DeepFaceLab/core/leras/optimizers/AdaBelief.py
2021-09-30 00:40:59 +04:00

82 lines
3.5 KiB
Python

import numpy as np
from core.leras import nn
from tensorflow.python.ops import control_flow_ops, state_ops
tf = nn.tf
class AdaBelief(nn.OptimizerBase):
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, lr_dropout=1.0, lr_cos=0, clipnorm=0.0, name=None, **kwargs):
super().__init__(name=name)
if name is None:
raise ValueError('name must be defined.')
self.lr = lr
self.beta_1 = beta_1
self.beta_2 = beta_2
self.lr_dropout = lr_dropout
self.lr_cos = lr_cos
self.clipnorm = clipnorm
with tf.device('/CPU:0') :
with tf.variable_scope(self.name):
self.iterations = tf.Variable(0, dtype=tf.int64, name='iters')
self.ms_dict = {}
self.vs_dict = {}
self.lr_rnds_dict = {}
def get_weights(self):
return [self.iterations] + list(self.ms_dict.values()) + list(self.vs_dict.values())
def initialize_variables(self, trainable_weights, vars_on_cpu=True, lr_dropout_on_cpu=False):
# Initialize here all trainable variables used in training
e = tf.device('/CPU:0') if vars_on_cpu else None
if e: e.__enter__()
with tf.variable_scope(self.name):
ms = { v.name : tf.get_variable ( f'ms_{v.name}'.replace(':','_'), v.shape, dtype=v.dtype, initializer=tf.initializers.constant(0.0), trainable=False) for v in trainable_weights }
vs = { v.name : tf.get_variable ( f'vs_{v.name}'.replace(':','_'), v.shape, dtype=v.dtype, initializer=tf.initializers.constant(0.0), trainable=False) for v in trainable_weights }
self.ms_dict.update (ms)
self.vs_dict.update (vs)
if self.lr_dropout != 1.0:
e = tf.device('/CPU:0') if lr_dropout_on_cpu else None
if e: e.__enter__()
lr_rnds = [ nn.random_binomial( v.shape, p=self.lr_dropout, dtype=v.dtype) for v in trainable_weights ]
if e: e.__exit__(None, None, None)
self.lr_rnds_dict.update ( { v.name : rnd for v,rnd in zip(trainable_weights,lr_rnds) } )
if e: e.__exit__(None, None, None)
def get_update_op(self, grads_vars):
updates = []
if self.clipnorm > 0.0:
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars]))
updates += [ state_ops.assign_add( self.iterations, 1) ]
for i, (g,v) in enumerate(grads_vars):
if self.clipnorm > 0.0:
g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) )
ms = self.ms_dict[ v.name ]
vs = self.vs_dict[ v.name ]
m_t = self.beta_1*ms + (1.0-self.beta_1) * g
v_t = self.beta_2*vs + (1.0-self.beta_2) * tf.square(g-m_t)
lr = tf.constant(self.lr, g.dtype)
if self.lr_cos != 0:
lr *= (tf.cos( tf.cast(self.iterations, g.dtype) * (2*3.1415926535/ float(self.lr_cos) ) ) + 1.0) / 2.0
v_diff = - lr * m_t / (tf.sqrt(v_t) + np.finfo( g.dtype.as_numpy_dtype ).resolution )
if self.lr_dropout != 1.0:
lr_rnd = self.lr_rnds_dict[v.name]
v_diff *= lr_rnd
new_v = v + v_diff
updates.append (state_ops.assign(ms, m_t))
updates.append (state_ops.assign(vs, v_t))
updates.append (state_ops.assign(v, new_v))
return control_flow_ops.group ( *updates, name=self.name+'_updates')
nn.AdaBelief = AdaBelief