mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2024-11-20 23:10:08 -08:00
360 lines
14 KiB
Python
360 lines
14 KiB
Python
import os
|
|
import sys
|
|
import traceback
|
|
import queue
|
|
import threading
|
|
import time
|
|
import numpy as np
|
|
import itertools
|
|
from pathlib import Path
|
|
from core import pathex
|
|
from core import imagelib
|
|
import cv2
|
|
import models
|
|
from core.interact import interact as io
|
|
|
|
def trainerThread (s2c, c2s, e,
|
|
model_class_name = None,
|
|
saved_models_path = None,
|
|
training_data_src_path = None,
|
|
training_data_dst_path = None,
|
|
pretraining_data_path = None,
|
|
pretrained_model_path = None,
|
|
no_preview=False,
|
|
force_model_name=None,
|
|
force_gpu_idxs=None,
|
|
cpu_only=None,
|
|
silent_start=False,
|
|
execute_programs = None,
|
|
debug=False,
|
|
**kwargs):
|
|
while True:
|
|
try:
|
|
start_time = time.time()
|
|
|
|
save_interval_min = 25
|
|
|
|
if not training_data_src_path.exists():
|
|
training_data_src_path.mkdir(exist_ok=True, parents=True)
|
|
|
|
if not training_data_dst_path.exists():
|
|
training_data_dst_path.mkdir(exist_ok=True, parents=True)
|
|
|
|
if not saved_models_path.exists():
|
|
saved_models_path.mkdir(exist_ok=True, parents=True)
|
|
|
|
model = models.import_model(model_class_name)(
|
|
is_training=True,
|
|
saved_models_path=saved_models_path,
|
|
training_data_src_path=training_data_src_path,
|
|
training_data_dst_path=training_data_dst_path,
|
|
pretraining_data_path=pretraining_data_path,
|
|
pretrained_model_path=pretrained_model_path,
|
|
no_preview=no_preview,
|
|
force_model_name=force_model_name,
|
|
force_gpu_idxs=force_gpu_idxs,
|
|
cpu_only=cpu_only,
|
|
silent_start=silent_start,
|
|
debug=debug)
|
|
|
|
is_reached_goal = model.is_reached_iter_goal()
|
|
|
|
shared_state = { 'after_save' : False }
|
|
loss_string = ""
|
|
save_iter = model.get_iter()
|
|
def model_save():
|
|
if not debug and not is_reached_goal:
|
|
io.log_info ("Saving....", end='\r')
|
|
model.save()
|
|
shared_state['after_save'] = True
|
|
|
|
def model_backup():
|
|
if not debug and not is_reached_goal:
|
|
model.create_backup()
|
|
|
|
def send_preview():
|
|
if not debug:
|
|
previews = model.get_previews()
|
|
c2s.put ( {'op':'show', 'previews': previews, 'iter':model.get_iter(), 'loss_history': model.get_loss_history().copy() } )
|
|
else:
|
|
previews = [( 'debug, press update for new', model.debug_one_iter())]
|
|
c2s.put ( {'op':'show', 'previews': previews} )
|
|
e.set() #Set the GUI Thread as Ready
|
|
|
|
if model.get_target_iter() != 0:
|
|
if is_reached_goal:
|
|
io.log_info('Model already trained to target iteration. You can use preview.')
|
|
else:
|
|
io.log_info('Starting. Target iteration: %d. Press "Enter" to stop training and save model.' % ( model.get_target_iter() ) )
|
|
else:
|
|
io.log_info('Starting. Press "Enter" to stop training and save model.')
|
|
|
|
last_save_time = time.time()
|
|
|
|
execute_programs = [ [x[0], x[1], time.time() ] for x in execute_programs ]
|
|
|
|
for i in itertools.count(0,1):
|
|
if not debug:
|
|
cur_time = time.time()
|
|
|
|
for x in execute_programs:
|
|
prog_time, prog, last_time = x
|
|
exec_prog = False
|
|
if prog_time > 0 and (cur_time - start_time) >= prog_time:
|
|
x[0] = 0
|
|
exec_prog = True
|
|
elif prog_time < 0 and (cur_time - last_time) >= -prog_time:
|
|
x[2] = cur_time
|
|
exec_prog = True
|
|
|
|
if exec_prog:
|
|
try:
|
|
exec(prog)
|
|
except Exception as e:
|
|
print("Unable to execute program: %s" % (prog) )
|
|
|
|
if not is_reached_goal:
|
|
|
|
if model.get_iter() == 0:
|
|
io.log_info("")
|
|
io.log_info("Trying to do the first iteration. If an error occurs, reduce the model parameters.")
