DeepFaceLab/core/leras/models/PatchDiscriminator.py

195 lines
7.4 KiB
Python

import numpy as np
from core.leras import nn
tf = nn.tf
patch_discriminator_kernels = \
{ 1 : (512, [ [1,1] ]),
2 : (512, [ [2,1] ]),
3 : (512, [ [2,1], [2,1] ]),
4 : (512, [ [2,2], [2,2] ]),
5 : (512, [ [3,2], [2,2] ]),
6 : (512, [ [4,2], [2,2] ]),
7 : (512, [ [3,2], [3,2] ]),
8 : (512, [ [4,2], [3,2] ]),
9 : (512, [ [3,2], [4,2] ]),
10 : (512, [ [4,2], [4,2] ]),
11 : (512, [ [3,2], [3,2], [2,1] ]),
12 : (512, [ [4,2], [3,2], [2,1] ]),
13 : (512, [ [3,2], [4,2], [2,1] ]),
14 : (512, [ [4,2], [4,2], [2,1] ]),
15 : (512, [ [3,2], [3,2], [3,1] ]),
16 : (512, [ [4,2], [3,2], [3,1] ]),
17 : (512, [ [3,2], [4,2], [3,1] ]),
18 : (512, [ [4,2], [4,2], [3,1] ]),
19 : (512, [ [3,2], [3,2], [4,1] ]),
20 : (512, [ [4,2], [3,2], [4,1] ]),
21 : (512, [ [3,2], [4,2], [4,1] ]),
22 : (512, [ [4,2], [4,2], [4,1] ]),
23 : (256, [ [3,2], [3,2], [3,2], [2,1] ]),
24 : (256, [ [4,2], [3,2], [3,2], [2,1] ]),
25 : (256, [ [3,2], [4,2], [3,2], [2,1] ]),
26 : (256, [ [4,2], [4,2], [3,2], [2,1] ]),
27 : (256, [ [3,2], [4,2], [4,2], [2,1] ]),
28 : (256, [ [4,2], [3,2], [4,2], [2,1] ]),
29 : (256, [ [3,2], [4,2], [4,2], [2,1] ]),
30 : (256, [ [4,2], [4,2], [4,2], [2,1] ]),
31 : (256, [ [3,2], [3,2], [3,2], [3,1] ]),
32 : (256, [ [4,2], [3,2], [3,2], [3,1] ]),
33 : (256, [ [3,2], [4,2], [3,2], [3,1] ]),
34 : (256, [ [4,2], [4,2], [3,2], [3,1] ]),
35 : (256, [ [3,2], [4,2], [4,2], [3,1] ]),
36 : (256, [ [4,2], [3,2], [4,2], [3,1] ]),
37 : (256, [ [3,2], [4,2], [4,2], [3,1] ]),
38 : (256, [ [4,2], [4,2], [4,2], [3,1] ]),
39 : (256, [ [3,2], [3,2], [3,2], [4,1] ]),
40 : (256, [ [4,2], [3,2], [3,2], [4,1] ]),
41 : (256, [ [3,2], [4,2], [3,2], [4,1] ]),
42 : (256, [ [4,2], [4,2], [3,2], [4,1] ]),
43 : (256, [ [3,2], [4,2], [4,2], [4,1] ]),
44 : (256, [ [4,2], [3,2], [4,2], [4,1] ]),
45 : (256, [ [3,2], [4,2], [4,2], [4,1] ]),
46 : (256, [ [4,2], [4,2], [4,2], [4,1] ]),
}
class PatchDiscriminator(nn.ModelBase):
def on_build(self, patch_size, in_ch, base_ch=None, conv_kernel_initializer=None):
suggested_base_ch, kernels_strides = patch_discriminator_kernels[patch_size]
if base_ch is None:
base_ch = suggested_base_ch
prev_ch = in_ch
self.convs = []
for i, (kernel_size, strides) in enumerate(kernels_strides):
cur_ch = base_ch * min( (2**i), 8 )
self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=conv_kernel_initializer) )
prev_ch = cur_ch
self.out_conv = nn.Conv2D( prev_ch, 1, kernel_size=1, padding='VALID', kernel_initializer=conv_kernel_initializer)
def forward(self, x):
for conv in self.convs:
x = tf.nn.leaky_relu( conv(x), 0.1 )
return self.out_conv(x)
nn.PatchDiscriminator = PatchDiscriminator
class UNetPatchDiscriminator(nn.ModelBase):
"""
