DeepFaceLab/facelib/FANExtractor.py
Colombo 2b7364005d Added new face type : head
Now you can replace the head.
Example: https://www.youtube.com/watch?v=xr5FHd0AdlQ
Requirements:
	Post processing skill in Adobe After Effects or Davinci Resolve.
Usage:
1)	Find suitable dst footage with the monotonous background behind head
2)	Use “extract head” script
3)	Gather rich src headset from only one scene (same color and haircut)
4)	Mask whole head for src and dst using XSeg editor
5)	Train XSeg
6)	Apply trained XSeg mask for src and dst headsets
7)	Train SAEHD using ‘head’ face_type as regular deepfake model with DF archi. You can use pretrained model for head. Minimum recommended resolution for head is 224.
8)	Extract multiple tracks, using Merger:
a.	Raw-rgb
b.	XSeg-prd mask
c.	XSeg-dst mask
9)	Using AAE or DavinciResolve, do:
a.	Hide source head using XSeg-prd mask: content-aware-fill, clone-stamp, background retraction, or other technique
b.	Overlay new head using XSeg-dst mask

Warning: Head faceset can be used for whole_face or less types of training only with XSeg masking.

XSegEditor: added button ‘view trained XSeg mask’, so you can see which frames should be masked to improve mask quality.
2020-04-04 09:28:06 +04:00

