DeepFaceLab/core/leras/device.py
2022-05-04 16:41:17 +04:00

273 lines
9.3 KiB
Python
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import sys
import ctypes
import os
import multiprocessing
import json
import time
from pathlib import Path
from core.interact import interact as io
class Device(object):
def __init__(self, index, tf_dev_type, name, total_mem, free_mem):
self.index = index
self.tf_dev_type = tf_dev_type
self.name = name
self.total_mem = total_mem
self.total_mem_gb = total_mem / 1024**3
self.free_mem = free_mem
self.free_mem_gb = free_mem / 1024**3
def __str__(self):
return f"[{self.index}]:[{self.name}][{self.free_mem_gb:.3}/{self.total_mem_gb :.3}]"
class Devices(object):
all_devices = None
def __init__(self, devices):
self.devices = devices
def __len__(self):
return len(self.devices)
def __getitem__(self, key):
result = self.devices[key]
if isinstance(key, slice):
return Devices(result)
return result
def __iter__(self):
for device in self.devices:
yield device
def get_best_device(self):
result = None
idx_mem = 0
for device in self.devices:
mem = device.total_mem
if mem > idx_mem:
result = device
idx_mem = mem
return result
def get_worst_device(self):
result = None
idx_mem = sys.maxsize
for device in self.devices:
mem = device.total_mem
if mem < idx_mem:
result = device
idx_mem = mem
return result
def get_device_by_index(self, idx):
for device in self.devices:
if device.index == idx:
return device
return None
def get_devices_from_index_list(self, idx_list):
result = []
for device in self.devices:
if device.index in idx_list:
result += [device]
return Devices(result)
def get_equal_devices(self, device):
device_name = device.name
result = []
for device in self.devices:
if device.name == device_name:
result.append (device)
return Devices(result)
def get_devices_at_least_mem(self, totalmemsize_gb):
result = []
for device in self.devices:
if device.total_mem >= totalmemsize_gb*(1024**3):
result.append (device)
return Devices(result)
@staticmethod
def _get_tf_devices_proc(q : multiprocessing.Queue):
if sys.platform[0:3] == 'win':
compute_cache_path = Path(os.environ['APPDATA']) / 'NVIDIA' / ('ComputeCache_ALL')
os.environ['CUDA_CACHE_PATH'] = str(compute_cache_path)
if not compute_cache_path.exists():
io.log_info("Caching GPU kernels...")
compute_cache_path.mkdir(parents=True, exist_ok=True)
import tensorflow
tf_version = tensorflow.version.VERSION
#if tf_version is None:
# tf_version = tensorflow.version.GIT_VERSION
if tf_version[0] == 'v':
tf_version = tf_version[1:]
if tf_version[0] == '2':
tf = tensorflow.compat.v1
else:
tf = tensorflow
import logging
# Disable tensorflow warnings
tf_logger = logging.getLogger('tensorflow')
tf_logger.setLevel(logging.ERROR)
from tensorflow.python.client import device_lib
devices = []
physical_devices = device_lib.list_local_devices()
physical_devices_f = {}
for dev in physical_devices:
dev_type = dev.device_type
dev_tf_name = dev.name
dev_tf_name = dev_tf_name[ dev_tf_name.index(dev_type) : ]
dev_idx = int(dev_tf_name.split(':')[-1])
if dev_type in ['GPU','DML']:
dev_name = dev_tf_name
dev_desc = dev.physical_device_desc
if len(dev_desc) != 0:
if dev_desc[0] == '{':
dev_desc_json = json.loads(dev_desc)
dev_desc_json_name = dev_desc_json.get('name',None)
if dev_desc_json_name is not None:
dev_name = dev_desc_json_name
else:
for param, value in ( v.split(':') for v in dev_desc.split(',') ):
param = param.strip()
value = value.strip()
if param == 'name':
dev_name = value
break
physical_devices_f[dev_idx] = (dev_type, dev_name, dev.memory_limit)
q.put(physical_devices_f)
time.sleep(0.1)
@staticmethod
def initialize_main_env():
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 0:
return
if 'CUDA_VISIBLE_DEVICES' in os.environ.keys():
os.environ.pop('CUDA_VISIBLE_DEVICES')
os.environ['TF_DIRECTML_KERNEL_CACHE_SIZE'] = '2500'
os.environ['CUDA_CACHE_MAXSIZE'] = '2147483647'
os.environ['TF_MIN_GPU_MULTIPROCESSOR_COUNT'] = '2'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # tf log errors only
q = multiprocessing.Queue()
p = multiprocessing.Process(target=Devices._get_tf_devices_proc, args=(q,), daemon=True)
p.start()
p.join()
visible_devices = q.get()
os.environ['NN_DEVICES_INITIALIZED'] = '1'
os.environ['NN_DEVICES_COUNT'] = str(len(visible_devices))
for i in visible_devices:
dev_type, name, total_mem = visible_devices[i]
os.environ[f'NN_DEVICE_{i}_TF_DEV_TYPE'] = dev_type
os.environ[f'NN_DEVICE_{i}_NAME'] = name
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(total_mem)
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(total_mem)
@staticmethod
def getDevices():
if Devices.all_devices is None:
if int(os.environ.get("NN_DEVICES_INITIALIZED", 0)) != 1:
raise Exception("nn devices are not initialized. Run initialize_main_env() in main process.")
devices = []
for i in range ( int(os.environ['NN_DEVICES_COUNT']) ):
devices.append ( Device(index=i,
tf_dev_type=os.environ[f'NN_DEVICE_{i}_TF_DEV_TYPE'],
name=os.environ[f'NN_DEVICE_{i}_NAME'],
total_mem=int(os.environ[f'NN_DEVICE_{i}_TOTAL_MEM']),
free_mem=int(os.environ[f'NN_DEVICE_{i}_FREE_MEM']), )
)
Devices.all_devices = Devices(devices)
return Devices.all_devices
"""
# {'name' : name.split(b'\0', 1)[0].decode(),
# 'total_mem' : totalMem.value
# }
return
min_cc = int(os.environ.get("TF_MIN_REQ_CAP", 35))
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
for libname in libnames:
try:
cuda = ctypes.CDLL(libname)
except:
continue
else:
break
else:
return Devices([])
nGpus = ctypes.c_int()
name = b' ' * 200
cc_major = ctypes.c_int()
cc_minor = ctypes.c_int()
freeMem = ctypes.c_size_t()
totalMem = ctypes.c_size_t()
result = ctypes.c_int()
device = ctypes.c_int()
context = ctypes.c_void_p()
error_str = ctypes.c_char_p()
devices = []
if cuda.cuInit(0) == 0 and \
cuda.cuDeviceGetCount(ctypes.byref(nGpus)) == 0:
for i in range(nGpus.value):
if cuda.cuDeviceGet(ctypes.byref(device), i) != 0 or \
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device) != 0 or \
cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) != 0:
continue
if cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device) == 0:
if cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) == 0:
cc = cc_major.value * 10 + cc_minor.value
if cc >= min_cc:
devices.append ( {'name' : name.split(b'\0', 1)[0].decode(),
'total_mem' : totalMem.value,
'free_mem' : freeMem.value,
'cc' : cc
})
cuda.cuCtxDetach(context)
os.environ['NN_DEVICES_COUNT'] = str(len(devices))
for i, device in enumerate(devices):
os.environ[f'NN_DEVICE_{i}_NAME'] = device['name']
os.environ[f'NN_DEVICE_{i}_TOTAL_MEM'] = str(device['total_mem'])
os.environ[f'NN_DEVICE_{i}_FREE_MEM'] = str(device['free_mem'])
os.environ[f'NN_DEVICE_{i}_CC'] = str(device['cc'])
"""