
|
hull_mask = hull_mask * (1-eyes_mask) * (1-brows_mask) * (1-nose_mask) * (1-mouth_mask)
|
|
|
|
#eyes_mask = eyes_mask * (1-nose_mask)
|
|
|
|
mouth_mask= mouth_mask * (1-nose_mask)
|
|
|
|
brows_mask = brows_mask * (1-nose_mask)* (1-eyes_mask )
|
|
|
|
hull_mask = alpha_to_color(hull_mask, (0,1,0) )
|
|
eyes_mask = alpha_to_color(eyes_mask, (1,0,0) )
|
|
brows_mask = alpha_to_color(brows_mask, (0,0,1) )
|
|
nose_mask = alpha_to_color(nose_mask, (0,1,1) )
|
|
mouth_mask = alpha_to_color(mouth_mask, (0,0,1) )
|
|
|
|
#nose_mask = np.maximum( up_nose_mask, down_nose_mask )
|
|
|
|
result = hull_mask + mouth_mask+ nose_mask + brows_mask + eyes_mask
|
|
result *= hull
|
|
#result = np.clip (result, 0, 1)
|
|
return result
|
|
|
|
def blur_image_hull_mask (hull_mask):
|
|
|
|
maxregion = np.argwhere(hull_mask==1.0)
|
|
miny,minx = maxregion.min(axis=0)[:2]
|
|
maxy,maxx = maxregion.max(axis=0)[:2]
|
|
lenx = maxx - minx;
|
|
leny = maxy - miny;
|
|
masky = int(minx+(lenx//2))
|
|
maskx = int(miny+(leny//2))
|
|
lowest_len = min (lenx, leny)
|
|
ero = int( lowest_len * 0.085 )
|
|
blur = int( lowest_len * 0.10 )
|
|
|
|
hull_mask = cv2.erode(hull_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
|
hull_mask = cv2.blur(hull_mask, (blur, blur) )
|
|
hull_mask = np.expand_dims (hull_mask,-1)
|
|
|
|
return hull_mask
|
|
|
|
mirror_idxs = [
|
|
[0,16],
|
|
[1,15],
|
|
[2,14],
|
|
[3,13],
|
|
[4,12],
|
|
[5,11],
|
|
[6,10],
|
|
[7,9],
|
|
|
|
[17,26],
|
|
[18,25],
|
|
[19,24],
|
|
[20,23],
|
|
[21,22],
|
|
|
|
[36,45],
|
|
[37,44],
|
|
[38,43],
|
|
[39,42],
|
|
[40,47],
|
|
[41,46],
|
|
|
|
[31,35],
|
|
[32,34],
|
|
|
|
[50,52],
|
|
[49,53],
|
|
[48,54],
|
|
[59,55],
|
|
[58,56],
|
|
[67,65],
|
|
[60,64],
|
|
[61,63] ]
|
|
|
|
def mirror_landmarks (landmarks, val):
|
|
result = landmarks.copy()
|
|
|
|
for idx in mirror_idxs:
|
|
result [ idx ] = result [ idx[::-1] ]
|
|
|
|
result[:,0] = val - result[:,0] - 1
|
|
return result
|
|
|
|
def get_face_struct_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0, color=(1,) ):
|
|
mask = np.zeros(image_shape[0:2]+( len(color),),dtype=np.float32)
|
|
lmrks = expand_eyebrows(image_landmarks, eyebrows_expand_mod)
|
|
draw_landmarks (mask, image_landmarks, color=color, draw_circles=False, thickness=2)
|
|
return mask
|
|
|
|
def draw_landmarks (image, image_landmarks, color=(0,255,0), draw_circles=True, thickness=1, transparent_mask=False):
|
|
if len(image_landmarks) != 68:
|
|
raise Exception('get_image_eye_mask works only with 68 landmarks')
|
|
|
|
int_lmrks = np.array(image_landmarks, dtype=np.int)
|
|
|
|
jaw = int_lmrks[slice(*landmarks_68_pt["jaw"])]
|
|
right_eyebrow = int_lmrks[slice(*landmarks_68_pt["right_eyebrow"])]
|
|
left_eyebrow = int_lmrks[slice(*landmarks_68_pt["left_eyebrow"])]
|
|
mouth = int_lmrks[slice(*landmarks_68_pt["mouth"])]
|
|
