mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2024-11-20 23:10:08 -08:00
210 lines
8.5 KiB
Python
210 lines
8.5 KiB
Python
import multiprocessing
|
|
import shutil
|
|
|
|
import cv2
|
|
from core import pathex
|
|
from core.cv2ex import *
|
|
from core.interact import interact as io
|
|
from core.joblib import Subprocessor
|
|
from DFLIMG import *
|
|
from facelib import FaceType, LandmarksProcessor
|
|
|
|
|
|
class FacesetResizerSubprocessor(Subprocessor):
|
|
|
|
#override
|
|
def __init__(self, image_paths, output_dirpath, image_size, face_type=None):
|
|
self.image_paths = image_paths
|
|
self.output_dirpath = output_dirpath
|
|
self.image_size = image_size
|
|
self.face_type = face_type
|
|
self.result = []
|
|
|
|
super().__init__('FacesetResizer', FacesetResizerSubprocessor.Cli, 600)
|
|
|
|
#override
|
|
def on_clients_initialized(self):
|
|
io.progress_bar (None, len (self.image_paths))
|
|
|
|
#override
|
|
def on_clients_finalized(self):
|
|
io.progress_bar_close()
|
|
|
|
#override
|
|
def process_info_generator(self):
|
|
base_dict = {'output_dirpath':self.output_dirpath, 'image_size':self.image_size, 'face_type':self.face_type}
|
|
|
|
for device_idx in range( min(8, multiprocessing.cpu_count()) ):
|
|
client_dict = base_dict.copy()
|
|
device_name = f'CPU #{device_idx}'
|
|
client_dict['device_name'] = device_name
|
|
yield device_name, {}, client_dict
|
|
|
|
#override
|
|
def get_data(self, host_dict):
|
|
if len (self.image_paths) > 0:
|
|
return self.image_paths.pop(0)
|
|
|
|
#override
|
|
def on_data_return (self, host_dict, data):
|
|
self.image_paths.insert(0, data)
|
|
|
|
#override
|
|
def on_result (self, host_dict, data, result):
|
|
io.progress_bar_inc(1)
|
|
if result[0] == 1:
|
|
self.result +=[ (result[1], result[2]) ]
|
|
|
|
#override
|
|
def get_result(self):
|
|
return self.result
|
|
|
|
class Cli(Subprocessor.Cli):
|
|
|
|
#override
|
|
def on_initialize(self, client_dict):
|
|
self.output_dirpath = client_dict['output_dirpath']
|
|
self.image_size = client_dict['image_size']
|
|
self.face_type = client_dict['face_type']
|
|
self.log_info (f"Running on { client_dict['device_name'] }")
|
|
|
|
#override
|
|
def process_data(self, filepath):
|
|
try:
|
|
dflimg = DFLIMG.load (filepath)
|
|
if dflimg is None or not dflimg.has_data():
|
|
self.log_err (f"{filepath.name} is not a dfl image file")
|
|
else:
|
|
img = cv2_imread(filepath)
|
|
h,w = img.shape[:2]
|
|
if h != w:
|
|
raise Exception(f'w != h in {filepath}')
|
|
|
|
image_size = self.image_size
|
|
face_type = self.face_type
|
|
output_filepath = self.output_dirpath / filepath.name
|
|
|
|
if face_type is not None:
|
|
lmrks = dflimg.get_landmarks()
|
|
mat = LandmarksProcessor.get_transform_mat(lmrks, image_size, face_type)
|
|
|
|
img = cv2.warpAffine(img, mat, (image_size, image_size), flags=cv2.INTER_LANCZOS4 )
|
|
img = np.clip(img, 0, 255).astype(np.uint8)
|
|
|
|
cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
|
|
|
|
dfl_dict = dflimg.get_dict()
|
|
dflimg = DFLIMG.load (output_filepath)
|
|
dflimg.set_dict(dfl_dict)
|
|
|
|
xseg_mask = dflimg.get_xseg_mask()
|
|
if xseg_mask is not None:
|
|
xseg_res = 256
|
|
|
|
xseg_lmrks = lmrks.copy()
|
|
xseg_lmrks *= (xseg_res / w)
|
|
xseg_mat = LandmarksProcessor.get_transform_mat(xseg_lmrks, xseg_res, face_type)
|
|
|
|