281 lines
10 KiB
Python

import os
import traceback
from pathlib import Path
import cv2
import numpy as np
from numpy import linalg as npla
from facelib import FaceType, LandmarksProcessor
from core.leras import nn
"""
ported from https://github.com/1adrianb/face-alignment
"""
class FANExtractor(object):
def __init__ (self, landmarks_3D=False, place_model_on_cpu=False):
model_path = Path(__file__).parent / ( "2DFAN.npy" if not landmarks_3D else "3DFAN.npy")
if not model_path.exists():
raise Exception("Unable to load FANExtractor model")
nn.initialize(data_format="NHWC")
tf = nn.tf
class ConvBlock(nn.ModelBase):
def on_build(self, in_planes, out_planes):
self.in_planes = in_planes
self.out_planes = out_planes
self.bn1 = nn.BatchNorm2D(in_planes)
self.conv1 = nn.Conv2D (in_planes, out_planes/2, kernel_size=3, strides=1, padding='SAME', use_bias=False )
self.bn2 = nn.BatchNorm2D(out_planes//2)
self.conv2 = nn.Conv2D (out_planes/2, out_planes/4, kernel_size=3, strides=1, padding='SAME', use_bias=False )
self.bn3 = nn.BatchNorm2D(out_planes//4)
self.conv3 = nn.Conv2D (out_planes/4, out_planes/4, kernel_size=3, strides=1, padding='SAME', use_bias=False )
if self.in_planes != self.out_planes:
self.down_bn1 = nn.BatchNorm2D(in_planes)
self.down_conv1 = nn.Conv2D (in_planes, out_planes, kernel_size=1, strides=1, padding='VALID', use_bias=False )
else:
self.down_bn1 = None
self.down_conv1 = None
def forward(self, input):
x = input
x = self.bn1(x)
x = tf.nn.relu(x)
x = out1 = self.conv1(x)
x = self.bn2(x)
x = tf.nn.relu(x)
x = out2 = self.conv2(x)
x = self.bn3(x)
x = tf.nn.relu(x)
x = out3 = self.conv3(x)
x = tf.concat ([out1, out2, out3], axis=-1)
if self.in_planes != self.out_planes:
downsample = self.down_bn1(input)
downsample = tf.nn.relu (downsample)
downsample = self.down_conv1 (downsample)
x = x + downsample
else:
x = x + input
return x
class HourGlass (nn.ModelBase):
def on_build(self, in_planes, depth):
self.b1 = ConvBlock (in_planes, 256)
self.b2 = ConvBlock (in_planes, 256)
if depth > 1:
self.b2_plus = HourGlass(256, depth-1)
else:
self.b2_plus = ConvBlock(256, 256)
self.b3 = ConvBlock(256, 256)
def forward(self, input):
up1 = self.b1(input)
low1 = tf.nn.avg_pool(input, [1,2,2,1], [1,2,2,1], 'VALID')
low1 = self.b2 (low1)
low2 = self.b2_plus(low1)
low3 = self.b3(low2)
up2 = nn.upsample2d(low3)
return up1+up2
class FAN (nn.ModelBase):
def __init__(self):
super().__init__(name='FAN')
def on_build(self):
self.conv1 = nn.Conv2D (3, 64, kernel_size=7, strides=2, padding='SAME')
self.bn1 = nn.BatchNorm2D(64)
self.conv2 = ConvBlock(64, 128)
self.conv3 = ConvBlock(128, 128)
self.conv4 = ConvBlock(128, 256)
self.m = []
self.top_m = []
self.conv_last = []
self.bn_end = []
self.l = []
self.bl = []
self.al = []
for i in range(4):
self.m += [ HourGlass(256, 4) ]
self.top_m += [ ConvBlock(256, 256) ]
self.conv_last += [ nn.Conv2D (256, 256, kernel_size=1, strides=1, padding='VALID') ]
self.bn_end += [ nn.BatchNorm2D(256) ]
self.l += [ nn.Conv2D (256, 68, kernel_size=1, strides=1, padding='VALID') ]
if i < 4-1:
self.bl += [ nn.Conv2D (256, 256, kernel_size=1, strides=1, padding='VALID') ]
self.al += [ nn.Conv2D (68, 256, kernel_size=1, strides=1, padding='VALID') ]
def forward(self, inp) :
x, = inp
x = self.conv1(x)
x = self.bn1(x)
x = tf.nn.relu(x)
x = self.conv2(x)
x = tf.nn.avg_pool(x, [1,2,2,1], [1,2,2,1], 'VALID')
x = self.conv3(x)
x = self.conv4(x)
outputs = []
previous = x
for i in range(4):
ll = self.m[i] (previous)
ll = self.top_m[i] (ll)
ll = self.conv_last[i] (ll)
ll = self.bn_end[i] (ll)
ll = tf.nn.relu(ll)
tmp_out = self.l[i](ll)
outputs.append(tmp_out)
if i < 4 - 1:
ll = self.bl[i](ll)
previous = previous + ll + self.al[i](tmp_out)
x = outputs[-1]
x = tf.transpose(x, (0,3,1,2) )
return x
e = None
if place_model_on_cpu:
e = tf.device("/CPU:0")
if e is not None: e.__enter__()
self.model = FAN()
self.model.load_weights(str(model_path))
if e is not None: e.__exit__(None,None,None)
self.model.build_for_run ([ ( tf.float32, (None,256,256,3) ) ])
def extract (self, input_image, rects, second_pass_extractor=None, is_bgr=True, multi_sample=False):
if len(rects) == 0:
return []
if is_bgr:
input_image = input_image[:,:,::-1]
is_bgr = False
(h, w, ch) = input_image.shape
landmarks = []
for (left, top, right, bottom) in rects:
scale = (right - left + bottom - top) / 195.0
center = np.array( [ (left + right) / 2.0, (top + bottom) / 2.0] )
centers = [ center ]
if multi_sample:
centers += [ center + [-1,-1],
center + [1,-1],
center + [1,1],
center + [-1,1],
]
images = []
ptss = []
try:
for c in centers:
images += [ self.crop(input_image, c, scale) ]
images = np.stack (images)
images = images.astype(np.float32) / 255.0
predicted = []
for i in range( len(images) ):
predicted += [ self.model.run ( [ images[i][None,...] ] )[0] ]
predicted = np.stack(predicted)
for i, pred in enumerate(predicted):
ptss += [ self.get_pts_from_predict ( pred, centers[i], scale) ]
pts_img = np.mean ( np.array(ptss), 0 )
landmarks.append (pts_img)
except:
landmarks.append (None)
if second_pass_extractor is not None:
for i, lmrks in enumerate(landmarks):
try:
if lmrks is not None:
image_to_face_mat = LandmarksProcessor.get_transform_mat (lmrks, 256, FaceType.FULL)
face_image = cv2.warpAffine(input_image, image_to_face_mat, (256, 256), cv2.INTER_CUBIC )
rects2 = second_pass_extractor.extract(face_image, is_bgr=is_bgr)
if len(rects2) == 1: #dont do second pass if faces != 1 detected in cropped image
lmrks2 = self.extract (face_image, [ rects2[0] ], is_bgr=is_bgr, multi_sample=True)[0]
landmarks[i] = LandmarksProcessor.transform_points (lmrks2, image_to_face_mat, True)
except:
pass
return landmarks
def transform(self, point, center, scale, resolution):
pt = np.array ( [point[0], point[1], 1.0] )
h = 200.0 * scale
m = np.eye(3)
m[0,0] = resolution / h
m[1,1] = resolution / h
m[0,2] = resolution * ( -center[0] / h + 0.5 )
m[1,2] = resolution * ( -center[1] / h + 0.5 )
m = np.linalg.inv(m)
return np.matmul (m, pt)[0:2]
def crop(self, image, center, scale, resolution=256.0):
ul = self.transform([1, 1], center, scale, resolution).astype( np.int )
br = self.transform([resolution, resolution], center, scale, resolution).astype( np.int )
if image.ndim > 2:
newDim = np.array([br[1] - ul[1], br[0] - ul[0], image.shape[2]], dtype=np.int32)
newImg = np.zeros(newDim, dtype=np.uint8)
else:
newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
newImg = np.zeros(newDim, dtype=np.uint8)
ht = image.shape[0]
wd = image.shape[1]
newX = np.array([max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
newY = np.array([max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1] ] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)), interpolation=cv2.INTER_LINEAR)
return newImg
def get_pts_from_predict(self, a, center, scale):
a_ch, a_h, a_w = a.shape
b = a.reshape ( (a_ch, a_h*a_w) )
c = b.argmax(1).reshape ( (a_ch, 1) ).repeat(2, axis=1).astype(np.float)
c[:,0] %= a_w
c[:,1] = np.apply_along_axis ( lambda x: np.floor(x / a_w), 0, c[:,1] )
for i in range(a_ch):
pX, pY = int(c[i,0]), int(c[i,1])
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = np.array ( [a[i,pY,pX+1]-a[i,pY,pX-1], a[i,pY+1,pX]-a[i,pY-1,pX]] )
c[i] += np.sign(diff)*0.25
c += 0.5
return np.array( [ self.transform (c[i], center, scale, a_w) for i in range(a_ch) ] )