right_eye = int_lmrks[slice(*landmarks_68_pt["right_eye"])]
|
|
left_eye = int_lmrks[slice(*landmarks_68_pt["left_eye"])]
|
|
nose = int_lmrks[slice(*landmarks_68_pt["nose"])]
|
|
|
|
# open shapes
|
|
cv2.polylines(image, tuple(np.array([v]) for v in ( right_eyebrow, jaw, left_eyebrow, np.concatenate((nose, [nose[-6]])) )),
|
|
False, color, thickness=thickness, lineType=cv2.LINE_AA)
|
|
# closed shapes
|
|
cv2.polylines(image, tuple(np.array([v]) for v in (right_eye, left_eye, mouth)),
|
|
True, color, thickness=thickness, lineType=cv2.LINE_AA)
|
|
|
|
if draw_circles:
|
|
# the rest of the cicles
|
|
for x, y in np.concatenate((right_eyebrow, left_eyebrow, mouth, right_eye, left_eye, nose), axis=0):
|
|
cv2.circle(image, (x, y), 1, color, 1, lineType=cv2.LINE_AA)
|
|
# jaw big circles
|
|
for x, y in jaw:
|
|
cv2.circle(image, (x, y), 2, color, lineType=cv2.LINE_AA)
|
|
|
|
if transparent_mask:
|
|
mask = get_image_hull_mask (image.shape, image_landmarks)
|
|
image[...] = ( image * (1-mask) + image * mask / 2 )[...]
|
|
|
|
def draw_rect_landmarks (image, rect, image_landmarks, face_type, face_size=256, transparent_mask=False, landmarks_color=(0,255,0)):
|
|
draw_landmarks(image, image_landmarks, color=landmarks_color, transparent_mask=transparent_mask)
|
|
imagelib.draw_rect (image, rect, (255,0,0), 2 )
|
|
|
|
image_to_face_mat = get_transform_mat (image_landmarks, face_size, face_type)
|
|
points = transform_points ( [ (0,0), (0,face_size-1), (face_size-1, face_size-1), (face_size-1,0) ], image_to_face_mat, True)
|
|
imagelib.draw_polygon (image, points, (0,0,255), 2)
|
|
|
|
points = transform_points ( [ ( int(face_size*0.05), 0), ( int(face_size*0.1), int(face_size*0.1) ), ( 0, int(face_size*0.1) ) ], image_to_face_mat, True)
|
|
imagelib.draw_polygon (image, points, (0,0,255), 2)
|
|
|
|
def calc_face_pitch(landmarks):
|
|
if not isinstance(landmarks, np.ndarray):
|
|
landmarks = np.array (landmarks)
|
|
t = ( (landmarks[6][1]-landmarks[8][1]) + (landmarks[10][1]-landmarks[8][1]) ) / 2.0
|
|
b = landmarks[8][1]
|
|
return float(b-t)
|
|
|
|
def estimate_averaged_yaw(landmarks):
|
|
# Works much better than solvePnP if landmarks from "3DFAN"
|
|
if not isinstance(landmarks, np.ndarray):
|
|
landmarks = np.array (landmarks)
|
|
l = ( (landmarks[27][0]-landmarks[0][0]) + (landmarks[28][0]-landmarks[1][0]) + (landmarks[29][0]-landmarks[2][0]) ) / 3.0
|
|
r = ( (landmarks[16][0]-landmarks[27][0]) + (landmarks[15][0]-landmarks[28][0]) + (landmarks[14][0]-landmarks[29][0]) ) / 3.0
|
|
return float(r-l)
|
|
|
|
def estimate_pitch_yaw_roll(aligned_landmarks, size=256):
|
|
"""
|
|
returns pitch,yaw,roll [-pi/2...+pi/2]
|
|
"""
|
|
shape = (size,size)
|
|
focal_length = shape[1]
|
|
camera_center = (shape[1] / 2, shape[0] / 2)
|
|
camera_matrix = np.array(
|
|
[[focal_length, 0, camera_center[0]],
|
|
[0, focal_length, camera_center[1]],