Inspired by https://arxiv.org/abs/2002.12655 "A U-Net Based Discriminator for Generative Adversarial Networks"
"""
def calc_receptive_field_size(self, layers):
"""
result the same as https://fomoro.com/research/article/receptive-field-calculatorindex.html
"""
rf = 0
ts = 1
for i, (k, s) in enumerate(layers):
if i == 0:
rf = k
else:
rf += (k-1)*ts
ts *= s
return rf
def find_archi(self, target_patch_size, max_layers=9):
"""
Find the best configuration of layers using only 3x3 convs for target patch size
"""
s = {}
for layers_count in range(1,max_layers+1):
val = 1 << (layers_count-1)
while True:
val -= 1
layers = []
sum_st = 0
layers.append ( [3, 2])
sum_st += 2
for i in range(layers_count-1):
st = 1 + (1 if val & (1 << i) !=0 else 0 )
layers.append ( [3, st ])
sum_st += st
rf = self.calc_receptive_field_size(layers)
s_rf = s.get(rf, None)
if s_rf is None:
s[rf] = (layers_count, sum_st, layers)
else:
if layers_count < s_rf[0] or \
( layers_count == s_rf[0] and sum_st > s_rf[1] ):
s[rf] = (layers_count, sum_st, layers)
if val == 0:
break
x = sorted(list(s.keys()))
q=x[np.abs(np.array(x)-target_patch_size).argmin()]
return s[q][2]
def on_build(self, patch_size, in_ch, base_ch = 16, use_fp16 = False):
self.use_fp16 = use_fp16
conv_dtype = tf.float16 if use_fp16 else tf.float32
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
x = self.conv1(inp)
x = tf.nn.leaky_relu(x, 0.2)
x = self.conv2(x)
x = tf.nn.leaky_relu(inp + x, 0.2)
return x
prev_ch = in_ch
self.convs = []
self.upconvs = []
layers = self.find_archi(patch_size)
level_chs = { i-1:v for i,v in enumerate([ min( base_ch * (2**i), 512 ) for i in range(len(layers)+1)]) }
self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID', dtype=conv_dtype)
for i, (kernel_size, strides) in enumerate(layers):
self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )
self.upconvs.insert (0, nn.Conv2DTranspose( level_chs[i]*(2 if i != len(layers)-1 else 1), level_chs[i-1], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )
self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
self.center_out = nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
self.center_conv = nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID', dtype=conv_dtype)
def forward(self, x):
if self.use_fp16:
x = tf.cast(x, tf.float16)
x = tf.nn.leaky_relu( self.in_conv(x), 0.2 )
encs = []
for conv in self.convs:
encs.insert(0, x)
x = tf.nn.leaky_relu( conv(x), 0.2 )
center_out, x = self.center_out(x), tf.nn.leaky_relu( self.center_conv(x), 0.2 )
for i, (upconv, enc) in enumerate(zip(self.upconvs, encs)):
x = tf.nn.leaky_relu( upconv(x), 0.2 )
x = tf.concat( [enc, x], axis=nn.conv2d_ch_axis)
x = self.out_conv(x)
if self.use_fp16:
center_out = tf.cast(center_out, tf.float32)
x = tf.cast(x, tf.float32)
return center_out, x
nn.UNetPatchDiscriminator = UNetPatchDiscriminator