|
|
io.log_info("")
|
|
|
|
if sys.platform[0:3] == 'win':
|
|
io.log_info("!!!")
|
|
io.log_info("Windows 10 users IMPORTANT notice. You should set this setting in order to work correctly.")
|
|
io.log_info("https://i.imgur.com/B7cmDCB.jpg")
|
|
io.log_info("!!!")
|
|
|
|
iter, iter_time = model.train_one_iter()
|
|
|
|
loss_history = model.get_loss_history()
|
|
time_str = time.strftime("[%H:%M:%S]")
|
|
if iter_time >= 10:
|
|
loss_string = "{0}[#{1:06d}][{2:.5s}s]".format ( time_str, iter, '{:0.4f}'.format(iter_time) )
|
|
else:
|
|
loss_string = "{0}[#{1:06d}][{2:04d}ms]".format ( time_str, iter, int(iter_time*1000) )
|
|
|
|
if shared_state['after_save']:
|
|
shared_state['after_save'] = False
|
|
|
|
mean_loss = np.mean ( loss_history[save_iter:iter], axis=0)
|
|
|
|
for loss_value in mean_loss:
|
|
loss_string += "[%.4f]" % (loss_value)
|
|
|
|
io.log_info (loss_string)
|
|
|
|
save_iter = iter
|
|
else:
|
|
for loss_value in loss_history[-1]:
|
|
loss_string += "[%.4f]" % (loss_value)
|
|
|
|
if io.is_colab():
|
|
io.log_info ('\r' + loss_string, end='')
|
|
else:
|
|
io.log_info (loss_string, end='\r')
|
|
|
|
if model.get_iter() == 1:
|
|
model_save()
|
|
|
|
if model.get_target_iter() != 0 and model.is_reached_iter_goal():
|
|
io.log_info ('Reached target iteration.')
|
|
model_save()
|
|
is_reached_goal = True
|
|
io.log_info ('You can use preview now.')
|
|
|
|
need_save = False
|
|
while time.time() - last_save_time >= save_interval_min*60:
|
|
last_save_time += save_interval_min*60
|
|
need_save = True
|
|
|
|
if not is_reached_goal and need_save:
|
|
model_save()
|
|
send_preview()
|
|
|
|
if i==0:
|
|
if is_reached_goal:
|
|
model.pass_one_iter()
|
|
send_preview()
|
|
|
|
if debug:
|
|
time.sleep(0.005)
|
|
|
|
while not s2c.empty():
|
|
input = s2c.get()
|
|
op = input['op']
|
|
if op == 'save':
|
|
model_save()
|
|
elif op == 'backup':
|
|
model_backup()
|
|
elif op == 'preview':
|
|
if is_reached_goal:
|
|
model.pass_one_iter()
|
|
send_preview()
|
|
elif op == 'close':
|
|
model_save()
|
|
i = -1
|
|
break
|
|
|
|
if i == -1:
|
|
break
|
|
|
|
|
|
|
|
model.finalize()
|
|
|
|
except Exception as e:
|
|
print ('Error: %s' % (str(e)))
|
|
traceback.print_exc()
|
|
break
|
|
c2s.put ( {'op':'close'} )
|
|
|
|
|
|
|
|
def main(**kwargs):
|
|
io.log_info ("Running trainer.\r\n")
|
|
|
|
no_preview = kwargs.get('no_preview', False)
|
|
|
|
s2c = queue.Queue()
|
|
c2s = queue.Queue()
|
|
|
|
e = threading.Event()
|
|
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e), kwargs=kwargs )
|
|
thread.start()
|
|
|
|
e.wait() #Wait for inital load to occur.