|
|
[0, 0, 1]], dtype=np.float32)
|
|
|
|
(_, rotation_vector, _) = cv2.solvePnP(
|
|
np.concatenate( (landmarks_68_3D[:27], landmarks_68_3D[30:36]) , axis=0) ,
|
|
np.concatenate( (aligned_landmarks[:27], aligned_landmarks[30:36]) , axis=0).astype(np.float32),
|
|
camera_matrix,
|
|
np.zeros((4, 1)) )
|
|
|
|
pitch, yaw, roll = mathlib.rotationMatrixToEulerAngles( cv2.Rodrigues(rotation_vector)[0] )
|
|
|
|
half_pi = math.pi / 2.0
|
|
pitch = np.clip ( pitch, -half_pi, half_pi )
|
|
yaw = np.clip ( yaw , -half_pi, half_pi )
|
|
roll = np.clip ( roll, -half_pi, half_pi )
|
|
|
|
return -pitch, yaw, roll
|
|
|
|
#if remove_align:
|
|
# bbox = transform_points ( [ (0,0), (0,output_size), (output_size, output_size), (output_size,0) ], mat, True)
|
|
# #import code
|
|
# #code.interact(local=dict(globals(), **locals()))
|
|
# area = mathlib.polygon_area(bbox[:,0], bbox[:,1] )
|
|
# side = math.sqrt(area) / 2
|
|
# center = transform_points ( [(output_size/2,output_size/2)], mat, True)
|
|
# pts1 = np.float32(( center+[-side,-side], center+[side,-side], center+[side,-side] ))
|
|
# pts2 = np.float32([[0,0],[output_size,0],[0,output_size]])
|
|
# mat = cv2.getAffineTransform(pts1,pts2)
|
|
#if full_face_align_top and (face_type == FaceType.FULL or face_type == FaceType.FULL_NO_ALIGN):
|
|
# #lmrks2 = expand_eyebrows(image_landmarks)
|
|
# #lmrks2_ = transform_points( [ lmrks2[19], lmrks2[24] ], mat, False )
|
|
# #y_diff = np.float32( (0,np.min(lmrks2_[:,1])) )
|
|
# #y_diff = transform_points( [ np.float32( (0,0) ), y_diff], mat, True)
|
|
# #y_diff = y_diff[1]-y_diff[0]
|
|
#
|
|
# x_diff = np.float32((0,0))
|
|
#
|
|
# lmrks2_ = transform_points( [ image_landmarks[0], image_landmarks[16] ], mat, False )
|
|
# if lmrks2_[0,0] < 0:
|
|
# x_diff = lmrks2_[0,0]
|
|
# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
|
|
# x_diff = x_diff[1]-x_diff[0]
|
|
# elif lmrks2_[1,0] >= output_size:
|
|
# x_diff = lmrks2_[1,0]-(output_size-1)
|
|
# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
|
|
# x_diff = x_diff[1]-x_diff[0]
|
|
#
|
|
# mat = cv2.getAffineTransform( l_t+y_diff+x_diff ,pts2)
|
|
|
|
|
|
"""
|
|
def get_averaged_transform_mat (img_landmarks,
|
|
img_landmarks_prev,
|
|
img_landmarks_next,
|
|
average_frame_count,
|
|
average_center_frame_count,
|
|
output_size, face_type, scale=1.0):
|
|
|
|
l_c_list = []
|
|
tb_diag_vec_list = []
|
|
bt_diag_vec_list = []
|
|
mod_list = []
|
|
|
|
count = max(average_frame_count,average_center_frame_count)
|
|
for i in range ( -count, count+1, 1 ):
|
|
if i < 0:
|
|
lmrks = img_landmarks_prev[i] if -i < len(img_landmarks_prev) else None
|
|
elif i > 0:
|
|
lmrks = img_landmarks_next[i] if i < len(img_landmarks_next) else None
|
|
else:
|
|
lmrks = img_landmarks
|
|
|
|
if lmrks is None:
|
|
continue
|
|
|
|
