mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2024-12-25 23:41:12 -08:00
61472cdaf7
removed support of extracted(aligned) PNG faces. Use old builds to convert from PNG to JPG. fanseg model file in facelib/ is renamed
42 lines
1.6 KiB
Python
42 lines
1.6 KiB
Python
from core.leras import nn
|
|
tf = nn.tf
|
|
|
|
class BatchNorm2D(nn.LayerBase):
|
|
"""
|
|
currently not for training
|
|
"""
|
|
def __init__(self, dim, eps=1e-05, momentum=0.1, dtype=None, **kwargs):
|
|
self.dim = dim
|
|
self.eps = eps
|
|
self.momentum = momentum
|
|
if dtype is None:
|
|
dtype = nn.floatx
|
|
self.dtype = dtype
|
|
super().__init__(**kwargs)
|
|
|
|
def build_weights(self):
|
|
self.weight = tf.get_variable("weight", (self.dim,), dtype=self.dtype, initializer=tf.initializers.ones() )
|
|
self.bias = tf.get_variable("bias", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros() )
|
|
self.running_mean = tf.get_variable("running_mean", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros(), trainable=False )
|
|
self.running_var = tf.get_variable("running_var", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros(), trainable=False )
|
|
|
|
def get_weights(self):
|
|
return [self.weight, self.bias, self.running_mean, self.running_var]
|
|
|
|
def forward(self, x):
|
|
if nn.data_format == "NHWC":
|
|
shape = (1,1,1,self.dim)
|
|
else:
|
|
shape = (1,self.dim,1,1)
|
|
|
|
weight = tf.reshape ( self.weight , shape )
|
|
bias = tf.reshape ( self.bias , shape )
|
|
running_mean = tf.reshape ( self.running_mean, shape )
|
|
running_var = tf.reshape ( self.running_var , shape )
|
|
|
|
x = (x - running_mean) / tf.sqrt( running_var + self.eps )
|
|
x *= weight
|
|
x += bias
|
|
return x
|
|
|
|
nn.BatchNorm2D = BatchNorm2D |