|
|
|
|
if no_preview:
|
|
while True:
|
|
if not c2s.empty():
|
|
input = c2s.get()
|
|
op = input.get('op','')
|
|
if op == 'close':
|
|
break
|
|
try:
|
|
io.process_messages(0.1)
|
|
except KeyboardInterrupt:
|
|
s2c.put ( {'op': 'close'} )
|
|
else:
|
|
wnd_name = "Training preview"
|
|
io.named_window(wnd_name)
|
|
io.capture_keys(wnd_name)
|
|
|
|
previews = None
|
|
loss_history = None
|
|
selected_preview = 0
|
|
update_preview = False
|
|
is_showing = False
|
|
is_waiting_preview = False
|
|
show_last_history_iters_count = 0
|
|
iter = 0
|
|
while True:
|
|
if not c2s.empty():
|
|
input = c2s.get()
|
|
op = input['op']
|
|
if op == 'show':
|
|
is_waiting_preview = False
|
|
loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
|
|
previews = input['previews'] if 'previews' in input.keys() else None
|
|
iter = input['iter'] if 'iter' in input.keys() else 0
|
|
if previews is not None:
|
|
max_w = 0
|
|
max_h = 0
|
|
for (preview_name, preview_rgb) in previews:
|
|
(h, w, c) = preview_rgb.shape
|
|
max_h = max (max_h, h)
|
|
max_w = max (max_w, w)
|
|
|
|
max_size = 800
|
|
if max_h > max_size:
|
|
max_w = int( max_w / (max_h / max_size) )
|
|
max_h = max_size
|
|
|
|
#make all previews size equal
|
|
for preview in previews[:]:
|
|
(preview_name, preview_rgb) = preview
|
|
(h, w, c) = preview_rgb.shape
|
|
if h != max_h or w != max_w:
|
|
previews.remove(preview)
|
|
previews.append ( (preview_name, cv2.resize(preview_rgb, (max_w, max_h))) )
|
|
selected_preview = selected_preview % len(previews)
|
|
update_preview = True
|
|
elif op == 'close':
|
|
break
|
|
|
|
if update_preview:
|
|
update_preview = False
|
|
|
|
selected_preview_name = previews[selected_preview][0]
|
|
selected_preview_rgb = previews[selected_preview][1]
|
|
(h,w,c) = selected_preview_rgb.shape
|
|
|
|
# HEAD
|
|
head_lines = [
|
|
'[s]:save [b]:backup [enter]:exit',
|
|
'[p]:update [space]:next preview [l]:change history range',
|
|
'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews) )
|
|
]
|
|
head_line_height = 15
|
|
head_height = len(head_lines) * head_line_height
|
|
head = np.ones ( (head_height,w,c) ) * 0.1
|
|
|
|
for i in range(0, len(head_lines)):
|
|
t = i*head_line_height
|
|
b = (i+1)*head_line_height
|
|
head[t:b, 0:w] += imagelib.get_text_image ( (head_line_height,w,c) , head_lines[i], color=[0.8]*c )
|
|
|
|
final = head
|
|
|
|
if loss_history is not None:
|
|
if show_last_history_iters_count == 0:
|
|
loss_history_to_show = loss_history
|
|
else:
|
|
loss_history_to_show = loss_history[-show_last_history_iters_count:]
|
|
|
|
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iter, w, c)
|
|
final = np.concatenate ( [final, lh_img], axis=0 )
|
|
|
|
final = np.concatenate ( [final, selected_preview_rgb], axis=0 )
|
|
final = np.clip(final, 0, 1)
|
|
|
|
io.show_image( wnd_name, (final*255).astype(np.uint8) )
|
|
is_showing = True
|
|
|
|
key_events = io.get_key_events(wnd_name)
|
|
key, chr_key, ctrl_pressed, alt_pressed, shift_pressed = key_events[-1] if len(key_events) > 0 else (0,0,False,False,False)
|
|
|
|
if key == ord('\n') or key == ord('\r'):
|
|
s2c.put ( {'op': 'close'} )
|
|
elif key == ord('s'):
|
|
s2c.put ( {'op': 'save'} )
|
|
elif key == ord('b'):
|
|
s2c.put ( {'op': 'backup'} )
|
|
elif key == ord('p'):
|
|
if not is_waiting_preview:
|
|
is_waiting_preview = True
|
|
s2c.put ( {'op': 'preview'} )
|
|
elif key == ord('l'):
|
|
if show_last_history_iters_count == 0:
|
|
show_last_history_iters_count = 5000
|
|
elif show_last_history_iters_count == 5000:
|
|
show_last_history_iters_count = 10000
|
|
elif show_last_history_iters_count == 10000:
|
|
show_last_history_iters_count = 50000
|
|
elif show_last_history_iters_count == 50000:
|
|
show_last_history_iters_count = 100000
|
|
elif show_last_history_iters_count == 100000:
|
|
show_last_history_iters_count = 0
|
|
update_preview = True
|
|
elif key == ord(' '):
|
|
selected_preview = (selected_preview + 1) % len(previews)
|
|
update_preview = True
|
|
|
|
try:
|
|
io.process_messages(0.1)
|
|
except KeyboardInterrupt:
|
|
s2c.put ( {'op': 'close'} )
|
|
|
|
io.destroy_all_windows() |