l_c, tb_diag_vec, bt_diag_vec, mod = get_transform_mat_data (lmrks, face_type, scale=scale)
|
|
|
|
if i >= -average_frame_count and i <= average_frame_count:
|
|
tb_diag_vec_list.append(tb_diag_vec)
|
|
bt_diag_vec_list.append(bt_diag_vec)
|
|
mod_list.append(mod)
|
|
|
|
if i >= -average_center_frame_count and i <= average_center_frame_count:
|
|
l_c_list.append(l_c)
|
|
|
|
tb_diag_vec = np.mean( np.array(tb_diag_vec_list), axis=0 )
|
|
bt_diag_vec = np.mean( np.array(bt_diag_vec_list), axis=0 )
|
|
mod = np.mean( np.array(mod_list), axis=0 )
|
|
l_c = np.mean( np.array(l_c_list), axis=0 )
|
|
|
|
return get_transform_mat_by_data (l_c, tb_diag_vec, bt_diag_vec, mod, output_size, face_type)
|
|
|
|
|
|
def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
|
|
if not isinstance(image_landmarks, np.ndarray):
|
|
image_landmarks = np.array (image_landmarks)
|
|
|
|
# get face padding value for FaceType
|
|
padding, remove_align = FaceType_to_padding_remove_align.get(face_type, 0.0)
|
|
|
|
# estimate landmarks transform from global space to local aligned space with bounds [0..1]
|
|
mat = umeyama( np.concatenate ( [ image_landmarks[17:49] , image_landmarks[54:55] ] ) , landmarks_2D_new, True)[0:2]
|
|
|
|
# get corner points in global space
|
|
l_p = transform_points ( np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5)]) , mat, True)
|
|
l_c = l_p[4]
|
|
|
|
# calc diagonal vectors between corners in global space
|
|
tb_diag_vec = (l_p[2]-l_p[0]).astype(np.float32)
|
|
tb_diag_vec /= npla.norm(tb_diag_vec)
|
|
bt_diag_vec = (l_p[1]-l_p[3]).astype(np.float32)
|
|
bt_diag_vec /= npla.norm(bt_diag_vec)
|
|
|
|
# calc modifier of diagonal vectors for scale and padding value
|
|
mod = (1.0 / scale)* ( npla.norm(l_p[0]-l_p[2])*(padding*np.sqrt(2.0) + 0.5) )
|
|
|
|
# calc 3 points in global space to estimate 2d affine transform
|
|
if not remove_align:
|
|
l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
|
|
np.round( l_c + bt_diag_vec*mod ),
|
|
np.round( l_c + tb_diag_vec*mod ) ] )
|
|
else:
|
|
# remove_align - face will be centered in the frame but not aligned
|
|
l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
|
|
np.round( l_c + bt_diag_vec*mod ),
|
|
np.round( l_c + tb_diag_vec*mod ),
|
|
np.round( l_c - bt_diag_vec*mod ),
|
|
] )
|
|
|
|
# get area of face square in global space
|
|
area = mathlib.polygon_area(l_t[:,0], l_t[:,1] )
|
|
|
|
# calc side of square
|
|
side = np.float32(math.sqrt(area) / 2)
|
|
|
|
# calc 3 points with unrotated square
|
|
l_t = np.array( [ np.round( l_c + [-side,-side] ),
|
|
np.round( l_c + [ side,-side] ),
|
|
np.round( l_c + [ side, side] ) ] )
|
|
|
|
# calc affine transform from 3 global space points to 3 local space points size of 'output_size'
|
|
pts2 = np.float32(( (0,0),(output_size,0),(output_size,output_size) ))
|
|
mat = cv2.getAffineTransform(l_t,pts2)
|
|
|
|
return mat
|
|
""" |