xseg_mask = cv2.warpAffine(xseg_mask, xseg_mat, (xseg_res, xseg_res), flags=cv2.INTER_LANCZOS4 )
|
|
xseg_mask[xseg_mask < 0.5] = 0
|
|
xseg_mask[xseg_mask >= 0.5] = 1
|
|
|
|
dflimg.set_xseg_mask(xseg_mask)
|
|
|
|
seg_ie_polys = dflimg.get_seg_ie_polys()
|
|
|
|
for poly in seg_ie_polys.get_polys():
|
|
poly_pts = poly.get_pts()
|
|
poly_pts = LandmarksProcessor.transform_points(poly_pts, mat)
|
|
poly.set_points(poly_pts)
|
|
|
|
dflimg.set_seg_ie_polys(seg_ie_polys)
|
|
|
|
lmrks = LandmarksProcessor.transform_points(lmrks, mat)
|
|
dflimg.set_landmarks(lmrks)
|
|
|
|
image_to_face_mat = dflimg.get_image_to_face_mat()
|
|
if image_to_face_mat is not None:
|
|
image_to_face_mat = LandmarksProcessor.get_transform_mat ( dflimg.get_source_landmarks(), image_size, face_type )
|
|
dflimg.set_image_to_face_mat(image_to_face_mat)
|
|
dflimg.set_face_type( FaceType.toString(face_type) )
|
|
dflimg.save()
|
|
|
|
else:
|
|
dfl_dict = dflimg.get_dict()
|
|
|
|
scale = w / image_size
|
|
|
|
img = cv2.resize(img, (image_size, image_size), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
|
|
|
|
dflimg = DFLIMG.load (output_filepath)
|
|
dflimg.set_dict(dfl_dict)
|
|
|
|
lmrks = dflimg.get_landmarks()
|
|
lmrks /= scale
|
|
dflimg.set_landmarks(lmrks)
|
|
|
|
seg_ie_polys = dflimg.get_seg_ie_polys()
|
|
seg_ie_polys.mult_points( 1.0 / scale)
|
|
dflimg.set_seg_ie_polys(seg_ie_polys)
|
|
|
|
image_to_face_mat = dflimg.get_image_to_face_mat()
|
|
|
|
if image_to_face_mat is not None:
|
|
face_type = FaceType.fromString ( dflimg.get_face_type() )
|
|
image_to_face_mat = LandmarksProcessor.get_transform_mat ( dflimg.get_source_landmarks(), image_size, face_type )
|
|
dflimg.set_image_to_face_mat(image_to_face_mat)
|
|
dflimg.save()
|
|
|
|
return (1, filepath, output_filepath)
|
|
except:
|
|
self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}")
|
|
|
|
return (0, filepath, None)
|
|
|
|
def process_folder ( dirpath):
|
|
|
|
image_size = io.input_int(f"New image size", 512, valid_range=[128,2048])
|
|
|
|
face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower()
|
|
if face_type == 'same':
|
|
face_type = None
|
|
else:
|
|
face_type = {'h' : FaceType.HALF,
|
|
'mf' : FaceType.MID_FULL,
|
|
'f' : FaceType.FULL,
|
|
'wf' : FaceType.WHOLE_FACE,
|
|
'head' : FaceType.HEAD}[face_type]
|
|
|
|
|
|
output_dirpath = dirpath.parent / (dirpath.name + '_resized')
|
|
output_dirpath.mkdir (exist_ok=True, parents=True)
|
|
|
|
dirpath_parts = '/'.join( dirpath.parts[-2:])
|
|
output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] )
|
|
io.log_info (f"Resizing faceset in {dirpath_parts}")
|
|
io.log_info ( f"Processing to {output_dirpath_parts}")
|
|
|
|
output_images_paths = pathex.get_image_paths(output_dirpath)
|
|
if len(output_images_paths) > 0:
|
|
for filename in output_images_paths:
|
|
Path(filename).unlink()
|
|
|
|
image_paths = [Path(x) for x in pathex.get_image_paths( dirpath )]
|
|
result = FacesetResizerSubprocessor ( image_paths, output_dirpath, image_size, face_type).run()
|
|
|
|
is_merge = io.input_bool (f"\r\nMerge {output_dirpath_parts} to {dirpath_parts} ?", True)
|
|
if is_merge:
|
|
io.log_info (f"Copying processed files to {dirpath_parts}")
|
|
|
|
for (filepath, output_filepath) in result:
|
|
try:
|
|
shutil.copy (output_filepath, filepath)
|
|
except:
|
|
pass
|
|
|
|
io.log_info (f"Removing {output_dirpath_parts}")
|
|
shutil.rmtree(output_dirpath)
|